Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The last 20 years have witnessed major advancements in the field of supramolecular chemistry and have brought us closer to the designing of low molecular weight gelators with desired properties and applications. In that regard, amide- and urea- based gelators comprise a unique class as they are extremely versatile in terms of molecular design and offer a wide range of applications, like anion responsive materials, selective sensing of heavy metal ions, environmental remediation and many more. Both sets of compounds have similar molecular scaffolds, making them an excellent tool to determine the relative importance of the supramolecular interactions involved in the gelation process. Besides, the concept of crystal engineering can also be employed to understand the underlying mechanism of gelation by scrutinizing the interactions and supramolecular assemblies formed by these systems. In this article, we focus on various supramolecular assemblies formed by various amide and urea derivatives and their recently reported applications to establish structure-property correlation and their futuristic aspects.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728277924231124094902
2024-01-01
2025-01-09
Loading full text...

Full text loading...

References

  1. WeissR.G. Introduction: An overview of the “What” and “Why” of molecular gels. In: Molecular Gels Structure and Dynamics. WeissR.G. The Royal Society of Chemistry201812710.1039/9781788013147‑00001
    [Google Scholar]
  2. RaghavanS.R. DouglasJ.F. The conundrum of gel formation by molecular nanofibers, wormlike micelles, and filamentous proteins: Gelation without cross-links?Soft Matter20128338539854610.1039/c2sm25107h
    [Google Scholar]
  3. HirstA.R. EscuderB. MiravetJ.F. SmithD.K. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices.Angew. Chem. Int. Ed.200847428002801810.1002/anie.200800022 18825737
    [Google Scholar]
  4. BhardwajV. BallabhA. Multifunctional supramolecular gels – an overview.In: Advances in Chemistry Research.Nova Science Publishers, Inc2022377410.52305/FHWI1475
    [Google Scholar]
  5. DastidarP. RoyR. ParveenR. GangulyS. MajumderJ. PaulM. Designing soft supramolecular materials using intermolecular interactions.In: Functional Supramolecular Materials: From Surfaces to MOFs. BanerjeeR. The Royal Society of Chemistry2017377410.1039/9781788010276‑00037
    [Google Scholar]
  6. YuX. ChenL. ZhangM. YiT. Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials.Chem. Soc. Rev.201443155346537110.1039/C4CS00066H 24770929
    [Google Scholar]
  7. DastidarP. Designing supramolecular gelators: Challenges, frustrations, and hopes.Gels2019511510.3390/gels5010015 30857187
    [Google Scholar]
  8. DastidarP. Supramolecular gelling agents: Can they be designed?Chem. Soc. Rev.200837122699271510.1039/b807346e 19020683
    [Google Scholar]
  9. ChiversP.R.A. SmithD.K. Shaping and structuring supramolecular gels.Nat. Rev. Mater.20194746347810.1038/s41578‑019‑0111‑6
    [Google Scholar]
  10. DraperE.R. AdamsD.J. Low-molecular-weight gels: The state of the art.Chem20173339041010.1016/j.chempr.2017.07.012
    [Google Scholar]
  11. BhardwajV. BallabhA. Low molecular mass gelators based on thiazole derivatives: Design and function. In: Advances, in Chemistry Research.Nova Science Publishers, Inc.202214717410.52305/KTRF2986
    [Google Scholar]
  12. BhardwajV. BallabhA. Design, synthesis, and application of a new series of organogelator using crystal engineering approach and solvent parameter study: A synergetic approach.J. Mol. Liq.202132211452010.1016/j.molliq.2020.114520
    [Google Scholar]
  13. OkesolaB.O. SmithD.K. Applying low-molecular weight supramolecular gelators in an environmental setting – self-assembled gels as smart materials for pollutant removal.Chem. Soc. Rev.201645154226425110.1039/C6CS00124F 27241027
    [Google Scholar]
  14. SoundarajanK. Mohan DasT. Sugar-benzohydrazide based phase selective gelators for marine oil spill recovery and removal of dye from polluted water.Carbohydr. Res.2019481606610.1016/j.carres.2019.06.011 31252336
    [Google Scholar]
  15. OhsedoY. Low-molecular-weight organogelators as functional materials for oil spill remediation.Polym. Adv. Technol.201627670471110.1002/pat.3712
    [Google Scholar]
  16. BhardwajV. BallabhA. A series of multifunctional pivalamide based Low Molecular Mass Gelators (LMOGs) with potential applications in oil-spill remediation and toxic dye removal.Colloids Surf. A Physicochem. Eng. Asp.202263212781310.1016/j.colsurfa.2021.127813
    [Google Scholar]
  17. BhardwajV. BallabhA. Remediation of marine oil spills and water pollution using low molecular weight organo-gelators.Recent Adv. Petrochemical Sci.20227310.19080/RAPSCI.2022.07.555714s
    [Google Scholar]
  18. SamaiS. DeyJ. BiradhaK. Amino acid based low-molecular-weight tris(bis-amido) organogelators.Soft Matter2011752121212610.1039/c0sm01293a
    [Google Scholar]
  19. ChoE.J. JeongI.Y. LeeS.J. HanW.S. KangJ.K. JungJ.H. DebnathS. ShomeA. DuttaS. DasP.K. DasD. DasguptaA. KumarP. RayS. DasA.K. BanerjeeA. JadaV. ReceiV. NoV. ReV. ReceiM. DecemberV. AdhikariB. PaluiG. BanerjeeA. Terpyridine-based smart organic–inorganic hybrid gel as potential dye-adsorbing agent for water purification.Tetrahedron Lett.20084961076107910.1016/j.tetlet.2007.11.212
    [Google Scholar]
  20. DebnathS. ShomeA. DuttaS. DasP.K. Dipeptide-based low-molecular-weight efficient organogelators and their application in water purification.Chemistry200814236870688110.1002/chem.200800731 18642259
    [Google Scholar]
  21. RayS. DasA.K. BanerjeeA. pH-responsive, bolaamphiphile-based smart metallo-hydrogels as potential dye-adsorbing agents, water purifier, and vitamin B12 carrier.Chem. Mater.20071971633163910.1021/cm062672f
    [Google Scholar]
  22. AdhikariB. PaluiG. BanerjeeA. Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water.Soft Matter20095183452346010.1039/b905985g
    [Google Scholar]
  23. KnerrP.J. BrancoM.C. NagarkarR. PochanD.J. SchneiderJ.P. Heavy metal ion hydrogelation of a self-assembling peptideviacysteinyl chelation.J. Mater. Chem.20122241352135710.1039/C1JM14418A
    [Google Scholar]
  24. CarterK.K. RycengaH.B. McNeilA.J. Improving Hg-triggered gelation via structural modifications.Langmuir201430123522352710.1021/la404567b 24646129
    [Google Scholar]
  25. KingK.N. McNeilA.J. Streamlined approach to a new gelator: inspiration from solid-state interactions for a mercury-induced gelation.Chem. Commun. 201046203511351310.1039/c002081h 20582351
    [Google Scholar]
  26. OkesolaB.O. SuravaramS.K. ParkinA. SmithD.K. Selective extraction and in situ reduction of precious metal salts from model waste to generate hybrid gels with embedded electrocatalytic nanoparticles.Angew. Chem. Int. Ed.201655118318710.1002/anie.201507684 26549625
    [Google Scholar]
  27. TrivediD.R. BallabhA. DastidarP. GangulyB. Structure-property correlation of a new family of organogelators based on organic salts and their selective gelation of oil from oil/water mixtures.Chemistry200410215311532210.1002/chem.200400122 15378683
    [Google Scholar]
  28. LinQ. LuT.T. ZhuX. SunB. YangQ.P. WeiT.B. ZhangY.M. A novel supramolecular metallogel-based high-resolution anion sensor array.Chem. Commun. 20155191635163810.1039/C4CC07814D 25503444
    [Google Scholar]
  29. ShenJ.S. CaiQ.G. JiangY.B. ZhangH.W. Anion-triggered melamine based self-assembly and hydrogel.Chem. Commun. 201046366786678810.1039/c0cc02030c 20730213
    [Google Scholar]
  30. ShenJ.S. LiD.H. CaiQ.G. JiangY.B. Highly selective iodide-responsive gel–sol state transition in supramolecular hydrogels.J. Mater. Chem.200919346219622410.1039/b908755a
    [Google Scholar]
  31. BeckerT. Yong GohC. JonesF. McIldowieM.J. MocerinoM. OgdenM.I. Proline-functionalised calix[4]arene: An anion-triggered hydrogelator.Chem. Commun. 20083900–3902333900390210.1039/b807248e 18726028
    [Google Scholar]
  32. XiaQ. MaoY. WuJ. ShuT. YiT. Two-component organogel for visually detecting nitrite anion.J. Mater. Chem. C Mater. Opt. Electron. Devices20142101854186110.1039/C3TC32158D
    [Google Scholar]
  33. Christoff-TempestaT. LewA. OrtonyJ. Beyond covalent crosslinks: Applications of supramolecular gels.Gels2018424010.3390/gels4020040 30674816
    [Google Scholar]
  34. del RosarioC. Rodríguez-ÉvoraM. ReyesR. SimõesS. ConcheiroA. ÉvoraC. Alvarez-LorenzoC. DelgadoA. Bone critical defect repair with poloxamine–cyclodextrin supramolecular gels.Int. J. Pharm.2015495146347310.1016/j.ijpharm.2015.09.003 26362078
    [Google Scholar]
  35. SangL. HuangJ. LuoD. ChenZ. LiX. Bone-like nanocomposites based on self-assembled protein-based matrices with Ca2+ capturing capability.J. Mater. Sci. Mater. Med.20102192561256810.1007/s10856‑010‑4117‑2 20582716
    [Google Scholar]
  36. PakhomovP.M. OvchinnikovM.M. KhizhnyakS.D. RoshchinaO.A. KomarovP.V. A supramolecular medical hydrogel based on L-cysteine and silver ions.Polym. Sci. Ser. A201153982082610.1134/S0965545X11090094
    [Google Scholar]
  37. MandalS.K. BrahmachariS. DasP.K. In situ synthesised silver nanoparticle-infused L -lysine-based injectable hydrogel: Development of a biocompatible, antibacterial, soft nanocomposite.ChemPlusChem201479121733174610.1002/cplu.201402269
    [Google Scholar]
  38. PaladiniF. MeikleS.T. CooperI.R. LaceyJ. PeruginiV. SantinM. Silver-doped self-assembling di-phenylalanine hydrogels as wound dressing biomaterials.J. Mater. Sci. Mater. Med.201324102461247210.1007/s10856‑013‑4986‑2 23793492
    [Google Scholar]
  39. ZengJ. YinY. ZhangL. HuW. ZhangC. ChenW. A supramolecular gel approach to minimize the neural cell damage during cryopreservation process.Macromol. Biosci.201616336337010.1002/mabi.201500277 26611502
    [Google Scholar]
  40. ZhouM. SmithA.M. DasA.K. HodsonN.W. CollinsR.F. UlijnR.V. GoughJ.E. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells.Biomaterials200930132523253010.1016/j.biomaterials.2009.01.010 19201459
    [Google Scholar]
  41. LatxagueL. RaminM.A. AppavooA. BertoP. MaisaniM. EhretC. ChassandeO. BarthélémyP. Control of stem-cell behavior by fine tuning the supramolecular assemblies of low-molecular-weight gelators.Angew. Chem. Int. Ed.201554154517452110.1002/anie.201409134 25693962
    [Google Scholar]
  42. KarlssonJ.O.M. TonerM. Long-term storage of tissues by cryopreservation: critical issues.Biomaterials199617324325610.1016/0142‑9612(96)85562‑1 8745321
    [Google Scholar]
  43. YamamichiS. JinnoY. HarayaN. OyoshiT. TomitoriH. KashiwagiK. YamanakaM. Separation of proteins using supramolecular gel electrophoresis.Chem. Commun. 20114737103441034610.1039/c1cc13826j 21853178
    [Google Scholar]
  44. TazawaS. KobayashiK. OyoshiT. YamanakaM. Supramolecular gel electrophoresis of large DNA fragments.Electrophoresis201738202662266510.1002/elps.201700223 28681974
    [Google Scholar]
  45. YangZ. XuB. BayC.W. KongH. A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes.Chem. Commun. 20041212424242510.1039/b408897b 15514797
    [Google Scholar]
  46. HeT. LiK. WuM.Y. LiaoY.X. YuX.Q. Visual detection of amino acids by supramolecular gel collapse.RSC Advances2013452119212310.1039/C3RA44853C
    [Google Scholar]
  47. YangD. LiuC. ZhangL. LiuM. Visualized discrimination of ATP from ADP and AMP through collapse of supramolecular gels.Chem. Commun. 20145084126881269010.1039/C4CC05406G 25205284
    [Google Scholar]
  48. SahaA. AdamcikJ. BolisettyS. HandschinS. MezzengaR. Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features.Angew. Chem. Int. Ed.201554185408541210.1002/anie.201411875 25759108
    [Google Scholar]
  49. EscuderB. Rodríguez-LlansolaF. MiravetJ.F. Supramolecular gels as active media for organic reactions and catalysis.New J. Chem.20103461044105410.1039/b9nj00764d
    [Google Scholar]
  50. DalyR. KotovaO. BoeseM. GunnlaugssonT. BolandJ. J. Chemical nano-gardens: Growth of salt nanowires from supramolecular self-assembly gels.ACS Nano2013764838484510.1021/nn305813y 23663045
    [Google Scholar]
  51. FosterJ.A. DamodaranK.K. MaurinA. DayG.M. ThompsonH.P.G. CameronG.J. BernalJ.C. SteedJ.W. Pharmaceutical polymorph control in a drug-mimetic supramolecular gel.Chem. Sci. 201781788410.1039/C6SC04126D 28451150
    [Google Scholar]
  52. HuangG. YuQ. CaiM. ZhouF. LiuW. Highlighting the effect of interfacial interaction on tribological properties of supramolecular gel lubricants.Adv. Mater. Interfaces201633150048910.1002/admi.201500489
    [Google Scholar]
  53. YuQ. HuangG. CaiM. ZhouF. LiuW. In situ zwitterionic supramolecular gel lubricants for significantly improved tribological properties.Tribol. Int.201695556510.1016/j.triboint.2015.10.032
    [Google Scholar]
  54. CaiM. LiangY. ZhouF. LiuW. Functional ionic gels formed by supramolecular assembly of a novel low molecular weight anticorrosive/antioxidative gelator.J. Mater. Chem.20112135133991340510.1039/c1jm12010g
    [Google Scholar]
  55. YuQ. WuY. LiD. CaiM. ZhouF. LiuW. Supramolecular ionogel lubricants with imidazolium-based ionic liquids bearing the urea group as gelator.J. Colloid Interface Sci.201748713014010.1016/j.jcis.2016.10.020 27756002
    [Google Scholar]
  56. RogersM.A. Novel structuring strategies for unsaturated fats – Meeting the zero-trans, zero-saturated fat challenge: A review.Food Res. Int.200942774775310.1016/j.foodres.2009.02.024
    [Google Scholar]
  57. RogersM.A. SpagnuoloP.A. WangT.M. AngkaL. A potential bioactive hard-stock fat replacer comprised of a molecular gel.Food Sci. Nutr.20175357958710.1002/fsn3.433 28572944
    [Google Scholar]
  58. Alvarez-MitreF.M. MalliaV.A. WeissR.G. Charó-AlonsoM.A. Toro-VazquezJ.F. Self-assembly in vegetable oils of ionic gelators derived from (R)-12-hydroxystearic acid.Food Structure201713566910.1016/j.foostr.2016.07.003
    [Google Scholar]
  59. CoE. MarangoniA.G. The formation of a 12-hydroxystearic acid/vegetable oil organogel under shear and thermal fields.J. Am. Oil Chem. Soc.201390452954410.1007/s11746‑012‑2196‑6
    [Google Scholar]
  60. BairiP. ChakrabortyP. ShitA. MondalS. RoyB. NandiA.K. A co-assembled gel of a pyromellitic dianhydride derivative and polyaniline with optoelectronic and photovoltaic properties.Langmuir201430257547755510.1021/la500890r 24912087
    [Google Scholar]
  61. ShiY. ZhangJ. PanL. ShiY. YuG. Energy gels: A bio-inspired material platform for advanced energy applications.Nano Today201611673876210.1016/j.nantod.2016.10.002
    [Google Scholar]
  62. HuoZ. WangL. TaoL. DingY. YiJ. AlsaediA. HayatT. DaiS. A supramolecular gel electrolyte formed from amide based co-gelator for quasi-solid-state dye-sensitized solar cell with boosted electron kinetic processes.J. Power Sources2017359808710.1016/j.jpowsour.2017.04.099
    [Google Scholar]
  63. HuoZ. TaoL. DaiS. ZhuJ. ZhangC. ChenS. ZhangB. Quasi-solid-state dye sensitized solar cells using supramolecular gel electrolyte formed from two-component low molecular mass organogelators.Sci. China Mater.201558644745410.1007/s40843‑015‑0060‑3
    [Google Scholar]
  64. DudutaM. HoB. WoodV.C. LimthongkulP. BruniniV.E. CarterW.C. ChiangY.M. Semi-solid lithium rechargeable flow battery.Adv. Energy Mater.20111451151610.1002/aenm.201100152
    [Google Scholar]
  65. LyuF. YuS. LiM. WangZ. NanB. WuS. CaoL. SunZ. YangM. WangW. ShangC. LuZ. Supramolecular hydrogel directed self-assembly of C- and N-doped hollow CuO as high-performance anode materials for Li-ion batteries.Chem. Commun. 201753132138214110.1039/C6CC09702B 28134387
    [Google Scholar]
  66. ReddyM.V. Subba RaoG.V. ChowdariB.V.R. Metal oxides and oxysalts as anode materials for Li ion batteries.Chem. Rev.201311375364545710.1021/cr3001884 23548181
    [Google Scholar]
  67. GuoW. SunW. WangY. Multilayer CuO@NiO hollow spheres: Microwave-assisted metal–organic-framework derivation and highly reversible structure-matched stepwise lithium storage.ACS Nano2015911114621147110.1021/acsnano.5b05610 26442790
    [Google Scholar]
  68. LiangM. LiuX. LiW. WangQ. A tough nanocomposite aerogel of manganese oxide and polyaniline as an electrode for a supercapacitor.ChemPlusChem2016811404310.1002/cplu.201500399 31968745
    [Google Scholar]
  69. DongX. WangH. FangF. LiX. YangY. Effect of gelator structures on electrochemical properties of ionic-liquid supramolecular gel electrolytes.Electrochim. Acta20105572275227910.1016/j.electacta.2009.11.042
    [Google Scholar]
  70. LiW. GaoF. WangX. ZhangN. MaM. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors.Angew. Chem. Int. Ed.201655329196920110.1002/anie.201603417 27328742
    [Google Scholar]
  71. YeY.S. HuangY.J. ChengC.C. ChangF.C. A new supramolecular sulfonated polyimide for use in proton exchange membranes for fuel cells.Chem. Commun. 201046407554755610.1039/c0cc02325f 20852764
    [Google Scholar]
  72. kumar, G.G.; Hashmi, S.; Karthikeyan, C.; GhavamiNejad, A.; Vatankhah-Varnoosfaderani, M.; Stadler, F.J. Graphene oxide/carbon nanotube composite hydrogels—versatile materials for microbial fuel cell applications.Macromol. Rapid Commun.201435211861186510.1002/marc.201400332
    [Google Scholar]
  73. LuY.C. XuZ. GasteigerH.A. ChenS. Hamad-SchifferliK. Shao-HornY. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries.J. Am. Chem. Soc.201013235121701217110.1021/ja1036572 20527774
    [Google Scholar]
  74. MaX. CuiY. LiuS. WuJ. A thermo-responsive supramolecular gel and its luminescence enhancement induced by rare earth Y 3+.Soft Matter201713448027803010.1039/C7SM01726J 29104972
    [Google Scholar]
  75. MaX. ZhangJ. TangN. WuJ. A thermo-responsive supramolecular organogel: dual luminescence properties and luminescence conversion induced by Cd 2+.Dalton Trans.20144346172361723910.1039/C4DT02502D 25336404
    [Google Scholar]
  76. MandalS.K. MandalD. DasP.K. Synthesis of a low-molecular-weight fluorescent ambidextrous gelator: Development of graphene- and graphene-oxide-included gel nanocomposites.ChemPlusChem201681221322110.1002/cplu.201500457 31968770
    [Google Scholar]
  77. TongX. ZhaoY. AnB.K. ParkS.Y. Fluorescent liquid-crystal gels with electrically switchable photoluminescence.Adv. Funct. Mater.200616141799180410.1002/adfm.200500868
    [Google Scholar]
  78. SuzukiY. MizoshitaN. HanabusaK. KatoT. Homeotropically oriented nematic physical gels for electrooptical materials.J. Mater. Chem.200313122870287410.1039/b308098f
    [Google Scholar]
  79. ZhouJ. HanP. LiuM. ZhouH. ZhangY. JiangJ. LiuP. WeiY. SongY. YaoX. Self-healable organogel nanocomposite with angle-independent structural colors.Angew. Chem. Int. Ed.20175635104621046610.1002/anie.201705462 28677259
    [Google Scholar]
  80. VidyasagarA. HandoreK. SureshanK.M. SureshanK.M. GeorgeD.M.V. Soft optical devices from self-healing gels formed by oil and sugar-based organogelators.Angew. Chem. Int. Ed.201150358021802410.1002/anie.201103584 21755583
    [Google Scholar]
  81. WeingartenA.S. KazantsevR.V. PalmerL.C. McClendonM. KoltonowA.R. SamuelA.P.S. KiebalaD.J. WasielewskiM.R. StuppS.I. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production.Nat. Chem.201461196497010.1038/nchem.2075 25343600
    [Google Scholar]
  82. YokoyaM. KimuraS. YamanakaM. Urea derivatives as functional molecules: Supramolecular capsules, supramolecular polymers, supramolecular gels, artificial hosts, and catalysts.Chemistry202127185601561410.1002/chem.202004367 33184975
    [Google Scholar]
  83. YamanakaM. Urea derivatives as low-molecular-weight gelators.J. Incl. Phenom. Macrocycl. Chem.2013771-4334810.1007/s10847‑013‑0299‑9
    [Google Scholar]
  84. PetrovS.A. MachulkinA.E. PetrovR.A. TavtorkinA.N. BondarenkoG.N. LegkovS.A. Nifant’evI.E. DolzhikovaV.D. ZykN.V. MajougaA.G. BeloglazkinaE.K. Synthesis and organogelating behaviour of urea- and Fmoc-containing diphenylalanine based hexaamide.J. Mol. Struct.2021123413012710.1016/j.molstruc.2021.130127
    [Google Scholar]
  85. ParkJ.H. KimM.H. SeoM.L. LeeJ.H. JungJ.H. In situ supramolecular gel formed by cyclohexane diamine with aldehyde derivative.Polymers 202214340010.3390/polym14030400 35160389
    [Google Scholar]
  86. DawnA. PajoubpongJ. MesmerA. MirzamaniM. HeL. KumariH. Manipulating assemblies in metallosupramolecular gels, driven by isomeric ligands, metal coordination, and adaptive binary gelator systems.Langmuir20223851705171510.1021/acs.langmuir.1c02738 35078313
    [Google Scholar]
  87. MakiT. YoshisakiR. AkamaS. YamanakaM. Enzyme responsive properties of amphiphilic urea supramolecular hydrogels.Polym. J.202052893193810.1038/s41428‑020‑0333‑x
    [Google Scholar]
  88. ODonnell,A.D.;Gavriel,A.G.;Christie,W.;Chippindale,A.M.;German,I.M.;Hayes,W.;Conformational control of bis-urea self-assembled supramolecular pH switchable low-molecular-weight hydrogelators.ARKIVOC20212021622224110.24820/ark.5550190.p011.581
    [Google Scholar]
  89. Martínez-MejíaG. Bermeo-SolórzanoB.A. GonzálezS. del RíoJ.M. CoreaM. Jiménez-JuárezR. New carbamates and ureas: Comparative ability to gel organic solvents.Gels20228744010.3390/gels8070440 35877525
    [Google Scholar]
  90. SahubC. AndrewsJ.L. SmithJ.P. Mohamad ArifM.A. TomapatanagetB. SteedJ.W. Enhancement of sensitivity for dichlorvos detection by a low-weight gelator based on bolaamphiphile amino acid derivatives decorated with a hybrid graphene quantum dot/enzyme/hydrogel.Mater. Chem. Front.20215186850685910.1039/D1QM00296A
    [Google Scholar]
  91. JonesC.D. SteedJ.W. Gels with sense: supramolecular materials that respond to heat, light and sound.Chem. Soc. Rev.201645236546659610.1039/C6CS00435K 27711667
    [Google Scholar]
  92. PicciG. MulveeM.T. CaltagironeC. LippolisV. FronteraA. GomilaR.M. SteedJ.W. Anion-responsive fluorescent supramolecular gels.Molecules2022274125710.3390/molecules27041257 35209044
    [Google Scholar]
  93. GhoshD. BjornssonR. DamodaranK.K. Role of N–oxide moieties in tuning supramolecular gel-state properties.Gels2020644110.3390/gels6040041 33233596
    [Google Scholar]
  94. Sudhakaran JayabhavanS. GhoshD. DamodaranK.K. Making and breaking of gels: Stimuli-responsive properties of bis(pyridyl-n-oxide urea) gelators.Molecules20212621642010.3390/molecules26216420 34770831
    [Google Scholar]
  95. KimuraS. HarayaN. KomiyamaT. YokoyaM. YamanakaM. DonnellA.D.O. GavrielA.G. ChristieW. ChippindaleA.M. GermanI.M. SahubC. AndrewsJ.L. SmithJ.P. ArifM.A.M. TomapatanagetB. SteedJ.W. AbygailF. GenioF. PaderesM.C. GelatorsP-N.U. GhoshD. MakeiffD.A. ChoJ.Y. GodbertN. SmithB. AzyatK. WagnerA. KulkaM. CarliniR. PetrovS.A. MachulkinA.E. PetrovR.A. TavtorkinA.N. BondarenkoG.N. LegkS.A. NifantI.E. DolzhikovaV.D. ZykN.V. MajougaA.G. BeloglazkinaE.K. Formation of pH-responsive supramolecular hydrogels in basic buffers: Self-assembly of amphiphilic tris-urea.Chem. Pharm. Bull. 202169111131113510.1248/cpb.c21‑00539 34719596
    [Google Scholar]
  96. TómassonD.A. GhoshD. KurupM.R.P. MulveeM.T. DamodaranK.K. Evaluating the role of a urea-like motif in enhancing the thermal and mechanical strength of supramolecular gels.CrystEngComm202123361762810.1039/D0CE01194K
    [Google Scholar]
  97. PatelA.M. RayD. AswalV.K. BallabhA. Probing the supramolecular assembly in solid, solution and gel phase in uriede based thiazole derivatives and its potential application as iodide ion sensor.J. Mol. Liq.202236211976310.1016/j.molliq.2022.119763
    [Google Scholar]
  98. MartinezR.M. RosadoC. VelascoM.V.R. LannesS.C.S. BabyA.R. Main features and applications of organogels in cosmetics.Int. J. Cosmet. Sci.201941210911710.1111/ics.12519 30994939
    [Google Scholar]
  99. EspositoC.L. KirilovP. Preparation, characterization and evaluation of organogel-based lipstick formulations: Application in cosmetics.Gels2021739710.3390/gels7030097 34287321
    [Google Scholar]
  100. GenioF.A.F. PaderesM.C. Functional supramolecular gels comprised of bis-urea compounds and cosmetic solvents.ChemSelect.20216317906791110.1002/slct.202102367
    [Google Scholar]
  101. VallsA. CastilloA. PorcarR. HietalaS. AltavaB. García-VerdugoE. LuisS.V. Urea-based low-molecular-weight pseudopeptidic organogelators for the encapsulation and slow release of (R)-.Limonene. J. Agric. Food Chem.202068267051706110.1021/acs.jafc.0c01184 32511911
    [Google Scholar]
  102. BhardwajV. ShaiwaleM. LakhaniB. BallabhA. A series of memantine based salts with various aromatic and aliphatic carboxylic acids: Crystallographic analysis, Hirshfeld surfaces and dissolution study.J. Mol. Struct.2020120612767210.1016/j.molstruc.2019.127672
    [Google Scholar]
  103. PatelA.M. RayD. AswalV.K. BallabhA. Probing the mechanism of gelation and anion sensing capability of a thiazole based amide gelator: A case study.Colloids Surf. A Physicochem. Eng. Asp.202060712543010.1016/j.colsurfa.2020.125430
    [Google Scholar]
  104. MakeiffD.A. ChoJ.Y. GodbertN. SmithB. AzyatK. WagnerA. KulkaM. CarliniR. LiaoL. JiaX. LouH. ZhongJ. LiuH. DingS. ChenC. HongS. LuoX. Zapién-CastilloS. Montes-PatiñoJ.J. Pérez-SánchezJ.F. Lozano-NavarroJ.I. Melo-BandaJ.A. MésiniP.J. Díaz-ZavalaN.P. GaoA. HanQ. WangQ. CaoX. ChangX. ZhouY. MaX. LiuJ. FengC. TómassonD.A. GhoshD. KurupM.R.P. MulveeM.T. DamodaranK.K. WangJ.T.W. RodrigoA.C. PattersonA.K. HawkinsK. AlyM.M.S. SunJ. Al JamalK.T. SmithD.K. YangZ. WuG. GanC. CaiG. ZhangJ. JiH. BietschJ. OlsonM. WangG. KuosmanenR.T. TruongK. RissanenK.T. SievänenE.I. BordignonD. LonettiB. CoudretC. RoblinP. JosephP. MalaquinL. ChalardA. FitremannJ. Effect of aromatic core on the supramolecular chirality of L-phenylalanine derived assemblies.Colloids Surf. A Physicochem. Eng. Asp.20213391910.1002/advs.202101058
    [Google Scholar]
  105. KumarS. BeraS. NandiS.K. HaldarD. The effect of amide bond orientation and symmetry on the self-assembly and gelation of discotic tripeptides.Soft Matter202117111311910.1039/D0SM01804J 33155010
    [Google Scholar]
  106. KuosmanenR.T. TruongK.N. RissanenK.T. SievänenE.I. The effect of the side chain on gelation properties of bile acid alkyl amides.ChemistryOpen202110111150115710.1002/open.202100245 34806846
    [Google Scholar]
  107. DelbecqF. AdenierG. OgueY. KawaiT. Gelation properties of various long chain amidoamines: Prediction of solvent gelation via machine learning using Hansen solubility parameters.J. Mol. Liq.202030311258710.1016/j.molliq.2020.112587
    [Google Scholar]
  108. ChenS. FanY. SongJ. XueB. The remarkable role of hydrogen bond, halogen, and solvent effect on self-healing supramolecular gel.Mater. Today Chem.20222310071910.1016/j.mtchem.2021.100719
    [Google Scholar]
  109. Zapién-CastilloS. Montes-PatiñoJ.J. Pérez-SánchezJ.F. Lozano-NavarroJ.I. Melo-BandaJ.A. MésiniP.J. Díaz-ZavalaN.P. Recovery of fuels using the supramolecular gelation ability of a hydroxybenzoic acid bisamide derivative.Water Air Soil Pollut.202123223910.1007/s11270‑021‑04991‑x
    [Google Scholar]
  110. XuC. WangL. XiaY. LiD. YinB. HouR. A novel tetrathiafulvalene based liquid crystalline organogelator: Synthesis, self-assembly properties and potential utilization.New J. Chem.20224647226632267110.1039/D2NJ04062J
    [Google Scholar]
  111. IguarbeV. RomeroP. BarberáJ. ElduqueA. GiménezR. Dual liquid crystalline/gel behavior with aie effect promoted by self-assembly of pyrazole dendrons.J. Mol. Liq.202236512010910.1016/j.molliq.2022.120109
    [Google Scholar]
  112. LiuS. LinY.T. BhatB. PahariS. KuanK.Y. DeA. KwonJ.S.I. AkbulutM.E.S. Dynamic, hollow nanotubular networks with superadjustable pH-responsive and temperature resistant rheological characteristics.Chem. Eng. J.202345213936410.1016/j.cej.2022.139364
    [Google Scholar]
  113. ZhangJ. ZhangM. DongY. GuW. LiuT. XingX. SongJ. Molecular design, supramolecular assembly, and excellent dye adsorption capacity of natural rigid dehydroabietic acid-tailored amide organogelators.Lamgmuir.2022388918892710.1021/acs.langmuir.2c01068
    [Google Scholar]
  114. MakeiffD.A. ChoJ.Y. SmithB. CarliniR. GodbertN. Self-assembly of alkylamido isophthalic acids toward the design of a supergelator: Phase-selective gelation and dye adsorption.Gels20228528510.3390/gels8050285 35621583
    [Google Scholar]
  115. WangJ.T.W. RodrigoA.C. PattersonA.K. HawkinsK. AlyM.M.S. SunJ. Al JamalK.T. SmithD.K. Enhanced delivery of neuroactive drugs via nasal delivery with a self-healing supramolecular gel.Adv. Sci.2021814210105810.1002/advs.202101058 34029010
    [Google Scholar]
  116. BietschJ. OlsonM. WangG. Fine-tuning of molecular structures to generate carbohydrate based super gelators and their applications for drug delivery and dye absorption.Gels20217313410.3390/gels7030134 34563020
    [Google Scholar]
  117. LiaoL. JiaX. LouH. ZhongJ. LiuH. DingS. ChenC. HongS. LuoX. Supramolecular gel formation regulated by water content in organic solvents: self-assembly mechanism and biomedical applications.RSC Advances20211119115191152810.1039/D1RA00647A 35423629
    [Google Scholar]
  118. MakeiffD.A. ChoJ.Y. GodbertN. SmithB. AzyatK. WagnerA. KulkaM. CarliniR. Supramolecular gels from alkylated benzimidazolone derivatives.J. Mol. Liq.202133911672310.1016/j.molliq.2021.116723
    [Google Scholar]
  119. BordignonD. LonettiB. CoudretC. RoblinP. JosephP. MalaquinL. ChalardA. FitremannJ. Wet spinning of a library of carbohydrate low molecular weight gels.J. Colloid Interface Sci.202160333334310.1016/j.jcis.2021.06.058 34197983
    [Google Scholar]
  120. MondalS. DastidarP. Designing metallogelators derived from NSAID-based Zn(II) coordination complexes for drug-delivery applications.Chem. Asian J.202015213558356710.1002/asia.202000815 32955791
    [Google Scholar]
  121. MannaU. RoyR. DattaH.K. DastidarP. Supramolecular gels from bis-amides of L-phenylalanine: synthesis, structure and material applications.Chem. Asian J.20221719e20220066010.1002/asia.202200660 35912912
    [Google Scholar]
  122. MisraS. SinghP. DasA. BrandãoP. SahooP. SepayN. BhattacharjeeG. DattaP. MahapatraA.K. SatpatiB. NandaJ. Supramolecular assemblies of a 1,8-naphthalimide conjugate and its aggregation-induced emission property.Mater. Adv.2020193532353810.1039/D0MA00584C
    [Google Scholar]
  123. ZhangB. YuX. LiJ. WeiK. GaoL. HuJ. Four-armed biobased glycyrrhizic acid-tailored AIE fluorescent gelator.J. Mol. Struct.2022125813268410.1016/j.molstruc.2022.132684
    [Google Scholar]
  124. Alegre-RequenaJ.V. GrijalvoS. SampedroD. MayrJ. SaldíasC. Marrero-TelladoJ.J. EritjaR. HerreraR.P. DíazD.D. Sulfonamide as amide isostere for fine-tuning the gelation properties of physical gels.RSC Advances20201019114811149210.1039/D0RA00943A 35495355
    [Google Scholar]
  125. Gregorić, T.; Makarević, J.; Štefanić, Z.; Žinić, M.; Frkanec, L. Gamma radiation- and ultraviolet-induced polymerization of bis(amino acid)fumaramide gel assemblies.Polymers 202214121410.3390/polym14010214 35012236
    [Google Scholar]
  126. GaoA. HanQ. WangQ. CaoX. ChangX. ZhouY. Triphenylamine derivative-based supramolecular self-assembly system for selective sensing methanol via hydrogen bonding.Dyes Pigments202119510968910.1016/j.dyepig.2021.109689
    [Google Scholar]
  127. MaL. WangL. BaiY. XiaY. LiD. YinB. HouR. Synthesis and properties of supramolecular gels based on tetrathiafulvalene and cyanobiphenyl units.Soft Mater.202119224325310.1080/1539445X.2020.1821380
    [Google Scholar]
/content/journals/coc/10.2174/0113852728277924231124094902
Loading
/content/journals/coc/10.2174/0113852728277924231124094902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test