Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1385-2728
  • E-ISSN:

Abstract

Sporotrichosis, recognized by the World Health Organization (WHO) as a neglected tropical disease and classified among significant fungal health concerns, remains both underestimated and underreported. There is a profound impact of sporotrichosis on public health, affecting both humans and domestic animals. The causative agents are fungi within the Sporothrix genus, primarily transmitted through traumatic exposure to contaminated soil, plants, decomposing materials, or through scratches from infected animals, notably cats. While sporotrichosis is a global concern, its prevalence is particularly noteworthy in tropical and subtropical regions. The limited treatment options for sporotrichosis, with itraconazole as the preferred choice, underscore the challenges posed by fungal infections. Issues such as toxicity and drug resistance further complicate effective management. Consequently, this review aims to elucidate key objectives: identification of novel synthetic compounds revealed in the literature, highlighting ongoing efforts to develop new treatments against sporotrichosis, examining promising anti-sporothrix natural products, and providing an overview of endeavors to repurpose approved drugs. The key findings from the study underscore the urgent need for diversified and effective drugs for the treatment of Sporotrichosis.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728283383240111055602
2024-07-01
2024-10-31
Loading full text...

Full text loading...

References

  1. WHO, World Health Organization Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases. 2021. Available from: https://www.who.int/publications-detail-redirect/WHOUCN-NTD-2020.01
  2. SchenckB.R. On refractory subcutaneous abscess caused by a fungus possibly related to the Sporotricha.Bull. Johns Hopkins Hosp.189893286290
    [Google Scholar]
  3. Lopes-BezerraL.M. SchubachA. CostaR.O. Sporothrix schenckii and sporotrichosis.An. Acad. Bras. Cienc.200678229330810.1590/S0001‑3765200600020000916710567
    [Google Scholar]
  4. CognialliR.C.R. CáceresD.H. BastosF.A.G.D. CavassinF.B. LustosaB.P.R. VicenteV.A. BredaG.L. Santos-WeissI. Queiroz-TellesF. Rising incidence of Sporothrix brasiliensis infections, Curitiba, Brazil, 2011-2022.Emerg. Infect. Dis.20232971330133910.3201/eid2907.23015537347527
    [Google Scholar]
  5. BarrosM.B.L. SchubachT.P. CollJ.O. GremiãoI.D. WankeB. SchubachA. Esporotricose: A evolução e os desafios de uma epidemia.Rev. Panam. Salud Publica201027645546020721446
    [Google Scholar]
  6. FreitasD.F.S. do ValleA.C.F. de Almeida PaesR. BastosF.I. GalhardoM.C.G. Zoonotic sporotrichosis in Rio de Janeiro, Brazil: A protracted epidemic yet to be curbed.Clin. Infect. Dis.201050345310.1086/64989120064034
    [Google Scholar]
  7. de Lima BarrosM.B. SchubachA.O. de Vasconcellos CarvalhaesR. MartinsE.B. TeixeiraJ.L. WankeB. Treatment of cutaneous sporotrichosis with itraconazole-study of 645 patients.Clin. Infect. Dis.20115212e200e20610.1093/cid/cir24521628477
    [Google Scholar]
  8. Bastos de Lima BarrosM. Oliveira SchubachA. Francesconi do ValleA.C. Gutierrez GalhardoM.C. Conceição-SilvaF. Pacheco SchubachT.M. Santos ReisR. WankeB. Feldman MarzochiK.B. ConceiçãoM.J. Cat-transmitted sporotrichosis epidemic in Rio de Janeiro, Brazil: Description of a series of cases.Clin. Infect. Dis.200438452953510.1086/38120014765346
    [Google Scholar]
  9. SilvaM.B. CostaM.M. TorresC.C. GalhardoM.C. ValleA.C. MagalhãesM.A. SabrozaP.C. OliveiraR.M. Urban sporotrichosis: A neglected epidemic in Rio de Janeiro, Brazil.Cad. Saude Publica201228101867188010.1590/S0102‑311X201200100000623090167
    [Google Scholar]
  10. ThomsonP. GonzálezC. BlankO. RamírezV. RíoC. SantibáñezS. PenaP. Sporotrichosis outbreak due to Sporothrix brasiliensis in domestic cats in Magallanes, Chile: A one-health-approach study.J. Fungi 20239222610.3390/jof902022636836340
    [Google Scholar]
  11. BongominF. GagoS. OladeleR. DenningD. Global and multi-national prevalence of fungal diseases-estimate precision.J. Fungi 2017345710.3390/jof304005729371573
    [Google Scholar]
  12. Queiroz-TellesF. BonifazA. CognialliR. LustosaB.P.R. VicenteV.A. Ramírez-MarínH.A. Sporotrichosis in children: Case series and narrative review.Curr. Fungal Infect. Rep.2022162334610.1007/s12281‑022‑00429‑x35284035
    [Google Scholar]
  13. YelvertonC.B. StetsonC.L. BangR.H. ClarkJ.W. ButlerD.F. Fatal sporotrichosis.Cutis200678425325617121061
    [Google Scholar]
  14. HardmanS. StephensonI. JenkinsD.R. WiselkaM.J. JohnsonE.M. Disseminated Sporothix schenckii in a patient with AIDS.J. Infect.2005513e73e7710.1016/j.jinf.2004.07.00116230207
    [Google Scholar]
  15. Fonseca-ReyesS. López MaldonadoF.J. Miranda-AckermanR.C. Vélez-GómezE. Alvarez-IñiguezP. Velarde-RiveraF.A. Ascensio-EsparzaE.P. Extracutaneous sporotrichosis in a patient with liver cirrhosis.Rev. Iberoam. Micol.2007241414310.1016/S1130‑1406(07)70010‑417592891
    [Google Scholar]
  16. LarssonC.E. Esporotricose.Braz. J. Vet. Res. Anim. Sci.201148325025910.11606/S1413‑95962011000300010
    [Google Scholar]
  17. RodriguesA.M. Cruz ChoappaR. FernandesG.F. de HoogG.S. de CamargoZ.P. Sporothrix chilensis sp. nov. (Ascomycota: Ophiostomatales), a soil-borne agent of human sporotrichosis with mild-pathogenic potential to mammals.Fungal Biol.2016120224626410.1016/j.funbio.2015.05.00626781380
    [Google Scholar]
  18. Gómez-GaviriaM. Martínez-DunckerI. García-CarneroL.C. Mora-MontesH.M. Differential recognition of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa by human monocyte-derived macrophages and dendritic cells.Infect. Drug Resist.2023164817483410.2147/IDR.S41962937520448
    [Google Scholar]
  19. ZaitzC. CampbellI. MarquesS.A. RuizL.R.B. FramilV.M.S. Compêndio de Micologia Médica.2nd edEd. Guanabara KooganRio de Janeiro2010
    [Google Scholar]
  20. FichmanV. Almeida-SilvaF. Francis Saraiva FreitasD. Zancopé-OliveiraR.M. Gutierrez-GalhardoM.C. Almeida-PaesR. Severe sporotrichosis caused by Sporothrix brasiliensis: Antifungal susceptibility and clinical outcomes.J. Fungi 2022914910.3390/jof901004936675870
    [Google Scholar]
  21. XavierM.O. PoesterV.R. TrápagaM.R. StevensD.A. Sporothrix brasiliensis: Epidemiology, therapy, and recent developments.J. Fungi 20239992110.3390/jof909092137755029
    [Google Scholar]
  22. RodriguesA.M. Della TerraP.P. GremiãoI.D. PereiraS.A. Orofino-CostaR. de CamargoZ.P. The threat of emerging and re-emerging pathogenic Sporothrix species.Mycopathologia2020185581384210.1007/s11046‑020‑00425‑032052359
    [Google Scholar]
  23. SchubachT.M.P. SchubachA. OkamotoT. BarrosM.B.L. FigueiredoF.B. CuzziT. Fialho-MonteiroP.C. ReisR.S. PerezM.A. WankeB. Evaluation of an epidemic of sporotrichosis in cats: 347 cases (1998-2001).J. Am. Vet. Med. Assoc.2004224101623162910.2460/javma.2004.224.162315154732
    [Google Scholar]
  24. SchubachT.M.P. SchubachA.O. Esporotricose em Cães e Gatos. Rev.Clín. Vet.2000292124
    [Google Scholar]
  25. FichmanV. GremiãoI.D.F. Mendes-JúniorA.A.V. SampaioF.M.S. FreitasD.F.S. OliveiraM.M.E. Almeida-PaesR. ValleA.C.F. Gutierrez-GalhardoM.C. Sporotrichosis transmitted by a cockatiel (Nymphicus hollandicus).J. Eur. Acad. Dermatol. Venereol.2018324e157e15810.1111/jdv.1466129080316
    [Google Scholar]
  26. PoesterV.R. BassoR.P. StevensD.A. MunhozL.S. de Souza RabelloV.B. Almeida-PaesR. Zancopé-OliveiraR.M. ZanchiM. BenelliJ.L. XavierM.O. Treatment of human sporotrichosis caused by Sporothrix brasiliensis.J. Fungi 2022817010.3390/jof801007035050010
    [Google Scholar]
  27. GreeneC.E. Antifungal chemotherapy.In: Infectious diseases of the dog and cat.4th ed GreeneC.E. PhiladelphiaSaunders Elsevier2012579588
    [Google Scholar]
  28. GremiãoI.D.F. Martins da Silva da Rocha, E.; Montenegro, H.; Carneiro, A.J.B.; Xavier, M.O.; de Farias, M.R.; Monti, F.; Mansho, W.; de Macedo Assunção Pereira, R.H.; Pereira, S.A.; Lopes-Bezerra, L.M. Guideline for the management of feline sporotrichosis caused by Sporothrix brasiliensis and literature revision.Braz. J. Microbiol.202152110712410.1007/s42770‑020‑00365‑332990922
    [Google Scholar]
  29. DunstanR.W. LanghamR.F. ReimannK.A. WakenellP.S. Feline sporotrichosis: A report of five cases with transmission to humans.J. Am. Acad. Dermatol.1986151374510.1016/S0190‑9622(86)70139‑43722508
    [Google Scholar]
  30. MackayB.M. MenrathV.H. RidleyM.F. KellyW.R. Sporotrichosis in a cat.Aust. Vet. Pract.19861635
    [Google Scholar]
  31. NusbaumB.P. GulbasN. HorwitzS.N. Sporotrichosis acquired from a cat.J. Am. Acad. Dermatol.19838338639110.1016/S0190‑9622(83)80325‑96220033
    [Google Scholar]
  32. AntunesT.Á. NobreM.O. FariaR.O. MeinerzA.R.M. MartinsA.A. CleffM.B. FernandesC.G. MeirelesM.C.A. Esporotricose cutânea experimental: Avaliação in vivo do itraconazol e terbinafina.Rev. Soc. Bras. Med. Trop.200942670671010.1590/S0037‑8682200900060001820209359
    [Google Scholar]
  33. MeinerzA.R.M. NascenteP.S. SchuchL.F.D. de FariaR.O. AntunesT.Á. CleffM.B. de SousaL.L. XavierM.O. MadridI.M. MeirelesM.C.A. de MelloJ.R.B. Felino doméstico como transmissor da esporotricose em trabalhador rural - relato de caso.Arq. Inst. Biol. 200774214915110.1590/1808‑1657v74p1492007
    [Google Scholar]
  34. VianaP.G. FigueiredoA.B.F. GremiãoI.D.F. de MirandaL.H.M. da Silva AntonioI.M. BoechatJ.S. de Sá MachadoA.C. de OliveiraM.M.E. PereiraS.A. Successful treatment of canine sporotrichosis with terbinafine: Case reports and literature review.Mycopathologia2018183247147810.1007/s11046‑017‑0225‑629222709
    [Google Scholar]
  35. Cuenca-EstrellaM. Combinations of antifungal agents in therapy-what value are they?J. Antimicrob. Chemother.200454585486910.1093/jac/dkh43415375111
    [Google Scholar]
  36. GramD. Esporotricose.In: Smith Jr., F. W. K. Consulta veterinária em 5 minutos.1st ed TilleyL.P. São PauloEd. Manole Ltda2003
    [Google Scholar]
  37. Almeida-PaesR. FrasesS. AraújoG.S. de OliveiraM.M.E. GerfenG.J. NosanchukJ.D. Zancopé-OliveiraR.M. Biosynthesis and functions of a melanoid pigment produced by species of the Sporothrix complex in the presence of L-tyrosine.Appl. Environ. Microbiol.201278248623863010.1128/AEM.02414‑1223042177
    [Google Scholar]
  38. Almeida-PaesR. Figueiredo-CarvalhoM.H.G. Brito-SantosF. Almeida-SilvaF. OliveiraM.M.E. Zancopé-OliveiraR.M. Melanins protect Sporothrix brasiliensis and Sporothrix schenckii from the antifungal effects of terbinafine.PLoS One2016113e015279610.1371/journal.pone.015279627031728
    [Google Scholar]
  39. MazuT.K. BrickerB.A. Flores-RozasH. AblordeppeyS.Y. The mechanistic targets of antifungal agents: An overview.Mini Rev. Med. Chem.201616755557810.2174/138955751666616011811210326776224
    [Google Scholar]
  40. WallerS.B. Dalla LanaD.F. QuatrinP.M. FerreiraM.R.A. FuentefriaA.M. MezzariA. Antifungal resistance on Sporothrix species: An overview.Braz. J. Microbiol.2021521738010.1007/s42770‑020‑00307‑z32476087
    [Google Scholar]
  41. DowdP. HamS.W. NaganathanS. HershlineR. The mechanism of action of vitamin K.Annu. Rev. Nutr.199515141944010.1146/annurev.nu.15.070195.0022238527228
    [Google Scholar]
  42. de Carvalho da SilvaF. Francisco FerreiraV. Natural naphthoquinones with great importance in medicinal chemistry.Curr. Org. Synth.201613333437110.2174/1570179412666150817220343
    [Google Scholar]
  43. TandonV.K. MauryaH.K. TripathiA. ShivaKeshava, G.B.; Shukla, P.K.; Srivastava, P.; Panda, D. 2,3-Disubstituted-1,4-naphthoquinones, 12H-benzo[b]phenothiazine-6,11-diones and related compounds: Synthesis and biological evaluation as potential antiproliferative and antifungal agents.Eur. J. Med. Chem.20094431086109210.1016/j.ejmech.2008.06.02518708272
    [Google Scholar]
  44. FuturoD.O. FerreiraP.G. NicolettiC.D. Borba-SantosL.P. SilvaF.C.D. RozentalS. FerreiraV.F. The antifungal activity of naphthoquinones: An integrative review.An. Acad. Bras. Cienc.201890(1 suppl 2)(Suppl. 2)1187121410.1590/0001‑376520182017081529873671
    [Google Scholar]
  45. TandonV.K. MauryaH.K. MishraN.N. ShuklaP.K. Micelles catalyzed chemoselective synthesis ‘in water’ and biological evaluation of oxygen containing hetero-1,4-naphthoquinones as potential antifungal agents.Bioorg. Med. Chem. Lett.201121216398640310.1016/j.bmcl.2011.08.09521930375
    [Google Scholar]
  46. TandonV.K. ChhorR.B. SinghR.V. RaiS. YadavD.B. Design, synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antifungal and anticancer agents.Bioorg. Med. Chem. Lett.20041451079108310.1016/j.bmcl.2004.01.00214980639
    [Google Scholar]
  47. LouvisA.R. SilvaN.A.A. SemaanF.S. da SilvaF.C. SaramagoG. de SouzaL.C.S.V. FerreiraB.L.A. CastroH.C. SallesJ.P. SouzaA.L.A. FariaR.X. FerreiraV.F. MartinsD.L. Synthesis, characterization and biological activities of 3-aryl-1,4-naphthoquinones - green palladium-catalysed Suzuki cross coupling.New J. Chem.20164097643765610.1039/C6NJ00872K
    [Google Scholar]
  48. RiffelA. MedinaL.F. StefaniV. SantosR.C. BizaniD. BrandelliA. In vitro antimicrobial activity of a new series of 1,4-naphthoquinones.Braz. J. Med. Biol. Res.200235781181810.1590/S0100‑879X200200070000812131921
    [Google Scholar]
  49. FreireC.P.V. FerreiraS.B. de OliveiraN.S.M. MatsuuraA.B.J. GamaI.L. da SilvaF.C. de SouzaM.C.B.V. LimaE.S. FerreiraV.F. Synthesis and biological evaluation of substituted α- and β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents.MedChemComm20101322910.1039/c0md00074d
    [Google Scholar]
  50. Garcia FerreiraP. Pereira Borba-SantosL. NoronhaL. Deckman NicolettiC. de Sá Haddad QueirozM. de Carvalho da SilvaF. RozentalS. Omena FuturoD. Francisco FerreiraV. Synthesis, stability studies, and antifungal evaluation of substituted α- and β-2,3-dihydrofuranaphthoquinones against Sporothrix brasiliensis and Sporothrix schenckii.Molecules201924593010.3390/molecules2405093030866442
    [Google Scholar]
  51. Borba-SantosL.P. NicolettiC.D. VilaT. FerreiraP.G. Araújo-LimaC.F. GalvãoB.V.D. FelzenszwalbI. de SouzaW. de Carvalho da SilvaF. FerreiraV.F. FuturoD.O. RozentalS. A novel naphthoquinone derivative shows selective antifungal activity against Sporothrix yeasts and biofilms.Braz. J. Microbiol.202253274975810.1007/s42770‑022‑00725‑135258797
    [Google Scholar]
  52. FieserL.F. The alkylation of hydroxynaphthoquinone.J. Am. Chem. Soc.192648123201321410.1021/ja01691a030
    [Google Scholar]
  53. NovaisJ.S. RosandiskiA.C. de CarvalhoC.M. de Saules SilvaL.S. Dos S Velasco de SouzaL.C. Santana, M.V.; Martins, N.R.C.; Castro, H.C.; Ferreira, V.F.; Gonzaga, D.T.G.; de Resende, G.O.; de C da Silva, F. Efficient synthesis and antibacterial profile of Bis(2-hydroxynaphthalene-1,4-dione).Curr. Top. Med. Chem.202020212113110.2174/156802661966619121016034231820692
    [Google Scholar]
  54. OliveiraD.S. Of Clinical-epidemiological assessment and sensitivity profile to antifungals of Sporothrix.In: brasiliensis isolated from domestic felines in the State of Rio de JaneiroFluminense Federal University - Faculty of Pharmacy2016
    [Google Scholar]
  55. de SouzaL.C.S.V. AlcântaraL.M. de Macêdo-SalesP.A. ReisN.F. de OliveiraD.S. MachadoR.L.D. GeraldoR.B. dos SantosA.L.S. FerreiraV.F. GonzagaD.T.G. da SilvaF.C. CastroH.C. BaptistaA.R.S. Synthetic derivatives against wild-type and non-wild-type Sporothrix brasiliensis: In vitro and in silico analyses.Pharmaceuticals20221515510.3390/ph1501005535056112
    [Google Scholar]
  56. SecciD. BizzarriB. BolascoA. CarradoriS. D’AscenzioM. RivaneraD. MariE. PollettaL. ZicariA. Synthesis, anti-Candida activity, and cytotoxicity of new (4-(4-iodophenyl)thiazol-2-yl)hydrazine derivatives.Eur. J. Med. Chem.20125324625310.1016/j.ejmech.2012.04.00622560629
    [Google Scholar]
  57. TorrobaT. Poly-sulfur-nitrogen heterocycles via sulfur chlorides and nitrogen reagents.J. Prakt. Chem.199934129911310.1002/(SICI)1521‑3897(199902)341:2<99:AID‑PRAC99>3.0.CO;2‑Z
    [Google Scholar]
  58. KonstantinovaL.S. RakitinO.A. ReesC.W. Pentathiepins.Chem. Rev.200410452617263010.1021/cr020092615137802
    [Google Scholar]
  59. ChenardB.L. Substituted benzopentathiepins.US Patent 45714041984
  60. DavidsonB.S. MolinskiT.F. BarrowsL.R. IrelandC.M. Varacin: A novel benzopentathiepin from Lissoclinum vareau that is cytotoxic toward a human colon tumor.J. Am. Chem. Soc.1991113124709471010.1021/ja00012a065
    [Google Scholar]
  61. AsquithC.R.M. MachadoA.C.S. de MirandaL.H.M. KonstantinovaL.S. Almeida-PaesR. RakitinO.A. PereiraS.A. Synthesis and identification of pentathiepin-based inhibitors of Sporothrix brasiliensis.Antibiotics 20198424910.3390/antibiotics804024931816950
    [Google Scholar]
  62. Borba-SantosL.P. VilaT. RozentalS. Identification of two potential inhibitors of Sporothrix brasiliensis and Sporothrix schenckii in the Pathogen Box collection.PLoS One20201510e024065810.1371/journal.pone.024065833052959
    [Google Scholar]
  63. KargesJ. Combining inorganic chemistry and biology: The underestimated potential of metal complexes in medicine.ChemBioChem202021213044304610.1002/cbic.20200039732896976
    [Google Scholar]
  64. ChandraS. Synthesis, spectroscopic, anticancer, antibacterial and antifungal studies of Ni(II) and Cu(II) complexes with hydrazine carboxamide, 2-.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513535636310.1016/j.saa.2014.06.14325087168
    [Google Scholar]
  65. GaginiT. Colina-VegasL. VillarrealW. Borba-SantosL.P. de Souza PereiraC. BatistaA.A. Kneip FleuryM. de SouzaW. RozentalS. CostaL.A.S. NavarroM. Metal-azole fungistatic drug complexes as anti- Sporothrix spp. agents.New J. Chem.20184216136411365010.1039/C8NJ01544A
    [Google Scholar]
  66. MeloA.M. PoesterV.R. TrapagaM. NogueiraC.W. ZeniG. MartinezM. SassG. StevensD.A. XavierM.O. Diphenyl diselenide and its interaction with antifungals against Aspergillus spp.Med. Mycol.202159652853610.1093/mmy/myaa07232844203
    [Google Scholar]
  67. VenturiniT.P. ChassotF. LoretoÉ.S. KellerJ.T. AzevedoM.I. ZeniG. SanturioJ.M. AlvesS.H. Antifungal activities of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Fusarium spp.Med. Mycol.201654555055510.1093/mmy/myv12026773133
    [Google Scholar]
  68. LoretoÉ.S. Nunes MarioD.A. SanturioJ.M. AlvesS.H. NogueiraC.W. ZeniG. In vitro antifungal evaluation and structure-activity relationship of diphenyl diselenide and synthetic analogues.Mycoses2011545e572e57610.1111/j.1439‑0507.2010.01994.x21615531
    [Google Scholar]
  69. ZimmermannE.S. FerreiraL.M. DenardiL.B. SariM.H.M. CerviV.F. NogueiraC.W. AlvesS.H. CruzL. Mucoadhesive gellan gum hydrogel containing diphenyl diselenide-loaded nanocapsules presents improved anti-candida action in a mouse model of vulvovaginal candidiasis.Eur. J. Pharm. Sci.202116710601110.1016/j.ejps.2021.10601134537375
    [Google Scholar]
  70. RossatoL. LoretoE.S. VenturiniT.P. de AzevedoM.I. Al-HatmiA.M.S. SanturioJ.M. AlvesS.H. In vitro combination between antifungals and diphenyl diselenide against Cryptococcus species.Mycoses201962650851210.1111/myc.1290530776159
    [Google Scholar]
  71. BenelliJ.L. PoesterV.R. MunhozL.S. KlafkeG.B. StevensD.A. XavierM.O. In vitro anti-Cryptococcus activity of diphenyl diselenide alone and in combination with amphotericin B and fluconazole.Braz. J. Microbiol.20215241719172310.1007/s42770‑021‑00552‑w34195915
    [Google Scholar]
  72. GnatS. Łagowski, D.; Dyląg, M.; Jóźwiak, G.; Trościańczyk, A.; Nowakiewicz, A. In vitro activity of ebselen and diphenyl diselenide alone and in combination with drugs against Trichophyton mentagrophytes strains.Pharmaceutics2022146115810.3390/pharmaceutics1406115835745731
    [Google Scholar]
  73. PoesterV.R. MatteiA.S. MendesJ.F. KlafkeG.B. RamisI.B. SanchoteneK.O. XavierM.O. Antifungal activity of diphenyl diselenide alone and in combination with itraconazole against Sporothrix brasiliensis.Med. Mycol.201957332833110.1093/mmy/myy04429924365
    [Google Scholar]
  74. PoesterV.R. MunhozL.S. NogueiraC.W. ZeniG.R. StevensD.A. XavierM.O. Diphenyl diselenide alone and in combination with itraconazole against Sporothrix schenckii s.str. and Sporothrix globosa.Braz. J. Microbiol.20215231271127410.1007/s42770‑021‑00506‑233909253
    [Google Scholar]
  75. PoesterV.R. MunhozL.S. BenelliJ.L. KlafkeG.B. NogueiraC.W. ZeniG.R. StevensD.A. LarwoodD. XavierM.O. Synergism of nikkomycin Z in combination with diphenyl diselenide against Sporothrix spp.Curr. Microbiol.20217882905290910.1007/s00284‑021‑02581‑y34181049
    [Google Scholar]
  76. ZenderlandJ. HartR. BussmannR.W. Paniagua ZambranaN.Y. SikharulidzeS. KikvidzeZ. KikodzeD. TchelidzeD. KhutsishviliM. BatsatsashviliK. The use of “Use Value”: Quantifying importance in ethnobotany.Econ. Bot.201973329330310.1007/s12231‑019‑09480‑1
    [Google Scholar]
  77. HuF. TuX.F. ThakurK. HuF. LiX.L. ZhangY.S. ZhangJ.G. WeiZ.J. Comparison of antifungal activity of essential oils from different plants against three fungi.Food Chem. Toxicol.201913411082110.1016/j.fct.2019.11082131533060
    [Google Scholar]
  78. MoghaddamM. MehdizadehL. Chemical composition and antifungal activity of essential oil of Thymus vulgaris grown in iran against some plant pathogenic fungi.J. Essent. Oil-Bear. Plants20202351072108310.1080/0972060X.2020.1843547
    [Google Scholar]
  79. de CarvalhoM.G. RondonF.C.M. Carneiro-TorresD.S. FampaP. BevilaquaC.M.L. Nogueira BandeiraP. GomesG.A. Essential oils of croton pulegiodorus baill and croton piauhiensis mull. Arg. (Euphorbiaceae): Chemical composition and anti-leishmania activity.Rev. Virtual Quim.20221493894610.21577/1984‑6835.20220049
    [Google Scholar]
  80. WallerS.B. MadridI.M. FariaR.O. CleffM.B. MelloJ.R.B. MeirelesM.C.A. Anti- Sporothrix spp. Activity of medicinal plants.Braz. J. Pharm. Sci.201652222123710.1590/S1984‑82502016000200001
    [Google Scholar]
  81. ForeziL.S.M. FerreiraP.G. HütherC.M. da SilvaF.C. FerreiraV.F. Aqui Tem Química: parte IV. Terpenos na Perfumaria.Rev. Virtual Quim.20221410051024
    [Google Scholar]
  82. CoutoC.S.F. RaposoN.R.B. RozentalS. Borba-SantosL.P. BezerraL.M.L. De AlmeidaP.A. BrandãoM.A.F. Chemical composition and antifungal properties of essential oil of Origanum vulgare Linnaeus (Lamiaceae) against Sporothrix schenckii and Sporothrix brasiliensis.Trop. J. Pharm. Res.20151471207121210.4314/tjpr.v14i7.12
    [Google Scholar]
  83. WallerS.B. MadridI.M. FerrazV. PicoliT. CleffM.B. de FariaR.O. MeirelesM.C.A. de MelloJ.R.B. Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. oil.Braz. J. Microbiol.201647489690110.1016/j.bjm.2016.07.01727515466
    [Google Scholar]
  84. SchippmannU. LeamanD.J. CunninghamA.B. Impact of cultivation and gathering of medicinal plants on biodiversity: Global trends and issues, biodiversity and the ecosystem approach in agriculture, forestry and fisheries. Satellite Event on the Occasion of the 9th Regular Session of the Commission on Genetic Resources for Food and Agriculture, Inter-Departmental Working Group on Biological Diversity for Food and Agri-culture2002121
    [Google Scholar]
  85. WallerS.B. CleffM.B. Dalla LanaD.F. de MattosC.B. GuterresK.A. FreitagR.A. SallisE.S.V. FuentefriaA.M. de MelloJ.R.B. de FariaR.O. MeirelesM.C.A. Can the essential oil of rosemary (Rosmarinus officinalis Linn.) protect rats infected with itraconazole-resistant Sporothrix brasiliensis from fungal spread?J. Mycol. Med.202131410119910.1016/j.mycmed.2021.10119934418685
    [Google Scholar]
  86. CleffM.B. MeinerzA.R.M. SchuchL.F.D. RodriguesM.R.A. MeirelesM.C.A. MelloJ.R.B. In vitro activity of the essential oil of Origanum vulgare against Sporothrix schenckii.Arq. Bras. Med. Vet. Zootec.20086051351610.1590/S0102‑09352008000200039
    [Google Scholar]
  87. WallerS.B. MadridI.M. SilvaA.L. Dias de CastroL.L. CleffM.B. FerrazV. MeirelesM.C.A. ZanetteR. de MelloJ.R.B. In vitro susceptibility of Sporothrix brasiliensis to essential oils of lamiaceae family.Mycopathologia201618111-1285786310.1007/s11046‑016‑0047‑y27558224
    [Google Scholar]
  88. WallerS.B. PeterC.M. HoffmannJ.F. CleffM.B. Faria de, R.O.; Zani, J.L. Jabuticaba [Plinia peruviana (Poir.) Govaerts]: A Brazilian fruit with a promising application against itraconazole-susceptible and -resistant Sporothrix brasiliensis.Nat. Prod. Res.202135245988599210.1080/14786419.2020.181003432840143
    [Google Scholar]
  89. TeramotoY. MatsuseI. KogaT. UedaS. Characterization of a novel antimycotic agent, cinnamyl benzoate, using yeast-phase Sporothrix schenckii.World J. Microbiol. Biotechnol.199410439640010.1007/BF0014445924421084
    [Google Scholar]
  90. WallerS.B. RipollM.K. GonçalvesH.P. Dalla LanaD.F. de FariaR.O. MeirelesM.C.A. FuentefriaA.M. de MelloJ.R.B. CleffM.B. Are γ-terpinene, 1,8-cineole, p-coumaric acid, and quercetin active against wild-type and non-wild-type Sporothrix brasiliensis to itraconazole?Braz. J. Microbiol.202354153154110.1007/s42770‑022‑00879‑y36422848
    [Google Scholar]
  91. SalomãoK. DantasA.P. BorbaC.M. CamposL.C. MachadoD.G. Aquino NetoF.R. CastroS.L. Chemical composition and microbicidal activity of extracts from Brazilian and Bulgarian propolis.Lett. Appl. Microbiol.2004382879210.1111/j.1472‑765X.2003.01458.x14746537
    [Google Scholar]
  92. WallerS.B. PeterC.M. HoffmannJ.F. PicoliT. OsórioL.G. ChavesF. ZaniJ.L. de FariaR.O. de MelloJ.R.B. MeirelesM.C.A. Chemical and cytotoxic analyses of brown Brazilian propolis (Apis mellifera) and its in vitro activity against itraconazole-resistant Sporothrix brasiliensis.Microb. Pathog.201710511712110.1016/j.micpath.2017.02.02228219829
    [Google Scholar]
  93. WallerS.B. CleffM.B. RipollM.K. MeirelesM.C.A. FerrariniM. VarelaM.T. FernandesJ.P.S. Bioisosteric modification on benzylidene-carbonyl compounds improved the drug-likeness and maintained the antifungal activity against Sporothrix brasiliensis.Chem. Biol. Drug Des.202299339139710.1111/cbdd.1399434873847
    [Google Scholar]
  94. ČolovićM.B. LackovićM. LalatovićJ. MougharbelA.S. KortzU. KrstićD.Z. Polyoxometalates in biomedicine: Update and overview.Curr. Med. Chem.202027336237910.2174/092986732666619082715353231453779
    [Google Scholar]
  95. KamataK. SugaharaK. Base catalysis by mono- and polyoxometalates.Catalysts201771134510.3390/catal7110345
    [Google Scholar]
  96. QiY. HanL. QiY. JinX. ZhangB. NiuJ. ZhongJ. XuY. Anti-flavivirus activity of polyoxometalate.Antiviral Res.202017910481310.1016/j.antiviral.2020.10481332376449
    [Google Scholar]
  97. ShigetaS. MoriS. YamaseT. YamamotoN. YamamotoN. Anti-RNA virus activity of polyoxometalates.Biomed. Pharmacother.200660521121910.1016/j.biopha.2006.03.00916737794
    [Google Scholar]
  98. QiY. XiangY. WangJ. QiY. LiJ. NiuJ. ZhongJ. Inhibition of hepatitis C virus infection by polyoxometalates.Antiviral Res.2013100239239810.1016/j.antiviral.2013.08.02524025401
    [Google Scholar]
  99. ZhangY. PiY. HuaY. XieJ. WangC. GuoK. ZhaoZ. YongY. Bacteria responsive polyoxometalates nanocluster strategy to regulate biofilm microenvironments for enhanced synergetic antibiofilm activity and wound healing.Theranostics20201022100311004510.7150/thno.4900832929332
    [Google Scholar]
  100. InoueM. SuzukiT. FujitaY. OdaM. MatsumotoN. YamaseT. Enhancement of antibacterial activity of β-lactam antibiotics by [P2W18O62]6- [SiMo12O40]4- and [PTi2W10O40]7- against methicillin-resistant and vancomycin-resistant Staphylococcus aureus.J. Inorg. Biochem.200610071225123310.1016/j.jinorgbio.2006.02.00416563513
    [Google Scholar]
  101. MathiasL. AlmeidaJ. PassoniL. GossaniC. TaveiraG. GomesV. MottaO. Antifungal activity of silver salts of Keggin-type heteropolyacids against Sporothrix spp.J. Microbiol. Biotechnol.202030454055110.4014/jmb.1907.0706431893614
    [Google Scholar]
  102. Borba-SantosL.P. Reis de SáL.F. RamosJ.A. RodriguesA.M. de CamargoZ.P. RozentalS. Ferreira-PereiraA. Tacrolimus increases the effectiveness of itraconazole and fluconazole against Sporothrix spp.Front. Microbiol.20178175910.3389/fmicb.2017.0175928966608
    [Google Scholar]
  103. ZhangY. WadeM.M. ScorpioA. ZhangH. SunZ. Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid.J. Antimicrob. Chemother.200352579079510.1093/jac/dkg44614563891
    [Google Scholar]
  104. ZimhonyO. CoxJ.S. WelchJ.T. VilchèzeC. JacobsW.R.Jr Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis.Nat. Med.2000691043104710.1038/7955810973326
    [Google Scholar]
  105. WallerS.B. NakasuC. SilvaA.L. FariaR.O. FernandesJ.P.S. CleffM.B. Anti-Sporothrix brasiliensis activity of different pyrazinoic acid prodrugs: A repurposing evaluation.Braz. J. Pharm. Sci.2018544e1785810.1590/s2175‑97902018000417858
    [Google Scholar]
  106. RodriguesA.M. FernandesG.F. AraujoL.M. Della TerraP.P. dos SantosP.O. PereiraS.A. SchubachT.M.P. BurgerE. Lopes-BezerraL.M. de CamargoZ.P. Proteomics-based characterization of the humoral immune response in sporotrichosis: Toward discovery of potential diagnostic and vaccine antigens.PLoS Negl. Trop. Dis.201598e000401610.1371/journal.pntd.000401626305691
    [Google Scholar]
  107. BrilhanteR.S.N. MalaquiasÂ.D.M. CaetanoÉ.P. Castelo-BrancoD.S.C.M. LimaR.A.C. MarquesF.J.F. SilvaN.F. AlencarL.P. MonteiroA.J. CamargoZ.P. BandeiraT.J.P.G. RodriguesA.M. CordeiroR.A. MoreiraJ.L.B. SidrimJ.J.C. RochaM.F.G. In vitro inhibitory effect of miltefosine against strains of Histoplasma capsulatum var. capsulatum and Sporothrix spp.Med. Mycol.201452332032510.1093/mmy/myt02724662247
    [Google Scholar]
  108. Borba-SantosL.P. GaginiT. IshidaK. de SouzaW. RozentalS. Miltefosine is active against Sporothrix brasiliensis isolates with in vitro low susceptibility to amphotericin B or itraconazole.J. Med. Microbiol.201564441542210.1099/jmm.0.00004125681323
    [Google Scholar]
  109. Borba-SantosL.P. RodriguesA.M. GaginiT.B. FernandesG.F. CastroR. de CamargoZ.P. NucciM. Lopes-BezerraL.M. IshidaK. RozentalS. Susceptibility of Sporothrix brasiliensis isolates to amphotericin b, azoles, and terbinafine.Med. Mycol.201553217818810.1093/mmy/myu05625394542
    [Google Scholar]
  110. MoreiraR.A. MendanhaS.A. HansenD. AlonsoA. Interaction of miltefosine with the lipid and protein components of the erythrocyte membrane.J. Pharm. Sci.201310251661166910.1002/jps.2349623457073
    [Google Scholar]
  111. DorloT.P.C. BalasegaramM. BeijnenJ.H. de VriesP.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis.J. Antimicrob. Chemother.201267112576259710.1093/jac/dks27522833634
    [Google Scholar]
  112. MartinezL.R. FriesB.C. Fungal biofilms: Relevance in the setting of human disease.Curr. Fungal Infect. Rep.20104426627510.1007/s12281‑010‑0035‑521660222
    [Google Scholar]
  113. PhillipsP.L. SchultzG.S. Molecular mechanisms of biofilm infection: Biofilm virulence factors.Adv. Wound Care 20121310911410.1089/wound.2011.030124527289
    [Google Scholar]
  114. NettJ.E. R AndesD. Fungal biofilms: In vivo models for discovery of anti-biofilm drugs.Microbiol. Spectr.201533E3010.1128/microbiolspec.MB‑0008‑201426397003
    [Google Scholar]
  115. BrilhanteR.S.N. SilvaM.L.Q. PereiraV.S. de OliveiraJ.S. MacielJ.M. SilvaI.N.G. GarciaL.G.S. GuedesG.M.M. CordeiroR.A. Pereira-NetoW.A. de CamargoZ.P. RodriguesA.M. SidrimJ.J.C. Castelo-BrancoD.S.C.M. RochaM.F.G. Potassium iodide and miltefosine inhibit biofilms of Sporothrix schenckii species complex in yeast and filamentous forms.Med. Mycol.201957676477210.1093/mmy/myy11930462271
    [Google Scholar]
  116. de MirandaL. SilvaJ. GremiãoI. MenezesR. Almeida-PaesR. dos ReisÉ. de OliveiraR. de AraujoD. FerreiroL. PereiraS. Monitoring fungal burden and viability of Sporothrix spp. in skin lesions of cats for predicting antifungal treatment response.J. Fungi 2018439210.3390/jof403009230087237
    [Google Scholar]
  117. dos SantosG.M.P. Borba-SantosL.P. VilaT. Ferreira GremiãoI.D. PereiraS.A. De SouzaW. RozentalS. Sporothrix spp. biofilms impact in the zoonotic transmission route: Feline claws associated biofilms, itraconazole tolerance, and potential repurposing for miltefosine.Pathogens202211220610.3390/pathogens1102020635215149
    [Google Scholar]
  118. KrólJ. NawrotU. BartoszewiczM. Anti-candidal activity of selected analgesic drugs used alone and in combination with fluconazole, itraconazole, voriconazole, posaconazole and isavuconazole.J. Mycol. Med.201828232733110.1016/j.mycmed.2018.03.00229605543
    [Google Scholar]
  119. Borba-SantosL.P. NucciM. Ferreira-PereiraA. RozentalS. Anti-Sporothrix activity of ibuprofen combined with antifungal.Braz. J. Microbiol.202152110110610.1007/s42770‑020‑00327‑932617835
    [Google Scholar]
  120. SeibertG. PolettoA.L.R. PradeJ.V. MarioD.N. StopigliaC.D.O. Reversal of itraconazole resistance in Sporothrix brasiliensis and Sporothrix schenckii by nonsteroidal anti-inflammatory drugs.Rev. Iberoam. Micol.2022393-4687110.1016/j.riam.2022.01.00336336556
    [Google Scholar]
  121. DiazM.C. CamponovoR. ArayaI. CerdaA. SantanderM.P. Carrillo-MuñozA-J. Identification and in vitro antifungal susceptibility of vaginal Candida spp. isolates to fluconazole, clotrimazole and nystatin.Rev. Esp. Quimioter.201629315115427167765
    [Google Scholar]
  122. McCurdyH.D. HeplerD.I. LarsonK.A. Effectiveness of a topical antifungal agent (clotrimazole) in dogs.J. Am. Vet. Med. Assoc.198117921631657021507
    [Google Scholar]
  123. LobellR. WeingartenA. SimmonsR. A new agent for the treatment of canine otitis externa.Hora Vet.1995882933
    [Google Scholar]
  124. FerreiraP.G. NoronhaL. TeixeiraR. VieiraI. Borba-SantosL.P. ViçosaA. de MoraesM. Calil-EliasS. de FreitasZ. da SilvaF.C. RozentalS. FuturoD.O. FerreiraV.F. Investigation of a microemulsion containing clotrimazole and itraconazole for transdermal delivery for the treatment of sporothrichosis.J. Pharm. Sci.202010921026103410.1016/j.xphs.2019.10.00931604084
    [Google Scholar]
  125. Garcia FerreiraP. Guimarães de Souza LimaC. NoronhaL.L. de MoraesM.C. SilvaF.C. Lifsitch ViçosaA. Omena FuturoD. Francisco FerreiraV. Development of a method for the quantification of clotrimazole and itraconazole and study of their stability in a new microemulsion for the treatment of sporotrichosis.Molecules20192412233310.3390/molecules2412233331242573
    [Google Scholar]
  126. NoronhaL.L. FerreiraP.G. G S LimaC. Borba-Santos, L.P.; Rozental, S.; de Moraes, M.; Silva, F.C.D.; Ferreira, V.F.; Futuro, D.O. Formulation and evaluation of a novel itraconazole-clotrimazole topical emulgel for the treatment of sporotrichosis.Curr. Pharm. Des.202026141566157010.2174/138161282666620040608124932250218
    [Google Scholar]
  127. GrollA.H. PiscitelliS.C. WalshT.J. Clinical pharmacology of systemic antifungal agents: A comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development.Adv. Pharmacol.19984434350010.1016/S1054‑3589(08)60129‑59547888
    [Google Scholar]
  128. BellA.S. Major antifungal drugs.In: Comprehensive medicinal chemistry II. TaylorJ.B. TriggleD.J. OxfordElsevier200744546810.1016/B0‑08‑045044‑X/00216‑9
    [Google Scholar]
  129. HectorR.F. Use of nikkomycin compounds to treat infections of dimorphic, highly chitinous fungi.US Patent 48513891989
  130. HectorR.F. SabouniA. Methods and compositions for treating fungal infections in animals.US Patent 57893871998
  131. PoesterV.R. MunhozL.S. LarwoodD. MartinezM. StevensD.A. XavierM.O. Potential use of nikkomycin Z as an anti- Sporothrix spp. drug.Med. Mycol.20201532634218
    [Google Scholar]
  132. LimW. VerbonA. van de SandeW. Identifying novel drugs with new modes of action for neglected tropical fungal skin diseases (fungal skinNTDs) using an open source drug discovery approach.Expert Opin. Drug Discov.202217664165910.1080/17460441.2022.208019535612364
    [Google Scholar]
  133. Borba-SantosL.P. BarretoT.L. VilaT. ChiK.D. dos Santos MontiF. de FariasM.R. AlvianoD.S. AlvianoC.S. FuturoD.O. FerreiraV. de SouzaW. IshidaK. RozentalS. In vitro and in vivo antifungal activity of buparvaquone against Sporothrix brasiliensis.Antimicrob. Agents Chemother.2021659e00699e2110.1128/AAC.00699‑2134152816
    [Google Scholar]
  134. CongL. LiaoY. YangS. YangR. In vitro antifungal activity of sertraline and synergistic effects in combination with antifungal drugs against planktonic forms and biofilms of clinical Trichosporon asahii isolates.PLoS One20161112e016790310.1371/journal.pone.016790327930704
    [Google Scholar]
  135. OliveiraA.S. Martinez-de-OliveiraJ. DondersG.G.G. Palmeira-de-OliveiraR. Palmeira-de-OliveiraA. Anti-Candida activity of antidepressants sertraline and fluoxetine: Effect upon pre-formed biofilms.Med. Microbiol. Immunol. 20182073-419520010.1007/s00430‑018‑0539‑029556778
    [Google Scholar]
  136. PaulS. MortimerR.B. MitchellM. Sertraline demonstrates fungicidal activity in vitro for Coccidioides immitis.Mycology2016739910110.1080/21501203.2016.120436830123621
    [Google Scholar]
  137. RheinJ. MorawskiB.M. HullsiekK.H. NabetaH.W. KiggunduR. TugumeL. MusubireA. AkampuriraA. SmithK.D. AlhadabA. WilliamsD.A. AbassiM. BahrN.C. VelamakanniS.S. FisherJ. NielsenK. MeyaD.B. BoulwareD.R. Efficacy of adjunctive sertraline for the treatment of HIV-associated cryptococcal meningitis: An open-label dose-ranging study.Lancet Infect. Dis.201616780981810.1016/S1473‑3099(16)00074‑826971081
    [Google Scholar]
  138. Villanueva-LozanoH. Treviño-RangelR.J. Téllez-MarroquínR. BonifazA. RojasO.C. Hernández-RodríguezP.A. GonzálezG.M. In vitro inhibitory activity of sertraline against clinical isolates of Sporothrix schenckii.Rev. Iberoam. Micol.201936313914110.1016/j.riam.2019.01.00431171430
    [Google Scholar]
  139. SalasV. PastorF.J. CalvoE. SuttonD.A. ChanderJ. MayayoE. AlvarezE. GuarroJ. Efficacy of posaconazole in a murine model of disseminated infection caused by Apophysomyces variabilis.J. Antimicrob. Chemother.20126771712171510.1093/jac/dks09022427614
    [Google Scholar]
  140. MarioD.N. GuarroJ. SanturioJ.M. AlvesS.H. CapillaJ. In vitro and in vivo efficacy of amphotericin b combined with posaconazole against experimental disseminated sporotrichosis.Antimicrob. Agents Chemother.20155985018502110.1128/AAC.00052‑1526014930
    [Google Scholar]
/content/journals/coc/10.2174/0113852728283383240111055602
Loading
/content/journals/coc/10.2174/0113852728283383240111055602
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test