Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1385-2728
  • E-ISSN:

Abstract

Photochemical reactions offer unparalleled opportunities to access elusive chemical pathways and develop innovative strategies for constructing complex molecules. Within organic synthesis, photochemical reactions have become indispensable tools for accessing complex molecular structures, such as pharmaceuticals and natural products. The ability of sulfur ylides to participate in these diverse processes has made them indispensable tools in the synthetic chemist's toolbox. The use of sulfur ylides in photochemical transformations has garnered significant attention in the synthetic organic chemistry community, and they serve as powerful intermediates in several chemical transformations. This review article presents a comprehensive overview of the photochemical reactions mediated by sulfur ylides. Herein, we describe the key aspects of the reactivity of sulfur ylides in the presence of light. The reactivity of these compounds can be classified into three categories: sulfur ylides as energy acceptors, as electron donors, and as trapping reagents.

#Dedicated to Professor Warner Bruce Kover on his 85th anniversary and for having inspired several generations of organic chemists.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728304549240328064426
2024-07-01
2024-10-31
Loading full text...

Full text loading...

References

  1. PitreS.P. OvermanL.E. Strategic use of visible-light photoredox catalysis in natural product synthesis.Chem. Rev.202212221717175110.1021/acs.chemrev.1c00247
    [Google Scholar]
  2. MarzoL. PagireS.K. ReiserO. KönigB. Visible-light photocatalysis: Does it make a difference in organic synthesis?Angew. Chem. Int. Ed.20185732100341007210.1002/anie.201709766
    [Google Scholar]
  3. SkubiK.L. BlumT.R. YoonT.P. Dual catalysis strategies in photochemical synthesis.Chem. Rev.201611617100351007410.1021/acs.chemrev.6b00018
    [Google Scholar]
  4. KalthoffS.F. JamesM.J. TedersM. PitzerL. GloriusF. Energy transfer catalysis mediated by visible light: Principles, applications, directions.Chem. Soc. Rev.201847197190720210.1039/C8CS00054A
    [Google Scholar]
  5. TwiltonJ. LeC. ZhangP. ShawM.H. EvansR.W. MacMillanD.W.C. The merger of transition metal and photocatalysis.Nat. Rev. Chem.201717005210.1038/s41570‑017‑0052
    [Google Scholar]
  6. ChenJ.R. HuX.Q. LuL.Q. XiaoW.J. Exploration of visible-light photocatalysis in heterocycle synthesis and functionalization: Reaction design and beyond.Acc. Chem. Res.20164991911192310.1021/acs.accounts.6b00254
    [Google Scholar]
  7. PrierC.K. RankicD.A. MacMillanD.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis.Chem. Rev.201311375322536310.1021/cr300503r
    [Google Scholar]
  8. TliliA. LakhdarS. Acridinium salts and cyanoarenes as powerful photocatalysts: Opportunities in organic synthesis.Angew. Chem. Int. Ed.20216036195261954910.1002/anie.202102262
    [Google Scholar]
  9. XuanJ. LuL.Q. ChenJ.R. XiaoW.J. Visible-light-driven photoredox catalysis in the construction of carbocyclic and heterocyclic ring systems.Eur. J. Org. Chem.20132013306755677010.1002/ejoc.201300596
    [Google Scholar]
  10. CrespiS. FagnoniM. Generation of alkyl radicals: From the tyranny of tin to the photon democracy.Chem. Rev.2020120179790983310.1021/acs.chemrev.0c00278
    [Google Scholar]
  11. RavelliD. FagnoniM. AlbiniA. Photoorganocatalysis. What for?Chem. Soc. Rev.20134219711310.1039/C2CS35250H
    [Google Scholar]
  12. FagnoniM. DondiD. RavelliD. AlbiniA. Photocatalysis for the formation of the C−C bond.Chem. Rev.200710762725275610.1021/cr068352x
    [Google Scholar]
  13. XuanJ. XiaoW.J. Visible-light photoredox catalysis.Angew. Chem. Int. Ed.201251286828683810.1002/anie.201200223
    [Google Scholar]
  14. BuzzettiL. CrisenzaG.E.M. MelchiorreP. Mechanistic studies in photocatalysis.Angew. Chem. Int. Ed.201958123730374710.1002/anie.201809984
    [Google Scholar]
  15. NarayanamJ.M.R. StephensonC.R.J. Visible light photoredox catalysis: Applications in organic synthesis.Chem. Soc. Rev.201140110211310.1039/B913880N
    [Google Scholar]
  16. TangM. DraperF. PhamL.N. HoC.C. HuangH. SunJ. ThickettS.C. CooteM.L. ConnellT.U. BissemberA.C. Photochemical povarov-type reactions: Electron donor–acceptor photoactivation by visible light.J. Org. Chem.20248942683269010.1021/acs.joc.3c02746
    [Google Scholar]
  17. FanR. TanC. LiuY. WeiY. ZhaoX. LiuX. TanJ. YoshidaH. A leap forward in sulfonium salt and sulfur ylide chemistry.Chin. Chem. Lett.202132129931210.1016/j.cclet.2020.06.003
    [Google Scholar]
  18. BurtolosoA.C.B. DiasR.M.P. LeonarczykI.A. Sulfoxonium and sulfonium ylides as diazocarbonyl equivalents in metal-catalyzed insertion reactions.Eur. J. Org. Chem.20132013235005501610.1002/ejoc.201300581
    [Google Scholar]
  19. BisagG.D. RuggieriS. FochiM. BernardiL. Sulfoxonium ylides: Simple compounds with chameleonic reactivity.Org. Biomol. Chem.202018438793880910.1039/D0OB01822H
    [Google Scholar]
  20. CaiubyC.A.D. FurnielL.G. BurtolosoA.C.B. Asymmetric transformations from sulfoxonium ylides.Chem. Sci. 20221351192120910.1039/D1SC05708A
    [Google Scholar]
  21. SuarezA.I.O. del RíoM.P. RemerieK. ReekJ.N.H. de BruinB. Rh-mediated C1-polymerization: Copolymers from diazoesters and sulfoxonium ylides.ACS Catal.2012292046205910.1021/cs300363m
    [Google Scholar]
  22. SarabiaF. GálvezM.F. ChammaaS. OrtizM.L. RuizS.A. Chiral sulfur ylides for the synthesis of bengamide E and analogues.J. Org. Chem.201075165526553210.1021/jo100696w
    [Google Scholar]
  23. HayashiM. BurtolosoA.C.B. Organocatalytic transformations from sulfur ylides.Catalysts202313468910.3390/catal13040689
    [Google Scholar]
  24. LiuX. ShaoY. SunJ. Ruthenium-catalyzed chemoselective N–H bond insertion reactions of 2-pyridones/7-azaindoles with sulfoxonium ylides.Org. Lett.20212331038104310.1021/acs.orglett.0c04229
    [Google Scholar]
  25. FurnielL.G. EchemendíaR. BurtolosoA.C.B. Cooperative copper-squaramide catalysis for the enantioselective N–H insertion reaction with sulfoxonium ylides.Chem. Sci. 202112217453745910.1039/D1SC00979F
    [Google Scholar]
  26. ZhangX. ZhangY. LiangC. JiangJ. Copper-catalyzed P–H insertion reactions of sulfoxonium ylides.Org. Biomol. Chem.202119265767577110.1039/D1OB00948F
    [Google Scholar]
  27. DiasR.M.P. BurtolosoA.C.B. Catalyst-free insertion of sulfoxonium ylides into aryl thiols. A direct preparation of β-keto thioethers.Org. Lett.201618123034303710.1021/acs.orglett.6b01470
    [Google Scholar]
  28. MomoP.B. LeveilleA.N. FarrarE.H.E. GraysonM.N. MattsonA.E. BurtolosoA.C.B. Enantioselective S−H insertion reactions of α-carbonyl sulfoxonium ylides.Angew. Chem. Int. Ed.20205936155541555910.1002/anie.202005563
    [Google Scholar]
  29. ChengJ. WuX. SunS. YuJ-T. Recent applications of α-carbonyl sulfoxonium ylides in rhodium- and iridium-catalyzed c–h functionalizations.Synlett2019301212910.1055/s‑0037‑1610263
    [Google Scholar]
  30. KumarA. SherikarM.S. HanchateV. PrabhuK.R. Application of sulfoxonium ylide in transition-metal-catalyzed C-H bond activation and functionalization reactions.Tetrahedron20211011913247810.1016/j.tet.2021.132478
    [Google Scholar]
  31. GalloR.D.C. Ahmad, A.; Metzker, G.; Burtoloso, A.C.B. α,α‐Alkylation-halogenation and dihalogenation of sulfoxonium ylides. A direct preparation of geminal difunctionalized ketones.Chemistry20172367169801698410.1002/chem.201704609
    [Google Scholar]
  32. DayD.P. VargasM.J.A. BurtolosoA.C.B. Direct synthesis of α-fluoro-α-triazol-1-yl ketones from sulfoxonium ylides: A one-pot approach.J. Org. Chem.20218617124271243510.1021/acs.joc.1c01441
    [Google Scholar]
  33. McAulayK. ClarkJ.S. Total synthesis of 7- epi -pukalide and 7-acetylsinumaximol B.Chemistry201723419761976510.1002/chem.201702591
    [Google Scholar]
  34. NicolaouK.C. SunY.P. GuduruR. BanerjiB. ChenD.Y.K. Total synthesis of the originally proposed and revised structures of palmerolide a and isomers thereof.J. Am. Chem. Soc.2008130113633364410.1021/ja710485n
    [Google Scholar]
  35. KorneevS.M. Valence isomerization between diazo compounds and diazirines.Eur. J. Org. Chem.20112011316153617510.1002/ejoc.201100224
    [Google Scholar]
  36. MossR.A. Diazirines: Carbene precursors par excellence.Acc. Chem. Res.200639426727210.1021/ar050155h
    [Google Scholar]
  37. CandeiasN. AfonsoC. Developments in the photochemistry of diazo compounds.Curr. Org. Chem.200913776378710.2174/138527209788167231
    [Google Scholar]
  38. FordA. MielH. RingA. SlatteryC.N. MaguireA.R. McKerveyM.A. Modern organic synthesis with α-diazocarbonyl compounds.Chem. Rev.20151151899811008010.1021/acs.chemrev.5b00121
    [Google Scholar]
  39. TrostB.M. Decomposition of sulfur ylides. Evidence for carbene intermediates.J. Am. Chem. Soc.19668871587158810.1021/ja00959a071
    [Google Scholar]
  40. MakiY. SakoM. KurahashiN. HirotaK. A simple and efficient synthesis of the γ-lactam analogue of β-lactam antibiotics. Ring-expansion of penicillins to homopenicillins.J. Chem. Soc. Chem. Commun.1988211011110.1039/C39880000110
    [Google Scholar]
  41. StoffregenS.A. HeyingM. JenksW.S. C-sulfonium ylides from thiophenes: Potential carbene precursors.J. Am. Chem. Soc.200712951157461574710.1021/ja076351w
    [Google Scholar]
  42. JenksW.S. HeyingM.J. StoffregenS.A. RockafellowE.M. Reaction of dicarbomethoxycarbene with thiophene derivatives.J. Org. Chem.20097472765277010.1021/jo802823s
    [Google Scholar]
  43. WanC. HouZ. YangD. ZhouZ. XuH. WangY. DaiC. LiangM. MengJ. ChenJ. YinF. WangR. LiZ. The thiol-sulfoxonium ylide photo-click reaction for bioconjugation.Chem. Sci. 202314360461210.1039/D2SC05650J
    [Google Scholar]
  44. XianN. YinJ. JiX. DengG.J. HuangH. Visible-light-mediated photoredox carbon radical formation from aqueous sulfoxonium ylides.Org. Lett.20232571161116510.1021/acs.orglett.3c00143
    [Google Scholar]
  45. SunQ. PengY. WangY. BaoX. Construction of α-acyloxy ketones via photoredox-catalyzed O–H insertion of sulfoxonium ylides with carboxylic acids.Org. Lett.202325366613661710.1021/acs.orglett.3c02221
    [Google Scholar]
  46. GaoP.P. YanD.M. BiM.H. JiangM. XiaoW.J. ChenJ.R. Alkene synthesis by photo-wolff-kischner reaction of sulfur ylides and N -tosylhydrazones.Chemistry20212757141951420110.1002/chem.202102671
    [Google Scholar]
  47. PramanikM.M.D. YuanF. YanD.M. XiaoW.J. ChenJ.R. Visible-light-driven radical multicomponent reaction of 2-vinylanilines, sulfonyl chlorides, and sulfur ylides for synthesis of indolines.Org. Lett.20202272639264410.1021/acs.orglett.0c00602
    [Google Scholar]
  48. YuanF. YanD.M. GaoP.P. ShiD.Q. XiaoW.J. ChenJ.R. Photoredox-catalyzed multicomponent cyclization of 2-vinyl phenols, N-alkoxypyridinium salts, and sulfur ylides for synthesis of dihydrobenzofurans.ChemCatChem202113254354710.1002/cctc.202001589
    [Google Scholar]
  49. YanD.M. XuS.H. QianH. GaoP.P. BiM.H. XiaoW.J. ChenJ.R. Photoredox-catalyzed and copper(II)salt-assisted radical addition/hydroxyla-tion reaction of alkenes, sulfur ylides, and water.ACS Catal.20221263279328510.1021/acscatal.2c00638
    [Google Scholar]
  50. XuS.H. YanD.M. RaoL. JiangM. WuY.L. XiaoW.J. ChenJ.R. The photocatalytic selective 1,2-hydroxyacylmethylation of 1,3-dienes with sulfur ylides as the source of alkyl radicals.Org. Chem. Front.20229143747375610.1039/D2QO00383J
    [Google Scholar]
  51. XiaX.D. LuL.Q. LiuW.Q. ChenD.Z. ZhengY.H. WuL.Z. XiaoW.J. Visible-light-driven photocatalytic activation of inert sulfur ylides for 3-acyl oxindole synthesis.Chemistry201622258432843710.1002/chem.201600871
    [Google Scholar]
  52. SanaS. DannarmS.R. TokalaR. DastariS. SathishM. KumarR. SontiR. ShankaraiahN. Sustainable photocatalytic C–H annulation of heteroarenes with sulfoxonium ylides: Synthesis and photophysical properties of fused imidazo [1,2-a] pyridine-based molecules.Org. Chem. Front.202310194800480810.1039/D3QO00923H
    [Google Scholar]
  53. PengY. WangY. WangK. SunQ. BaoX. Visible-light photocatalyzed C3–H alkylation of 2 H -indazoles/indoles with sulfoxonium ylides via diversified mechanistic pathways.ACS Catal.20241421193120410.1021/acscatal.3c04729
    [Google Scholar]
  54. LiuY.Y. YuX.Y. ChenJ.R. QiaoM.M. QiX. ShiD.Q. XiaoW.J. Visible-light-driven aza-ortho-quinone methide generation for the synthesis of indoles in a multicomponent reaction.Angew. Chem. Int. Ed.201756329527953110.1002/anie.201704690
    [Google Scholar]
  55. UmemotoT. AdachiK. IshiharaS. CF3 oxonium salts, O-(Trifluoromethyl)dibenzofuranium salts: In situ synthesis, properties, and application as a real CF3+ species reagent.J. Org. Chem.200772186905691710.1021/jo070896r
    [Google Scholar]
  56. YeC. CaiB.G. LuJ. ChengX. LiL. PanZ.W. XuanJ. Visible-light-promoted polysubstituted olefins synthesis involving sulfur ylides as carbene trapping reagents.J. Org. Chem.20218611012102210.1021/acs.joc.0c02500
    [Google Scholar]
  57. YangZ. StivaninM.L. JurbergI.D. KoenigsR.M. Visible light-promoted reactions with diazo compounds: A mild and practical strategy towards free carbene intermediates.Chem. Soc. Rev.202049196833684710.1039/D0CS00224K
    [Google Scholar]
  58. JurbergI.D. DaviesH.M.L. Blue light-promoted photolysis of aryldiazoacetates.Chem. Sci. 20189225112511810.1039/C8SC01165F
    [Google Scholar]
  59. BernardimB. BaldwinH.A.M. BurtolosoA.C.B. LED lighting as a simple, inexpensive, and sustainable alternative for Wolff rearrangements.RSC Advances2015518133111331410.1039/C4RA15670F
    [Google Scholar]
  60. StivaninM.L. FernandesA.A.G. da SilvaA.F. OkadaC.Y.Jr JurbergI.D. Blue light-promoted N−H insertion of carbazoles, pyrazoles and 1,2,3-triazoles into aryldiazoacetates.Adv. Synth. Catal.202036251106111110.1002/adsc.201901343
    [Google Scholar]
  61. Ciszewski, Ł.W.; Jasińska, R.K.; Gryko, D. Recent developments in photochemical reactions of diazo compounds.Org. Biomol. Chem.201917343244810.1039/C8OB02703J
    [Google Scholar]
  62. HuaT.B. YangQ.Q. ZouY.Q. Recent advances in enantioselective photochemical reactions of stabilized diazo compounds.Molecules20192417319110.3390/molecules24173191
    [Google Scholar]
  63. XiaoT. MeiM. HeY. ZhouL. Blue light-promoted cross-coupling of aryldiazoacetates and diazocarbonyl compounds.Chem. Commun. 201854648865886810.1039/C8CC04609C
    [Google Scholar]
  64. HommelsheimR. GuoY. YangZ. EmpelC. KoenigsR.M. Blue-light-induced carbene-transfer reactions of diazoalkanes.Angew. Chem. Int. Ed.20195841203120710.1002/anie.201811991
    [Google Scholar]
  65. YangJ. WangJ. HuangH. QinG. JiangY. XiaoT. gem-Difluoroallylation of aryl diazoesters via catalyst-free, blue-light-mediated formal doyle–kirmse reaction.Org. Lett.20192182654265710.1021/acs.orglett.9b00647
    [Google Scholar]
  66. HusainA. KhanS.A. IramF. IqbalM.A. AsifM. Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore.Eur. J. Med. Chem.2019171669210.1016/j.ejmech.2019.03.021
    [Google Scholar]
  67. MunarettoL.S. dos SantosC.Y. GalloR.D.C. OkadaC.Y.Jr DeflonV.M. JurbergI.D. Visible-light-mediated strategies to assemble alkyl 2-carboxylate- 2,3,3-trisubstituted β-lactams and 5-alkoxy-2,2,4-trisubstituted furan-3(2H)-ones using aryldiazoacetates and aryldiazoketones.Org. Lett.202123239292929610.1021/acs.orglett.1c03662
    [Google Scholar]
  68. LuJ. LiL. HeX.K. XuG.Y. XuanJ. Visible light-promoted sulfoxonium ylides synthesis from aryl diazoacetates and sulfoxides.Chin. J. Chem.20213961646165010.1002/cjoc.202100064
    [Google Scholar]
  69. EchemendíaR. de OliveiraK.T. BurtolosoA.C.B. Visible-light-promoted synthesis of 1,3-dicarbonyl sulfoxonium ylides.Org. Lett.202224356386639010.1021/acs.orglett.2c02346
    [Google Scholar]
  70. DongY. TianY. ZhangZ. WangT. Blue light-promoted reaction of α-diazoketones and sulfoxonium ylides: Synthesis of 1,3-dicarbonyl sulfoxonium ylides.Adv. Synth. Catal.2022364234026403010.1002/adsc.202200944
    [Google Scholar]
  71. VaitlaJ. HopmannK.H. BayerA. Rhodium-catalyzed synthesis of sulfur ylides via in situ generated iodonium ylides.Org. Lett.201719246688669110.1021/acs.orglett.7b03413
    [Google Scholar]
  72. YuanY. WuX.F. Direct access to 1,1-dicarbonyl sulfoxonium ylides from aryl halides or triflates: Palladium-catalyzed carbonylation.Org. Lett.201921135310531410.1021/acs.orglett.9b01926
    [Google Scholar]
  73. YuanY. ChenB. ZhangY. WuX.F. Pd/C-catalyzed carbonylative synthesis of α -carbonyl-α′-amide sulfoxonium ylides from azides.J. Org. Chem.20208585733574010.1021/acs.joc.0c00273
    [Google Scholar]
  74. CapurroP. LambruschiniC. LovaP. MoniL. BassoA. Into the blue: Ketene multicomponent reactions under visible light.J. Org. Chem.20218685845585110.1021/acs.joc.1c00278
    [Google Scholar]
/content/journals/coc/10.2174/0113852728304549240328064426
Loading
/content/journals/coc/10.2174/0113852728304549240328064426
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test