Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Introduction

Ischemic injury to the brain can result in a variety of life-threatening conditions, mortality, or varying degrees of disability. Hypoxia-inducible factor 1α (HIF 1α), an oxygen-sensitive transcription factor that controls the adaptive metabolic response to hypoxia, is a critical constituent of cerebral ischemia. It participates in numerous processes, such as metabolism, proliferation, and angiogenesis, and plays a major role in cerebral ischemia.

Methods

Through the use of a number of different search engines like Scopus, PubMed, Bentham, and Elsevier databases, a literature review was carried out for investigating the pharmacological modulation of HIF-1α pathways for the treatment of cerebral ischemia.

Results

Various signalling pathways, such as Mitogen-activated protein kinase (MAPK), Janus kinase/signal transducers and activators (JAK/STAT), Phosphoinositide-3-kinase (PI3-K), and cAMP-response element binding protein (CREB) play a vital role in modulation of HIF-1α pathway, which helps in preventing the pathogenesis of cerebral ischemia.

Conclusion

The pharmacological modulation of the HIF-1α pathway various molecular signalling pathways, such as PI3-K, MAPK, CREB, and JAK/STAT activators, offer a promising prospect for future interventions and treatment for cerebral ischemia.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273324551241008111827
2025-10-18
2025-01-18
Loading full text...

Full text loading...

References

  1. TobinM.K. BondsJ.A. MinshallR.D. PelligrinoD.A. TestaiF.D. LazarovO. Neurogenesis and inflammation after ischemic stroke: What is known and where we go from here.J. Cereb. Blood Flow Metab.201434101573158410.1038/jcbfm.2014.130 25074747
    [Google Scholar]
  2. BehlT. KaurD. SehgalA. Role of monoamine oxidase activity in Alzheimer’s disease: An insight into the therapeutic potential of inhibitors.Molecules20212612372410.3390/molecules26123724 34207264
    [Google Scholar]
  3. Ramirez-RincónC.L. Role of the hypoxia-inducible factor (HIF) in the process of neurogenesis at the hippocampal level.Rev Mex Neurocienc20222327177
    [Google Scholar]
  4. WilkinsS.E. AbboudM.I. HancockR.L. SchofieldC.J. Targeting protein-protein interactions in the HIF system.ChemMedChem201611877378610.1002/cmdc.201600012 26997519
    [Google Scholar]
  5. KumarH. ChoiD.K. Hypoxia inducible factor pathway and physiological adaptation: A cell survival pathway?Mediators Inflamm.20152015158475810.1155/2015/584758 26491231
    [Google Scholar]
  6. LobodaA. JozkowiczA. DulakJ. HIF-1 and HIF-2 transcription factors-similar but not identical.Mol. Cells201029543544210.1007/s10059‑010‑0067‑2 20396958
    [Google Scholar]
  7. PoitzD.M. AugsteinA. HesseK. Regulation of the HIF-system in human macrophages - Differential regulation of HIF-α subunits under sustained hypoxia.Mol. Immunol.201457222623510.1016/j.molimm.2013.10.001 24176785
    [Google Scholar]
  8. CabajA. MoszyńskaA. CharzyńskaA. BartoszewskiR. DąbrowskiM. Functional and HRE motifs count analysis of induction of selected hypoxia-responsive genes by HIF-1 and HIF-2 in human umbilical endothelial cells.Cell. Signal.20229011020910.1016/j.cellsig.2021.110209 34890779
    [Google Scholar]
  9. HuJ. 2014Quantitative assessment of dimer formation by hypoxia inducible transcription factor subunits HIF-1α and HIF-2α
    [Google Scholar]
  10. RehniA.K. SinghT.G. JaggiA.S. SinghN. Pharmacological preconditioning of the brain: A possible interplay between opioid and calcitonin gene related peptide transduction systems.Pharmacol. Rep.2008606904913 19211983
    [Google Scholar]
  11. BehlT. KaurG. SehgalA. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives.Int. J. Mol. Sci.2021223141310.3390/ijms22031413 33573368
    [Google Scholar]
  12. ChapmanS.N. MehndirattaP. JohansenM.C. McMurryT.L. JohnstonK.C. SoutherlandA.M. Current perspectives on the use of intravenous recombinant tissue plasminogen activator (tPA) for treatment of acute ischemic stroke.Vasc. Health Risk Manag.2014107587 24591838
    [Google Scholar]
  13. VatteS. UgaleR. HIF-1, an important regulator in potential new therapeutic approaches to ischemic stroke.Neurochem. Int.202317010560510.1016/j.neuint.2023.105605 37657765
    [Google Scholar]
  14. BhattacharyaT. SoaresG.A.B. ChopraH. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials (Basel)202215380410.3390/ma15030804 35160749
    [Google Scholar]
  15. MitroshinaE.V. SavyukM.O. PonimaskinE. VedunovaM.V. Hypoxia-inducible factor (HIF) in ischemic stroke and neurodegenerative disease.Front. Cell Dev. Biol.2021970308410.3389/fcell.2021.703084 34395432
    [Google Scholar]
  16. PuzioM. MoretonN. O’ConnorJ.J. Neuroprotective strategies for acute ischemic stroke: Targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling.Brain Disorders2022510003010.1016/j.dscb.2022.100030
    [Google Scholar]
  17. KorbeckiJ. SimińskaD. Gąssowska-DobrowolskaM. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review of the molecular mechanisms.Int. J. Mol. Sci.202122191070110.3390/ijms221910701 34639040
    [Google Scholar]
  18. LiQ.F. XuH. SunY. HuR. JiangH. Induction of inducible nitric oxide synthase by isoflurane post-conditioning via hypoxia inducible factor-1α during tolerance against ischemic neuronal injury.Brain Res.201214511910.1016/j.brainres.2012.02.055 22445062
    [Google Scholar]
  19. LiJ. TaoT. XuJ. LiuZ. ZouZ. JinM. HIF 1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia reperfusion injury in a rat MCAO model.Int. J. Mol. Med.20204541027103610.3892/ijmm.2020.4480 32124933
    [Google Scholar]
  20. Peña-BlancoA. García-SáezA.J. Bax, Bak and beyond — mitochondrial performance in apoptosis.FEBS J.2018285341643110.1111/febs.14186 28755482
    [Google Scholar]
  21. AriasC. SepúlvedaP. CastilloR.L. SalazarL.A. Relationship between hypoxic and immune pathways activation in the progression of neuroinflammation: Role of HIF-1α and Th17 cells.Int. J. Mol. Sci.2023244307310.3390/ijms24043073 36834484
    [Google Scholar]
  22. ChenC. OstrowskiR.P. ZhouC. TangJ. ZhangJ.H. Suppression of hypoxia-inducible factor-1α and its downstream genes reduces acute hyperglycemia-enhanced hemorrhagic transformation in a rat model of cerebral ischemia.J. Neurosci. Res.20108892046205510.1002/jnr.22361 20155812
    [Google Scholar]
  23. SinghN. SharmaG. MishraV. RaghubirR. Hypoxia inducible factor-1: Its potential role in cerebral ischemia.Cell. Mol. Neurobiol.201232449150710.1007/s10571‑012‑9803‑9 22297543
    [Google Scholar]
  24. BokS. KimY.E. WooY. Hypoxia-inducible factor-1α regulates microglial functions affecting neuronal survival in the acute phase of ischemic stroke in mice.Oncotarget201786711150811152110.18632/oncotarget.22851 29340071
    [Google Scholar]
  25. KohH.S. ChangC.Y. JeonS.B. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia.Nat. Commun.201561634010.1038/ncomms7340 25790768
    [Google Scholar]
  26. KongY. LeY. Toll-like receptors in inflammation of the central nervous system.Int. Immunopharmacol.201111101407141410.1016/j.intimp.2011.04.025 21600311
    [Google Scholar]
  27. FangH. WangP.F. ZhouY. WangY.C. YangQ.W. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury.J. Neuroinflammation201310179410.1186/1742‑2094‑10‑27 23414417
    [Google Scholar]
  28. HanS. XuW. WangZ. Crosstalk between the HIF-1 and Toll-like receptor/nuclear factor-κB pathways in the oral squamous cell carcinoma microenvironment.Oncotarget2016725377733778910.18632/oncotarget.9329 27191981
    [Google Scholar]
  29. DaskalakiI. GkikasI. TavernarakisN. Hypoxia and selective autophagy in cancer development and therapy.Front. Cell Dev. Biol.2018610410.3389/fcell.2018.00104 30250843
    [Google Scholar]
  30. GuoY. Role of HIF-1a in regulating autophagic cell survival during cerebral ischemia reperfusion in rats.Oncotarget2017858984829849410.18632/oncotarget.21445 29228704
    [Google Scholar]
  31. QuaegebeurA. SeguraI. SchmiederR. Deletion or inhibition of the oxygen sensor PHD1 protects against ischemic stroke via reprogramming of neuronal metabolism.Cell Metab.201623228029110.1016/j.cmet.2015.12.007 26774962
    [Google Scholar]
  32. GuoS. MiyakeM. LiuK.J. ShiH. Specific inhibition of hypoxia inducible factor 1 exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment.J. Neurochem.200910851309132110.1111/j.1471‑4159.2009.05877.x 19183269
    [Google Scholar]
  33. ZhengY. HanZ. ZhaoH. LuoY. MAPK: A key player in the development and progression of stroke.CNS Neurol. Disord. Drug Targets2020194248256
    [Google Scholar]
  34. ChengC.Y. HoT.Y. HsiangC.Y. Angelica sinensis exerts angiogenic and anti-apoptotic effects against cerebral ischemia-reperfusion injury by activating p38MAPK/HIF-1α/VEGF-A signaling in rats.Am. J. Chin. Med.20174581683170810.1142/S0192415X17500914 29121798
    [Google Scholar]
  35. LiL. YinX. MaN. Desferrioxamine regulates HIF-1 alpha expression in neonatal rat brain after hypoxia-ischemia.Am. J. Transl. Res.201464377383 25075254
    [Google Scholar]
  36. YangW. ZhangL. ChenS. Longshengzhi capsules improve ischemic stroke outcomes and reperfusion injury via the promotion of anti-inflammatory and neuroprotective effects in MCAO/R rats.Evid. Based Complement. Alternat. Med.202020201965417510.1155/2020/9654175 32215051
    [Google Scholar]
  37. LinC.M. ChiuJ.H. WuI.H. WangB.W. PanC.M. ChenY.H. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1α.J. Nutr. Biochem.201021762763310.1016/j.jnutbio.2009.04.001 19443196
    [Google Scholar]
  38. ZhengJ. ZhangP. LiX. Post-stroke estradiol treatment enhances neurogenesis in the subventricular zone of rats after permanent focal cerebral ischemia.Neuroscience2013231829010.1016/j.neuroscience.2012.11.042 23211559
    [Google Scholar]
  39. SharmaV. SharmaP. SinghT.G. Wnt signalling pathways as mediators of neuroprotective mechanisms: Therapeutic implications in stroke.Mol. Biol. Rep.202451124710.1007/s11033‑023‑09202‑w 38300425
    [Google Scholar]
  40. CantleyL.C. The phosphoinositide 3-kinase pathway.Science200229655731655165710.1126/science.296.5573.1655 12040186
    [Google Scholar]
  41. ZhangQ. BianH. LiY. GuoL. TangY. ZhuH. Preconditioning with the traditional Chinese medicine Huang-Lian-Jie-Du-Tang initiates HIF-1α-dependent neuroprotection against cerebral ischemia in rats.J. Ethnopharmacol.2014154244345210.1016/j.jep.2014.04.022 24751364
    [Google Scholar]
  42. WeiY. HongH. ZhangX. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats.Inflammation20174041297130910.1007/s10753‑017‑0573‑x 28478514
    [Google Scholar]
  43. ChenJ. ZhangX. LiuX. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice.Eur. J. Pharmacol.201985617241810.1016/j.ejphar.2019.172418 31132356
    [Google Scholar]
  44. WangC. WangZ. ZhangX. Protection by silibinin against experimental ischemic stroke: Up-regulated pAkt, pmTOR, HIF-1α and Bcl-2, down-regulated Bax, NF-κB expression.Neurosci. Lett.20125291455010.1016/j.neulet.2012.08.078 22999929
    [Google Scholar]
  45. LiY. XiangL.L. MiaoJ.X. MiaoM.S. WangC. Protective effects of andrographolide against cerebral ischemia reperfusion injury in mice.Int. J. Mol. Med.202148418610.3892/ijmm.2021.5019 34368862
    [Google Scholar]
  46. CaraccioloL. MarosiM. MazzitelliJ. CREB controls cortical circuit plasticity and functional recovery after stroke.Nat. Commun.201891225010.1038/s41467‑018‑04445‑9 29884780
    [Google Scholar]
  47. FanJ. ZhangK. JinY. Pharmacological effects of berberine on mood disorders.J. Cell. Mol. Med.2019231212810.1111/jcmm.13930 30450823
    [Google Scholar]
  48. HanJ. LuoL. WangY. WuS. KasimV. Therapeutic potential and molecular mechanisms of salidroside in ischemic diseases.Front. Pharmacol.20221397477510.3389/fphar.2022.974775 36060000
    [Google Scholar]
  49. DongX. FuJ. YinX. Emodin: A review of its pharmacology, toxicity and pharmacokinetics.Phytother. Res.20163081207121810.1002/ptr.5631 27188216
    [Google Scholar]
  50. XueX. QuanY. GongL. GongX. LiY. A review of the processed Polygonum multiflorum (Thunb.) for hepatoprotection: Clinical use, pharmacology and toxicology.J. Ethnopharmacol.202026111312110.1016/j.jep.2020.113121 32693115
    [Google Scholar]
  51. AhnS.M. KimH.N. KimY.R. Emodin from Polygonum multiflorum ameliorates oxidative toxicity in HT22 cells and deficits in photothrombotic ischemia.J. Ethnopharmacol.2016188132010.1016/j.jep.2016.04.058 27151150
    [Google Scholar]
  52. ForouzanfarF. ReadM.I. BarretoG.E. SahebkarA. Neuroprotective effects of curcumin through autophagy modulation.IUBMB Life202072465266410.1002/iub.2209 31804772
    [Google Scholar]
  53. SubediL. GaireB.P. Neuroprotective effects of curcumin in cerebral ischemia: Cellular and molecular mechanisms.ACS Chem. Neurosci.202112142562257210.1021/acschemneuro.1c00153 34251185
    [Google Scholar]
  54. LvY. QiJ. BabonJ.J. The JAK-STAT pathway: From structural biology to cytokine engineering.Signal Transduct. Target. Ther.20249122110.1038/s41392‑024‑01934‑w 39169031
    [Google Scholar]
  55. WuX. LiuS. HuZ. ZhuG. ZhengG. WangG. Enriched housing promotes post-stroke neurogenesis through calpain 1-STAT3/HIF-1α/VEGF signaling.Brain Res. Bull.201813913314310.1016/j.brainresbull.2018.02.018 29477834
    [Google Scholar]
  56. HouY. WangK. WanW. ChengY. PuX. YeX. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/] AKT/mTOR pathway after stroke in rats.Genes Dis.20185324525510.1016/j.gendis.2018.06.001 30320189
    [Google Scholar]
  57. KretzA. HappoldC.J. MartickeJ.K. IsenmannS. Erythropoietin promotes regeneration of adult CNS neurons via Jak2/Stat3 and PI3K/AKT pathway activation.Mol. Cell. Neurosci.200529456957910.1016/j.mcn.2005.04.009 15936213
    [Google Scholar]
  58. ZhangW. SongJ.K. ZhangX. Salvianolic acid A attenuates ischemia reperfusion induced rat brain damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation.Chin. J. Nat. Med.201816318419310.1016/S1875‑5364(18)30046‑3 29576054
    [Google Scholar]
  59. LiY. ZhangX. CuiL. Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK 2/STAT 3 signaling pathway after ischemic stroke in mice.J. Neurochem.20171431879910.1111/jnc.14140 28771727
    [Google Scholar]
  60. AkabaneS. OkaT. Insights into the regulation of mitochondrial functions by protein kinase A-mediated phosphorylation.J. Biochem.202417511710.1093/jb/mvad075 37775269
    [Google Scholar]
  61. NeagM.A. MitreA.O. BurlacuC.C. miRNA involvement in cerebral ischemia-reperfusion injury.Front. Neurosci.20221690136010.3389/fnins.2022.901360 35757539
    [Google Scholar]
  62. ZhaoH. WuL. YanG. Inflammation and tumor progression: Signaling pathways and targeted intervention.Signal Transduct. Target. Ther.20216126310.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  63. LiuY. LiY. TianR. The expression and significance of HIF-1α and GLUT-3 in glioma.Brain Res.2009130414915410.1016/j.brainres.2009.09.083 19782666
    [Google Scholar]
  64. KhezriM.R. MohammadipanahS. Ghasemnejad‐BerenjiM. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/] AKT signaling pathway.Phytother. Res.2024381349367
    [Google Scholar]
  65. LiuH. RenX. MaC. Effect of berberine on angiogenesis and HIF-1α/VEGF signal transduction pathway in rats with cerebral ischemia-reperfusion injury.J. Coll. Physicians Surg. Pak.20182810753757 30266118
    [Google Scholar]
  66. ZhangQ. BianH. GuoL. ZhuH. Berberine preconditioning protects neurons against ischemia via sphingosine-1-phosphate and hypoxia-inducible factor-1 α.Am. J. Chin. Med.201644592794110.1142/S0192415X16500518 27430910
    [Google Scholar]
  67. BurgosR.A. AlarcónP. QuirogaJ. ManosalvaC. HanckeJ. Andrographolide, an anti-inflammatory multitarget drug: All roads lead to cellular metabolism.Molecules2020261510.3390/molecules26010005 33374961
    [Google Scholar]
  68. ChanS.J. WongW.S.F. WongP.T.H. BianJ.S. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia.Br. J. Pharmacol.2010161366867910.1111/j.1476‑5381.2010.00906.x 20880404
    [Google Scholar]
  69. WangH. NiX. DongW. QinW. XuL. JiangY. Accurately quantified plasma free glycine concentration as a biomarker in patients with acute ischemic stroke.Amino Acids202355338540210.1007/s00726‑023‑03236‑x 36697969
    [Google Scholar]
  70. LiuR. LiaoX.Y. PanM.X. Glycine exhibits neuroprotective effects in ischemic stroke in rats through the inhibition of M1 microglial polarization via the NF-κB p65/Hif-1α signaling pathway.J. Immunol.201920261704171410.4049/jimmunol.1801166 30710045
    [Google Scholar]
  71. TurkmenS. Cekic GonencO. KaracaY. The effect of ethyl pyruvate and N-acetylcysteine on ischemia-reperfusion injury in an experimental model of ischemic stroke.Am. J. Emerg. Med.20163491804180710.1016/j.ajem.2016.06.003 27324856
    [Google Scholar]
  72. TardioloG. BramantiP. MazzonE. Overview on the effects of N-acetylcysteine in neurodegenerative diseases.Molecules20182312330510.3390/molecules23123305 30551603
    [Google Scholar]
  73. HankeyG.J. B vitamins for stroke prevention.Stroke Vasc. Neurol.201832515810.1136/svn‑2018‑000156 30022794
    [Google Scholar]
  74. DavisC.K. NampoothiriS.S. RajanikantG.K. Folic acid exerts post-ischemic neuroprotection in vitro through HIF-1α stabilization.Mol. Neurobiol.201855118328834510.1007/s12035‑018‑0982‑3 29542054
    [Google Scholar]
  75. SunS. XuY. YuN. Catalpol alleviates ischemic stroke through promoting angiogenesis and facilitating proliferation and differentiation of neural stem cells via the VEGF-A/KDR pathway.Mol. Neurobiol.202360116227624710.1007/s12035‑023‑03459‑9 37439957
    [Google Scholar]
  76. ZhengX. YangW. ChenS. Neuroprotection of catalpol for experimental acute focal ischemic stroke: Preclinical evidence and possible mechanisms of antioxidation, anti-inflammation, and antiapoptosis.Oxid. Med. Cell. Longev.201720171505860910.1155/2017/5058609 28785376
    [Google Scholar]
  77. DongW. XianY. YuanW. Catalpol stimulates VEGF production via the JAK2/STAT3 pathway to improve angiogenesis in rats’ stroke model.J. Ethnopharmacol.201619116917910.1016/j.jep.2016.06.030 27301615
    [Google Scholar]
  78. WangH. XuX. YinY. Catalpol protects vascular structure and promotes angiogenesis in cerebral ischemic rats by targeting HIF-1α/VEGF.Phytomedicine20207815330010.1016/j.phymed.2020.153300 32866905
    [Google Scholar]
  79. HeliH. MirtorabiS. KarimianK. Advances in iron chelation: An update.Expert Opin. Ther. Pat.201121681985610.1517/13543776.2011.569493 21449664
    [Google Scholar]
  80. FisherS.A. BrunskillS.J. DoreeC. GoodingS. ChowdhuryO. RobertsD.J. Desferrioxamine mesylate for managing transfusional iron overload in people with transfusion-dependent thalassaemia.Cochrane Libr.20138CD00445010.1002/14651858.CD004450.pub3 23963793
    [Google Scholar]
  81. ChoE.A. SongH.K. LeeS.H. ChungB.H. LimH.M. LeeM.K. Differential in vitro and cellular effects of iron chelators for hypoxia inducible factor hydroxylases.J. Cell. Biochem.2013114486487310.1002/jcb.24423 23097160
    [Google Scholar]
  82. DavisC.K. JainS.A. BaeO.N. MajidA. RajanikantG.K. Hypoxia mimetic agents for ischemic stroke.Front. Cell Dev. Biol.2019617510.3389/fcell.2018.00175 30671433
    [Google Scholar]
  83. Al-QahtaniK. JabeenB. SekirnikR. The broad spectrum 2-oxoglutarate oxygenase inhibitor N-oxalylglycine is present in rhubarb and spinach leaves.Phytochemistry201511745646110.1016/j.phytochem.2015.06.028 26196940
    [Google Scholar]
  84. NagelS. PapadakisM. ChenR. Neuroprotection by dimethyloxalylglycine following permanent and transient focal cerebral ischemia in rats.J. Cereb. Blood Flow Metab.201131113214310.1038/jcbfm.2010.60 20407463
    [Google Scholar]
  85. Al AboudN.M. TupperC. JialalI. Genetics, epigenetic mechanism.Treasure Island, FLStatPearls Publishing2018
    [Google Scholar]
  86. PhillipsC.M. StamatovicS.M. KeepR.F. AndjelkovicA.V. Epigenetics and stroke: Role of DNA methylation and effect of aging on blood-brain barrier recovery.Fluids Barriers CNS20232011410.1186/s12987‑023‑00414‑7 36855111
    [Google Scholar]
  87. FesslerE. ChibaneF. WangZ. ChuangD.M. Potential roles of HDAC inhibitors in mitigating ischemia-induced brain damage and facilitating endogenous regeneration and recovery.Curr. Pharm. Des.201319285105512010.2174/1381612811319280009 23448466
    [Google Scholar]
  88. SchweizerS. MeiselA. MärschenzS. Epigenetic mechanisms in cerebral ischemia.J. Cereb. Blood Flow Metab.20133391335134610.1038/jcbfm.2013.93 23756691
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273324551241008111827
Loading
/content/journals/cnsnddt/10.2174/0118715273324551241008111827
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test