Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

The triptans class of pharmaceuticals, which was created to treat acute migraine, is made up of indole-containing drugs that bind to a subset (1B/1D) of 5-hydroxytryptamine receptors and are agonists of serotonin receptors. At the moment, naratriptan, eletriptan, zolmitriptan, rizatriptan, almotriptan, and frovatriptan are the seven types of triptans available on the market. Among these are the FDA-approved triptans, Zolmitriptan and Sumatriptan, which are selective serotonin (5-hydroxytryptamine) agonists. Zolmitriptan, a synthetic tryptamine derivative and a well-known member of the triptan family, is available as an orally disintegrating tablet, nasal spray, and tablet. There are melt formulations of rizatriptan and zolmitriptan available on the market that are easier to use and absorb, comparable to regular pills. Recently, the FDA approved zolmitriptan, a medication with tolerability comparable to sumatriptan. Whereas zolmitriptan is only available as an oral melt or tablet, sumatriptan is available as a nasal spray, oral preparation, or self-injectable kit. The only known antimigraine drugs that were widely utilized before the triptan period were ergotamine and dihydroergotamine. However, zolmitriptan binds to plasma proteins only 25% of the time because of significant first-pass degradation. Researchers have looked into fresh ideas for solving this issue and innovations to overcome its pharmacokinetic difficulties. This article emphasizes the role of zolmitriptan in the treatment of migraines, highlighting its pharmacological properties, production, metabolism, and structural features.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273306929240820071521
2024-09-13
2025-01-18
Loading full text...

Full text loading...

References

  1. StewartW.F. ShechterA. RasmussenB.K. Migraine prevalence. A review of population-based studies.Neurology1994446Suppl. 4S17S23 8008222
    [Google Scholar]
  2. ChenL.C. AshcroftD.M. Meta-analysis of the efficacy and safety of zolmitriptan in the acute treatment of migraine.Headache200848223624710.1111/j.1526‑4610.2007.01007.x 18179569
    [Google Scholar]
  3. PalmerK.J. SpencerC.M. Zolmitriptan.CNS Drugs19977646847810.2165/00023210‑199707060‑00005
    [Google Scholar]
  4. LeoneM. RigamontiA. D’AmicoD. GrazziL. UsaiS. BussoneG. The serotonergic system in migraine.J. Headache Pain20012S1Suppl. 1s43s4610.1007/s101940170008
    [Google Scholar]
  5. PandeyP. ChauhanS. Fast dissolving sublingual films of Zolmitriptan : A novel treatment approach for migraine attacks.IJPER201448Suppl.677210.5530/ijper.48.4s.9
    [Google Scholar]
  6. FerrariM.D. GoadsbyP.J. RoonK.I. LiptonR.B. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: Detailed results and methods of a meta-analysis of 53 trials.Cephalalgia200222863365810.1046/j.1468‑2982.2002.00404.x 12383060
    [Google Scholar]
  7. BeckerW.J. Acute migraine treatment in adults. Headache.Headache201555677879310.1111/head.12550 25877672
    [Google Scholar]
  8. AntonaciF. GhiottoN. WuS. PucciE. CostaA. Recent advances in migraine therapy.Springerplus20165163710.1186/s40064‑016‑2211‑8 27330903
    [Google Scholar]
  9. CameronC. KellyS. HsiehS.C. Triptans in the acute treatment of migraine: A systematic review and network meta-analysis. headache.Headache201555S4Suppl. 422123510.1111/head.12601 26178694
    [Google Scholar]
  10. PuleddaF. ShieldsK. Non-pharmacological approaches for migraine.Neurotherapeutics201815233634510.1007/s13311‑018‑0623‑6 29616493
    [Google Scholar]
  11. HaghdoostF. ToghaM. Migraine management: Non-pharmacological points for patients and health care professionals.Open Med.20221711869188210.1515/med‑2022‑0598 36475060
    [Google Scholar]
  12. LicinaE. RadojicicA. JeremicM. TomicA. MijajlovicM. Non-pharmacological treatment of primary headaches—a focused review.Brain Sci.20231310143210.3390/brainsci13101432 37891800
    [Google Scholar]
  13. HanX. YuS. Non-pharmacological treatment for chronic migraine.Curr. Pain Headache Rep.2023271166367210.1007/s11916‑023‑01162‑x 37610505
    [Google Scholar]
  14. RaposioG. RaposioE. Temporal surgery for chronic migraine treatment: A minimally-invasive perspective.Ann. Med. Surg.20227610357810.1016/j.amsu.2022.103578 35495408
    [Google Scholar]
  15. KristoffersenE.S. LundqvistC. Medication-overuse headache: A review.J. Pain Res.2014736737810.2147/JPR.S46071 25061336
    [Google Scholar]
  16. Tfelt-HansenP.C. KoehlerP.J. History of the use of ergotamine and dihydroergotamine in migraine from 1906 and onward.Cephalalgia200828887788610.1111/j.1468‑2982.2008.01578.x 18460007
    [Google Scholar]
  17. MalachováA. SulyokM. BeltránE. BerthillerF. KrskaR. Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices.J. Chromatogr. A2014136214515610.1016/j.chroma.2014.08.037 25175039
    [Google Scholar]
  18. Dihydroergotamine mesylate nasal spray receives FDA approval for the acute treatment of migraine in adults.Available from: https://americanheadachesociety.org/news/dihydroergotamine-mesylate-nasal-spray-receives-fda-approval-for-the-acute-treatment-of-migraine-in-adults/#:~:text=On
  19. Rubio-BeltránE. Labastida-RamírezA. VillalónC.M. Is selective 5-HT1F receptor agonism an entity apart from that of the triptans in antimigraine therapy?Pharmacol. Ther.20181868897
    [Google Scholar]
  20. GoadsbyP.J. LiptonR.B. FerrariM.D. Migraine-current understanding and treatment.N. Engl. J. Med.2002346425727010.1056/NEJMra010917 11807151
    [Google Scholar]
  21. YuA.M. Indolealkylamines: Biotransformations and potential drug-drug interactions.AAPS J.200810224225310.1208/s12248‑008‑9028‑5 18454322
    [Google Scholar]
  22. KoteswariP. SravanthiG.P. MounikaM. Mohammed RafiS.K. NiroshaK. Formulation development and evaluation of zolmitriptan oral soluble films using 2 2 factorial designs.Int. J. Pharm. Investig.20166420120610.4103/2230‑973X.195927 28123989
    [Google Scholar]
  23. OngJ.J.Y. De FeliceM. Migraine treatment: Current acute medications and their potential mechanisms of action.Neurotherapeutics201815227429010.1007/s13311‑017‑0592‑1 29235068
    [Google Scholar]
  24. DigreK.B. What’s new in the treatment of migraine?J. Neuroophthalmol.201939335235910.1097/WNO.0000000000000837 31393282
    [Google Scholar]
  25. AngiolilloD.J. WeismanS.M. Clinical pharmacology and cardiovascular safety of Naproxen.Am. J. Cardiovasc. Drugs20171729710710.1007/s40256‑016‑0200‑5 27826802
    [Google Scholar]
  26. DodickD.W. Migraine.Lancet2018391101271315133010.1016/S0140‑6736(18)30478‑1 29523342
    [Google Scholar]
  27. WellsR.E. Mindfulness as one component of an integrative approach to migraine treatment in clinical practice: Companion editorial.Expert Rev. Neurother.202020319920210.1080/14737175.2020.1724783 32000542
    [Google Scholar]
  28. MaassenVanDenBrink ATerwindt GM, van den Maagdenberg AMJM. Calcitonin gene-related peptide (receptor) antibodies: An exciting avenue for migraine treatment.Genome Med.20181011010.1186/s13073‑018‑0524‑7 29471874
    [Google Scholar]
  29. RussellF.A. KingR. SmillieS.J. KodjiX. BrainS.D. Calcitonin gene-related peptide: Physiology and pathophysiology.Physiol. Rev.20149441099114210.1152/physrev.00034.2013 25287861
    [Google Scholar]
  30. TepperS.J. History and review of anti‐calcitonin gene‐related peptide (CGRP) therapies: From translational research to treatment.Headache201858S3Suppl. 323827510.1111/head.13379 30242830
    [Google Scholar]
  31. StokerK. BakerD.E. Erenumab-aooe.Hosp. Pharm.201853636336810.1177/0018578718797295 30559520
    [Google Scholar]
  32. MacGregorE.A. Migraine.Ann. Intern. Med.20171667ITC49ITC6410.7326/AITC201704040 28384749
    [Google Scholar]
  33. NegroA. CurtoM. LionettoL. GiamberardinoM.A. MartellettiP. Chronic migraine treatment: From OnabotulinumtoxinA onwards.Expert Rev. Neurother.201616101217122710.1080/14737175.2016.1200973 27310178
    [Google Scholar]
  34. NegroA. CurtoM. LionettoL. MartellettiP. A two years open-label prospective study of OnabotulinumtoxinA 195 U in medication overuse headache: A real-world experience.J. Headache Pain2015171110.1186/s10194‑016‑0591‑3 26792662
    [Google Scholar]
  35. Scientists developed the first migraine treatments in the late 1920s. Today, numerous treatments exist to both prevent and treat migraine attacks.2020Available from: https://www.medicalnewstoday.com/articles/migraine-treatments-history#:~:text=
  36. DolatiS. RikhtegarR. MehdizadehA. YousefiM. The role of magnesium in pathophysiology and migraine treatment.Biol. Trace Elem. Res.2020196237538310.1007/s12011‑019‑01931‑z 31691193
    [Google Scholar]
  37. KalraA.A. ElliottD. Acute migraine: Current treatment and emerging therapies.Ther. Clin. Risk Manag.200733449459 18488069
    [Google Scholar]
  38. BuckinghamJ. GlenR.C. HillA.P. Computer-aided design and synthesis of 5-substituted tryptamines and their pharmacology at the 5-HT1D receptor: Discovery of compounds with potential anti-migraine properties.J. Med. Chem.199538183566358010.1021/jm00018a016 7658443
    [Google Scholar]
  39. SmithD.A. ClearyE.W. WatkinsS. HuffmanC.S. DilzerS.C. LasseterK.C. Pharmacokinetics and pharmacodynamics of zolmitriptan in patients with mild to moderate hypertension: A double-blind, placebo-controlled study.J. Clin. Pharmacol.199838868569310.1002/j.1552‑4604.1998.tb04807.x 9725543
    [Google Scholar]
  40. ShiledarR.R. TagalpallewarA.A. KokareC.R. Formulation and in vitro evaluation of xanthan gum-based bilayered mucoadhesive buccal patches of zolmitriptan.Carbohydr. Polym.20141011234124210.1016/j.carbpol.2013.10.072 24299896
    [Google Scholar]
  41. ReboredoM. ChangH.C.Y. BarberoR. Zolmitriptan: A novel portal hypotensive agent which synergizes with propranolol in lowering portal pressure.PLoS One201381e5268310.1371/journal.pone.0052683 23341903
    [Google Scholar]
  42. CharlesworthB. DowsonA.J. Review of zolmitriptan and its clinical applications in migraine.Expert Opin. Pharmacother.200237993100510.1517/14656566.3.7.993 12083998
    [Google Scholar]
  43. PandaN. ReddyA.V. ReddyG.V.S. PandaK.C. Formulation design and in vitro evaluation of zolmitriptan immediate release tablets using primojel and AC-Di-Sol.J Pharm Sci Res20157545553
    [Google Scholar]
  44. RapoportA.M. BigalM.E. TepperS.J. SheftellF.D. Zolmitriptan (Zomig®).Expert Rev. Neurother.200441334110.1586/14737175.4.1.33 15853613
    [Google Scholar]
  45. RamachanderanR. SchrammS. SchaeferB. Migraine drugs.ChemTexts.202392610.1007/s40828‑023‑00178‑5
    [Google Scholar]
  46. VujjiniS.K. MothukuriV.R. IslamA. BandichhorR. KaggaM. MalakondaiahG.C. Synthesis of zolmitriptan and related substances.Synth. Commun.201343243294330610.1080/00397911.2013.777742
    [Google Scholar]
  47. United States Patent.20126315
  48. ZolmitriptanAvailable from: https://pubchem.ncbi.nlm.nih.gov/compound/Zolmitriptan
  49. SeaberE.J. PeckR.W. SmithD.A. The absolute bioavailability and effect of food on the pharmacokinetics of zolmitriptan in healthy volunteers.Br. J. Clin. Pharmacol.199846543343910.1046/j.1365‑2125.1998.00809.x 9833595
    [Google Scholar]
  50. TepperS.J. RapoportA.M. SheftellF.D. Mechanisms of action of the 5-HT1B/1D receptor agonists.Arch. Neurol.20025971084108810.1001/archneur.59.7.1084 12117355
    [Google Scholar]
  51. RolanP. Potential drug interactions with the novel antimigraine compound zolmitriptan (Zomig™, 311C90).Cephalalgia19971718_suppl)(Suppl. 18212710.1177/0333102497017S1804 9399014
    [Google Scholar]
  52. DixonR. WarranderA. The clinical pharmacokinetics of zolmitriptan.Cephalalgia19971718_suppl152010.1177/0333102497017S1803 9399013
    [Google Scholar]
  53. KalanuriaAA PeterlinBL A review of the pharmacokinetics, pharmacodynamicsand efficacy of zolmitriptan in the acute abortive treatment of migraine.Clin Med Ther20091CMT.S205610.4137/CMT.S2056
    [Google Scholar]
  54. ShelkeS. ShahiS. JalalpureS. DhamechaD. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: Formulation, optimization, evaluation and permeation studies.J. Liposome Res.201626431332310.3109/08982104.2015.1132232 26758957
    [Google Scholar]
  55. ChatapV.K. WaghP.N. BariS.B. BachhavB.U. PatilD.R. NaikJ.B. Novel spin coating technique for development of zolmitriptan mouth dissolving film.Int J Adv Chem Eng Biol Sci20141110113
    [Google Scholar]
  56. DowsonA.J. CharlesworthB.R. PurdyA. BeckerW.J. Boes-HansenS. FärkkiläM. Tolerability and consistency of effect of zolmitriptan nasal spray in a long-term migraine treatment trial.CNS Drugs2003171183985110.2165/00023210‑200317110‑00005 12921494
    [Google Scholar]
  57. El TaweelM.M. Aboul-EinienM.H. KassemM.A. ElkasabgyN.A. Intranasal zolmitriptan-loaded bilosomes with extended nasal mucociliary transit time for direct nose to brain delivery.Pharmaceutics20211311182810.3390/pharmaceutics13111828 34834242
    [Google Scholar]
  58. SalehA. KhalifaM. ShawkyS. Bani-AliA. EassaH. Zolmitriptan intranasal spanlastics for enhanced migraine treatment; Formulation parameters optimized via quality by design approach.Sci. Pharm.20218922410.3390/scipharm89020024
    [Google Scholar]
  59. JainR. NabarS. DandekarP. PatravaleV. Micellar nanocarriers: Potential nose-to-brain delivery of zolmitriptan as novel migraine therapy.Pharm. Res.201027465566410.1007/s11095‑009‑0041‑x 20151180
    [Google Scholar]
  60. HassanD.H. ShohdyJ.N. El-SetouhyD.A. El-NabarawiM. NaguibM.J. Compritol-based nanostrucutured lipid carriers (NLCs) for augmentation of zolmitriptan bioavailability via the transdermal route: In vitro optimization, ex vivo permeation, in vivo pharmacokinetic study.Pharmaceutics2022147148410.3390/pharmaceutics14071484 35890379
    [Google Scholar]
  61. GirotraP. SinghS.K. KumarG. Development of zolmitriptan loaded PLGA/poloxamer nanoparticles for migraine using quality by design approach.Int. J. Biol. Macromol.2016859210110.1016/j.ijbiomac.2015.12.069 26724690
    [Google Scholar]
  62. RapoportA.M. AmeriM. LewisH. KellermanD.J. Development of a novel zolmitriptan intracutaneous microneedle system (Qtrypta™) for the acute treatment of migraine.Pain Manag202010635936610.2217/pmt‑2020‑0041 32752932
    [Google Scholar]
  63. MohamedM.I. AbdelbaryA.A. KandilS.M. MahmoudT.M. Preparation and evaluation of optimized zolmitriptan niosomal emulgel.Drug Dev. Ind. Pharm.20194571157116710.1080/03639045.2019.1601737 30919700
    [Google Scholar]
  64. Abd El-HalimS.M. MamdouhM.A. EidS.M. IbrahimB.M.M. Aly LabibD.A. SolimanS.M. The potential synergistic activity of zolmitriptan combined in new self-nanoemulsifying drug delivery systems: ATR-FTIR real-time fast dissolution monitoring and pharmacodynamic assessment.Int. J. Nanomedicine2021166395641210.2147/IJN.S325697 34566412
    [Google Scholar]
  65. KhanT. RanjanR. DograY. Intranasal eutectic powder of zolmitriptan with enhanced bioavailability in the rat brain.Mol. Pharm.20161393234324010.1021/acs.molpharmaceut.6b00453 27518323
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273306929240820071521
Loading
/content/journals/cnsnddt/10.2174/0118715273306929240820071521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test