Skip to content
2000
image of Exploring Therapeutic Strategies: The Relationship between Metabolic Disorders and FOXO Signalling in Alzheimer's Disease

Abstract

Alzheimer’s disease is an ailment that is linked with the degeneration of the brain cells, and this illness is the main cause of dementia. Metabolic stress affects the activity of the brain in AD FOXO signaling. The occurrence of AD will significantly surge as the world’s population ages, along with lifestyle changes perceived in current decades, indicating a main contributor to such augmented prevalence. Similarly, metabolic disorders of current adulthood, such as obesity, stroke, and diabetes mellitus, have been observed as the risk-causing factors of AD. Environmental influences induce genetic mutations that result in the development of several diseases. Metabolic disorders develop when individuals are exposed to an environment where food is easily accessible and requires minimal energy expenditure. Obesity and diabetes are among the most significant worldwide health concerns. Obesity arises because of an imbalance between the amount of energy consumed and the amount of energy expended, which is caused by both behavioral and physiological factors. Obesity, insulin resistance syndrome, hypertension, and inflammation are factors that contribute to the worldwide risk of developing diabetes mellitus and neurodegenerative diseases. FOXO transcription factors are preserved molecules that play an important part in assorted biological progressions, precisely in aging as well as metabolism. Apoptosis, cell division and differentiation, oxidative stress, metabolism, and lifespan are among the physiological processes that the FOXO proteins are adept at controlling. In this review, we explored the correlation between signaling pathways and the cellular functions of FOXO proteins. We have also summarized the intricate role of FOXO in AD, with a focus on metabolic stress, and discussed the prospect of FOXO as a molecular link between AD and metabolic disorders.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273321002240919102841
2024-10-28
2024-11-26
Loading full text...

Full text loading...

References

  1. Scarmeas N. Luchsinger J.A. Schupf N. Brickman A.M. Cosentino S. Tang M.X. Stern Y. Physical activity, diet, and risk of Alzheimer disease. JAMA 2009 302 6 627 637 10.1001/jama.2009.1144 19671904
    [Google Scholar]
  2. Khan H. Tiwari P. Kaur A. Singh T.G. Sirtuin acetylation and deacetylation: A complex paradigm in neurodegenerative disease. Mol. Neurobiol. 2021 58 8 3903 3917 10.1007/s12035‑021‑02387‑w 33877561
    [Google Scholar]
  3. Saklani P. Khan H. Singh T.G. Gupta S. Grewal A.K. Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: A proposed mechanistic insight. Mol. Biol. Rep. 2022 49 10 10101 10113 10.1007/s11033‑022‑07594‑9 35657450
    [Google Scholar]
  4. Prabhakar N.K. Khan H. Grewal A.K. Singh T.G. Intervention of neuroinflammation in the traumatic brain injury trajectory: In vivo and clinical approaches. Int. Immunopharmacol. 2022 108 108902 10.1016/j.intimp.2022.108902 35729835
    [Google Scholar]
  5. Bomfim T.R. Forny-Germano L. Sathler L.B. Brito-Moreira J. Houzel J.C. Decker H. Silverman M.A. Kazi H. Melo H.M. McClean P.L. Holscher C. Arnold S.E. Talbot K. Klein W.L. Munoz D.P. Ferreira S.T. De Felice F.G. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers. J. Clin. Invest. 2012 122 4 1339 1353 10.1172/JCI57256 22476196
    [Google Scholar]
  6. Ma T. Trinh M.A. Wexler A.J. Bourbon C. Gatti E. Pierre P. Cavener D.R. Klann E. Suppression of eIF2α kinases alleviates AD-related synaptic plasticity and spatial memory deficits. Nat. Neurosci. 2013 16 9 1299 10.1038/nn.3486 23933749
    [Google Scholar]
  7. De Felice F.G. Lourenco M.V. Ferreira S.T. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement. 2014 10 1S Suppl. S26 S32 10.1016/j.jalz.2013.12.004 24529521
    [Google Scholar]
  8. Watson G.S. Cholerton B.A. Reger M.A. Baker L.D. Plymate S.R. Asthana S. Fishel M.A. Kulstad J.J. Green P.S. Cook D.G. Kahn S.E. Keeling M.L. Craft S. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study. Am. J. Geriatr. Psychiatry 2005 13 11 950 958 10.1176/appi.ajgp.13.11.950 16286438
    [Google Scholar]
  9. Martin B Golden E Carlson OD Pistell P Zhou J Kim W Frank BP Thomas S Chadwick WA Greig NH Bates GP Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington's disease. Diabetes 2009 58 2 318 328 10.2337/db08‑0799
    [Google Scholar]
  10. Cai H. Cong W. Ji S. Rothman S. Maudsley S. Martin B. Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr. Alzheimer Res. 2012 9 1 5 17 10.2174/156720512799015064 22329649
    [Google Scholar]
  11. Yan X. Hu Y. Wang B. Wang S. Zhang X. Metabolic dysregulation contributes to the progression of Alzheimer’s disease. Front. Neurosci. 2020 14 530219 10.3389/fnins.2020.530219 33250703
    [Google Scholar]
  12. Wellen K.E. Thompson C.B. Cellular metabolic stress: Considering how cells respond to nutrient excess. Mol. Cell 2010 40 2 323 332 10.1016/j.molcel.2010.10.004 20965425
    [Google Scholar]
  13. Garg N. Singh T.G. Khan H. Arora S. Kaur A. Mannan A. Mechanistic interventions of selected Ocimum species in management of diabetes, obesity, and liver disorders: transformative developments from preclinical to clinical approaches. Biointerface Res. Appl. Chem. 2021 12 1 1304 1323 10.33263/BRIAC121.13041323
    [Google Scholar]
  14. Khan H. Garg N. Singh T.G. Kaur A. Thapa K. Calpain inhibitors as potential therapeutic modulators in neurodegenerative diseases. Neurochem. Res. 2022 47 5 1125 1149 10.1007/s11064‑021‑03521‑9 34982393
    [Google Scholar]
  15. Ahmad M. Tharumalay R.D. Din M. Balqis N.S. The effects of circadian rhythm disruption towards metabolic stress and mental health: A review. Malays. J. Sci. 2020 18 1
    [Google Scholar]
  16. Kalra P. Khan H. Kaur A. Singh T.G. Mechanistic insight on autophagy modulated molecular pathways in cerebral ischemic injury: From preclinical to clinical perspective. Neurochem. Res. 2022 47 4 825 843 10.1007/s11064‑021‑03500‑0 34993703
    [Google Scholar]
  17. Liu W. Ruiz-Velasco A. Wang S. Khan S. Zi M. Jungmann A. Dolores Camacho-Muñoz M. Guo J. Du G. Xie L. Oceandy D. Nicolaou A. Galli G. Müller O.J. Cartwright E.J. Ji Y. Wang X. Metabolic stress-induced cardiomyopathy is caused by mitochondrial dysfunction due to attenuated Erk5 signaling. Nat. Commun. 2017 8 1 494 10.1038/s41467‑017‑00664‑8 28887535
    [Google Scholar]
  18. Schoultz I. Söderholm J.D. McKay D.M. Is metabolic stress a common denominator in inflammatory bowel disease? Inflamm. Bowel Dis. 2011 17 9 2008 2018 10.1002/ibd.21556 21830276
    [Google Scholar]
  19. Garg C. khan H. Kaur A. Singh T.G. Sharma V.K. Singh S.K. Therapeutic implications of sonic hedgehog pathway in metabolic disorders: Novel target for effective treatment. Pharmacol. Res. 2022 179 106194 10.1016/j.phrs.2022.106194 35364246
    [Google Scholar]
  20. Khan H. Gupta A. Singh T.G. Kaur A. Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury. Pharmacol. Rep. 2021 73 5 1240 1254 10.1007/s43440‑021‑00258‑8 33818747
    [Google Scholar]
  21. Gong Y. Chang L. Viola K.L. Lacor P.N. Lambert M.P. Finch C.E. Krafft G.A. Klein W.L. Alzheimer’s disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. USA 2003 100 18 10417 10422 10.1073/pnas.1834302100 12925731
    [Google Scholar]
  22. Xia W. Yang T. Shankar G. Smith I.M. Shen Y. Walsh D.M. Selkoe D.J. A specific enzyme-linked immunosorbent assay for measuring β-amyloid protein oligomers in human plasma and brain tissue of patients with Alzheimer disease. Arch. Neurol. 2009 66 2 190 199 10.1001/archneurol.2008.565 19204155
    [Google Scholar]
  23. van der Vos K.E. Coffer P.J. The extending network of FOXO transcriptional target genes. Antioxid. Redox Signal. 2011 14 4 579 592 10.1089/ars.2010.3419 20673124
    [Google Scholar]
  24. Jünger M.A. Rintelen F. Stocker H. Wasserman J.D. Végh M. Radimerski T. Greenberg M.E. Hafen E. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2003 2 3 20 10.1186/1475‑4924‑2‑20 12908874
    [Google Scholar]
  25. Puig O. Marr M.T. Ruhf M.L. Tjian R. Control of cell number by Drosophila FOXO: Downstream and feedback regulation of the insulin receptor pathway. Genes Dev. 2003 17 16 2006 2020 10.1101/gad.1098703 12893776
    [Google Scholar]
  26. Giannakou M.E. Goss M. Jünger M.A. Hafen E. Leevers S.J. Partridge L. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 2004 305 5682 361 10.1126/science.1098219 15192154
    [Google Scholar]
  27. Hwangbo D.S. Gersham B. Tu M.P. Palmer M. Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 2004 429 6991 562 566 10.1038/nature02549 15175753
    [Google Scholar]
  28. Zhao Y. Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2013 2013 1 10 10.1155/2013/316523 23983897
    [Google Scholar]
  29. Wang X. Wang Z. Chen Y. Huang X. Hu Y. Zhang R. Ho M.S. Xue L. FoxO mediates APP-induced AICD-dependent cell death. Cell Death Dis. 2014 5 5 e1233 10.1038/cddis.2014.196 24832605
    [Google Scholar]
  30. Manolopoulos K.N. Klotz L-O. Korsten P. Bornstein S.R. Barthel A. Linking Alzheimer’s disease to insulin resistance: The FoxO response to oxidative stress. Mol. Psychiatry 2010 15 11 1046 1052 10.1038/mp.2010.17 20966918
    [Google Scholar]
  31. Greer E.L. Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005 24 50 7410 7425 10.1038/sj.onc.1209086 16288288
    [Google Scholar]
  32. Shi C. Viccaro K. Lee H. Shah K. Cdk5–Foxo3 axis: Initially neuroprotective, eventually neurodegenerative in Alzheimer’s disease models. J. Cell Sci. 2016 129 9 1815 1830 10.1242/jcs.185009 28157684
    [Google Scholar]
  33. Salih D.A.M. Brunet A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr. Opin. Cell Biol. 2008 20 2 126 136 10.1016/j.ceb.2008.02.005 18394876
    [Google Scholar]
  34. Wong H.K.A. Veremeyko T. Patel N. Lemere C.A. Walsh D.M. Esau C. Vanderburg C. Krichevsky A.M. De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum. Mol. Genet. 2013 22 15 3077 3092 10.1093/hmg/ddt164 23585551
    [Google Scholar]
  35. Bellinger F.P. He Q.P. Bellinger M.T. Lin Y. Raman A.V. White L.R. Berry M.J. Association of selenoprotein p with Alzheimer’s pathology in human cortex. J. Alzheimers Dis. 2008 15 3 465 472 10.3233/JAD‑2008‑15313 18997300
    [Google Scholar]
  36. Pradhan R. Yadav S.K. Prem N.N. Bhagel V. Pathak M. Shekhar S. Gaikwad S. Dwivedi S.N. Bal C.S. Dey A.B. Dey S. Serum FOXO3A: A ray of hope for early diagnosis of Alzheimer’s disease. Mech. Ageing Dev. 2020 190 111290 10.1016/j.mad.2020.111290 32603667
    [Google Scholar]
  37. Sanphui P. Biswas S.C. FoxO3a is activated and executes neuron death via Bim in response to β-amyloid. Cell Death Dis. 2013 4 5 e625 10.1038/cddis.2013.148 23661003
    [Google Scholar]
  38. Qin W. Zhao W. Ho L. Wang J. Walsh K. Gandy S. Pasinetti G.M. Regulation of forkhead transcription factor FoxO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration. Ann. N. Y. Acad. Sci. 2008 1147 1 335 347 10.1196/annals.1427.024 19076455
    [Google Scholar]
  39. Jope R.S. Johnson G.V.W. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 2004 29 2 95 102 10.1016/j.tibs.2003.12.004 15102436
    [Google Scholar]
  40. Yamaguchi H. Ishiguro K. Uchida T. Takashima A. Lemere C.A. Imahori K. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3β and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol. 1996 92 3 232 241 10.1007/s004010050513 8870824
    [Google Scholar]
  41. Ishizawa T. Sahara N. Ishiguro K. Kersh J. McGowan E. Lewis J. Hutton M. Dickson D.W. Yen S.H. Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice. Am. J. Pathol. 2003 163 3 1057 1067 10.1016/S0002‑9440(10)63465‑7 12937146
    [Google Scholar]
  42. Phiel C.J. Wilson C.A. Lee V.M.Y. Klein P.S. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 2003 423 6938 435 439 10.1038/nature01640 12761548
    [Google Scholar]
  43. Hooper C. Killick R. Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 2008 104 6 1433 1439 10.1111/j.1471‑4159.2007.05194.x 18088381
    [Google Scholar]
  44. Brewster J.L. Linseman D.A. Bouchard R.J. Loucks F.A. Precht T.A. Esch E.A. Heidenreich K.A. Endoplasmic reticulum stress and trophic factor withdrawal activate distinct signaling cascades that induce glycogen synthase kinase-3β and a caspase-9-dependent apoptosis in cerebellar granule neurons. Mol. Cell. Neurosci. 2006 32 3 242 253 10.1016/j.mcn.2006.04.006 16765055
    [Google Scholar]
  45. Valenti L. Rametta R. Dongiovanni P. Maggioni M. Ludovica Fracanzani A. Zappa M. Lattuada E. Roviaro G. Fargion S. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes 2008 57 5 1355 1362 10.2337/db07‑0714 18316359
    [Google Scholar]
  46. Martin B. Mattson M.P. Maudsley S. Caloric restriction and intermittent fasting: Two potential diets for successful brain aging. Ageing Res. Rev. 2006 5 3 332 353 10.1016/j.arr.2006.04.002 16899414
    [Google Scholar]
  47. O’Brien R.J. Wong P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011 34 1 185 204 10.1146/annurev‑neuro‑061010‑113613 21456963
    [Google Scholar]
  48. Claeysen S. Cochet M. Donneger R. Dumuis A. Bockaert J. Giannoni P. Alzheimer culprits: Cellular crossroads and interplay. Cell. Signal. 2012 24 9 1831 1840 10.1016/j.cellsig.2012.05.008 22627093
    [Google Scholar]
  49. Rajendran L. Annaert W. Membrane trafficking pathways in Alzheimer’s disease. Traffic 2012 13 6 759 770 10.1111/j.1600‑0854.2012.01332.x 22269004
    [Google Scholar]
  50. Seaman M.N. Endosome protein sorting: Motifs and machinery. Cell. Mol. Life Sci. 2008 65 18 2842 2858 10.1007/s00018‑008‑8354‑1 18726175
    [Google Scholar]
  51. Tan J. Evin G. β‐Site APP‐cleaving enzyme 1 trafficking and Alzheimer’s disease pathogenesis. J. Neurochem. 2012 120 6 869 880 10.1111/j.1471‑4159.2011.07623.x 22171895
    [Google Scholar]
  52. De Strooper B. Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process. Physiol. Rev. 2010 90 2 465 494 10.1152/physrev.00023.2009 20393191
    [Google Scholar]
  53. Small S.A. Kent K. Pierce A. Leung C. Kang M.S. Okada H. Honig L. Vonsattel J.P. Kim T.W. Model‐guided microarray implicates the retromer complex in Alzheimer’s disease. Ann. Neurol. 2005 58 6 909 919 10.1002/ana.20667 16315276
    [Google Scholar]
  54. Bonifacino J.S. Hurley J.H. Retromer. Curr. Opin. Cell Biol. 2008 20 4 427 436 10.1016/j.ceb.2008.03.009 18472259
    [Google Scholar]
  55. Burd C.G. Physiology and pathology of endosome-to-Golgi retrograde sorting. Traffic 2011 12 8 948 955 10.1111/j.1600‑0854.2011.01188.x 21382144
    [Google Scholar]
  56. Sullivan C.P. Jay A.G. Stack E.C. Pakaluk M. Wadlinger E. Fine R.E. Wells J.M. Morin P.J. Retromer disruption promotes amyloidogenic APP processing. Neurobiol. Dis. 2011 43 2 338 345 10.1016/j.nbd.2011.04.002 21515373
    [Google Scholar]
  57. Tavassoly O. Sato T. Tavassoly I. Inhibition of brain epidermal growth factor receptor activation: A novel target in neurodegenerative diseases and brain injuries. Mol. Pharmacol. 2020 98 1 13 22 10.1124/mol.120.119909 32350120
    [Google Scholar]
  58. De Matteis M.A. Luini A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 2008 9 4 273 284 10.1038/nrm2378 18354421
    [Google Scholar]
  59. Dorvash M. Farahmandnia M. Tavassoly I. A systems biology roadmap to decode mTOR control system in cancer. Interdiscip. Sci. 2020 12 1 1 11 10.1007/s12539‑019‑00347‑6 31531812
    [Google Scholar]
  60. Grewal A.K. Singh N. Singh T.G. Effects of resveratrol postconditioning on cerebral ischemia in mice: Role of the sirtuin-1 pathway. Can. J. Physiol. Pharmacol. 2019 97 11 1094 1101 10.1139/cjpp‑2019‑0188 31340128
    [Google Scholar]
  61. Micaroni M. The role of calcium in intracellular trafficking. Curr. Mol. Med. 2010 10 8 763 773 10.2174/156652410793384204 20937019
    [Google Scholar]
  62. Khan H. Sharma K. Kumar A. Kaur A. Singh T.G. Therapeutic implications of cyclooxygenase (COX) inhibitors in ischemic injury. Inflamm. Res. 2022 71 3 277 292 10.1007/s00011‑022‑01546‑6 35175358
    [Google Scholar]
  63. Khan H. Sharma R. Kaur A. Singh T.G. The endocannabioids system and their implications in various disorders. Int. J. Pharm. Sci. Rev. Res. 2018
    [Google Scholar]
  64. Wang Y. Lin Y. Wang L. Zhan H. Luo X. Zeng Y. Wu W. Zhang X. Wang F. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer’s disease mice. Aging 2020 12 20 20862 20879 10.18632/aging.104104 33065553
    [Google Scholar]
  65. Ponugoti B. Dong G. Graves D.T. Role of forkhead transcription factors in diabetes-induced oxidative stress. Exp. Diabetes Res. 2012 2012 1 7 10.1155/2012/939751 22454632
    [Google Scholar]
  66. Kalogerakis G. Baker A.M. Christov S. Rowley K.G. Dwyer K. Winterbourn C. Best J.D. Jenkins A.J. Oxidative stress and high-density lipoprotein function in Type I diabetes and end-stage renal disease. Clin. Sci. 2005 108 6 497 506 10.1042/CS20040312 15634192
    [Google Scholar]
  67. Cameron V.A. Mocatta T.J. Pilbrow A.P. Frampton C.M. Troughton R.W. Richards A.M. Winterbourn C.C. Angiotensin type-1 receptor A1166C gene polymorphism correlates with oxidative stress levels in human heart failure. Hypertension 2006 47 6 1155 1161 10.1161/01.HYP.0000222893.85662.cd 16651460
    [Google Scholar]
  68. Behl T. Bungau S. Kumar K. Zengin G. Khan F. Kumar A. Kaur R. Venkatachalam T. Tit D.M. Vesa C.M. Barsan G. Mosteanu D.E. Pleotropic effects of polyphenols in cardiovascular system. Biomed. Pharmacother. 2020 130 110714 10.1016/j.biopha.2020.110714 34321158
    [Google Scholar]
  69. Landreth G. Therapeutic use of agonists of the nuclear receptor PPARgamma in Alzheimer’s disease. Curr. Alzheimer Res. 2007 4 2 159 164 10.2174/156720507780362092 17430241
    [Google Scholar]
  70. Ghoneum M.H. El Sayed N.S. Protective effect of Biobran/MGN-3 against sporadic Alzheimer’s disease mouse model: Possible role of oxidative stress and apoptotic pathways. Oxid. Med. Cell. Longev. 2021 2021 1 8845064 10.1155/2021/8845064 33574982
    [Google Scholar]
  71. Cojocaru I.M. Cojocaru M. Miu G. Sapira V. Study of interleukin-6 production in Alzheimer’s disease. Rom. J. Intern. Med. 2011 49 1 55 58 22026253
    [Google Scholar]
  72. Alam Q. Alam M.Z. Mushtaq G. Damanhouri G.A. Rasool M. Kamal M.A. Haque A. Inflammatory process in Alzheimer’s and Parkinson’s diseases: Central role of cytokines. Curr. Pharm. Des. 2016 22 5 541 548 10.2174/1381612822666151125000300 26601965
    [Google Scholar]
  73. Huang Y. Wilkinson G.F. Willars G.B. Role of the signal peptide in the synthesis and processing of the glucagon‐like peptide‐1 receptor. Br. J. Pharmacol. 2010 159 1 237 251 10.1111/j.1476‑5381.2009.00517.x 20002095
    [Google Scholar]
  74. Li Y. Tweedie D. Mattson M.P. Holloway H.W. Greig N.H. Enhancing the GLP‐1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J. Neurochem. 2010 113 6 1621 1631 10.1111/j.1471‑4159.2010.06731.x 20374430
    [Google Scholar]
  75. Harder H. Nielsen L. Thi T.D.T. Astrup A. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes. Diabetes Care 2004 27 8 1915 1921 10.2337/diacare.27.8.1915 15277417
    [Google Scholar]
  76. Liu J. Wei L. Wang Z. Song S. Lin Z. Zhu J. Ren X. Kong L. Protective effect of Liraglutide on diabetic retinal neurodegeneration via inhibiting oxidative stress and endoplasmic reticulum stress. Neurochem. Int. 2020 133 104624 10.1016/j.neuint.2019.104624 31794832
    [Google Scholar]
  77. Smith W.W. Norton D.D. Gorospe M. Jiang H. Nemoto S. Holbrook N.J. Finkel T. Kusiak J.W. Phosphorylation of p66Shc and forkhead proteins mediates Aβ toxicity. J. Cell Biol. 2005 169 2 331 339 10.1083/jcb.200410041 15837797
    [Google Scholar]
  78. Hanyu H. Sato T. Kiuchi A. Sakurai H. Iwamoto T. Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J. Am. Geriatr. Soc. 2009 57 1 177 179 10.1111/j.1532‑5415.2009.02067.x 19170800
    [Google Scholar]
  79. Pan X. Zhang Y. Kim H.G. Liangpunsakul S. Dong X.C. FOXO transcription factors protect against the diet-induced fatty liver disease. Sci. Rep. 2017 7 1 44597 10.1038/srep44597 28300161
    [Google Scholar]
  80. Gross D.N. Wan M. Birnbaum M.J. The role of FOXO in the regulation of metabolism. Curr. Diab. Rep. 2009 9 3 208 214 10.1007/s11892‑009‑0034‑5 19490822
    [Google Scholar]
  81. Abd-Elbaset M. Mansour A.M. Ahmed O.M. Abo-Youssef A.M. The potential chemotherapeutic effect of β-ionone and/or sorafenib against hepatocellular carcinoma via its antioxidant effect, PPAR-γ, FOXO-1, Ki-67, Bax, and Bcl-2 signaling pathways. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 9 1611 1624 10.1007/s00210‑020‑01863‑9 32270258
    [Google Scholar]
  82. Kang C.H. Jayasooriya R.G.P.T. Choi Y.H. Moon S.K. Kim W.J. Kim G.Y. β-Ionone attenuates LPS-induced pro-inflammatory mediators such as NO, PGE2 and TNF-α in BV2 microglial cells via suppression of the NF-κB and MAPK pathway. Toxicol. In Vitro 2013 27 2 782 787 10.1016/j.tiv.2012.12.012 23268108
    [Google Scholar]
  83. Wang S. Xia P. Huang G. Zhu P. Liu J. Ye B. Du Y. Fan Z. FoxO1-mediated autophagy is required for NK cell development and innate immunity. Nat. Commun. 2016 7 1 11023 10.1038/ncomms11023 27010363
    [Google Scholar]
  84. Nagashima T. Shigematsu N. Maruki R. Urano Y. Tanaka H. Shimaya A. Shimokawa T. Shibasaki M. Discovery of novel forkhead box O1 inhibitors for treating type 2 diabetes: Improvement of fasting glycemia in diabetic db/db mice. Mol. Pharmacol. 2010 78 5 961 970 10.1124/mol.110.065714 20736318
    [Google Scholar]
  85. Ding H. Tang Z. Tang N. Zhu Z. Liu H. Pan C. Hu A. Lin Y. Gou P. Yuan X. Cai J. Dong C. Wang J. Ren H. Protective properties of FOXO1 inhibition in a murine model of non-alcoholic fatty liver disease are associated with attenuation of ER stress and necroptosis. Front. Physiol. 2020 11 177 10.3389/fphys.2020.00177 32218743
    [Google Scholar]
  86. Li J.Q. Yu J.T. Jiang T. Tan L. Endoplasmic reticulum dysfunction in Alzheimer’s disease. Mol. Neurobiol. 2015 51 1 383 395 10.1007/s12035‑014‑8695‑8 24715417
    [Google Scholar]
  87. Salminen A. Kauppinen A. Suuronen T. Kaarniranta K. Ojala J. ER stress in Alzheimer’s disease: A novel neuronal trigger for inflammation and Alzheimer’s pathology. J. Neuroinflammation 2009 6 1 41 10.1186/1742‑2094‑6‑41 20035627
    [Google Scholar]
  88. Wang L. Zhu X. Sun X. Yang X. Chang X. Xia M. Lu Y. Xia P. Yan H. Bian H. Gao X. FoxO3 regulates hepatic triglyceride metabolism via modulation of the expression of sterol regulatory-element binding protein 1c. Lipids Health Dis. 2019 18 1 1 2 10.1186/s12944‑018‑0950‑y 30611256
    [Google Scholar]
  89. Marwarha G. Claycombe-Larson K. Lund J. Ghribi O. Palmitate-Induced SREBP1 expression and activation underlies the increased BACE 1 activity and amyloid beta genesis. Mol. Neurobiol. 2019 56 7 5256 5269 10.1007/s12035‑018‑1451‑8 30569418
    [Google Scholar]
  90. Du S. Zheng H. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases. Cell Biosci. 2021 11 1 188 10.1186/s13578‑021‑00700‑7 34727995
    [Google Scholar]
  91. Gudala K. Bansal D. Schifano F. Bhansali A. Diabetes mellitus and risk of dementia: A meta‐analysis of prospective observational studies. J. Diabetes Investig. 2013 4 6 640 650 10.1111/jdi.12087 24843720
    [Google Scholar]
  92. Anstey K.J. Cherbuin N. Budge M. Young J. Body mass index in midlife and late‐life as a risk factor for dementia: A meta‐analysis of prospective studies. Obes. Rev. 2011 12 5 e426 e437 10.1111/j.1467‑789X.2010.00825.x 21348917
    [Google Scholar]
  93. Picone P. Di Carlo M. Nuzzo D. Obesity and Alzheimer’s disease: Molecular bases. Eur. J. Neurosci. 2020 52 8 3944 3950 10.1111/ejn.14758 32323378
    [Google Scholar]
  94. Zemva J. Schilbach K. Stöhr O. Moll L. Franko A. Krone W. Wiesner R. Schubert M. Central FoxO3a and FoxO6 expression is down-regulated in obesity induced diabetes but not in aging. Exp. Clin. Endocrinol. Diabetes 2011 120 6 340 350 10.1055/s‑0031‑1297970 22187289
    [Google Scholar]
  95. Moll L. Schubert M. The role of insulin and insulin-like growth factor-1/FoxO-mediated transcription for the pathogenesis of obesity-associated dementia. Curr. Gerontol. Geriatr. Res. 2012 2012 1 13 10.1155/2012/384094 22654904
    [Google Scholar]
  96. Matsuzaki K. Nakajima A. Guo Y. Ohizumi Y. A narrative review of the effects of citrus peels and extracts on human brain health and metabolism. Nutrients 2022 14 9 1847 10.3390/nu14091847 35565814
    [Google Scholar]
  97. Kang K. Bai J. Zhong S. Zhang R. Zhang X. Xu Y. Zhao M. Zhao C. Zhou Z. Down-regulation of insulin like growth factor 1 involved in alzheimer’s disease via MAPK, Ras, and FoxO signaling pathways. Oxid. Med. Cell. Longev. 2022 2022 1 15 10.1155/2022/8169981 35571248
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273321002240919102841
Loading
/content/journals/cnsnddt/10.2174/0118715273321002240919102841
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Alzheimer’s disease ; obesity ; diabetes ; FOXO ; liver ; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test