Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Alzheimer’s disease is an ailment that is linked with the degeneration of the brain cells, and this illness is the main cause of dementia. Metabolic stress affects the activity of the brain in AD FOXO signaling. The occurrence of AD will significantly surge as the world’s population ages, along with lifestyle changes perceived in current decades, indicating a main contributor to such augmented prevalence. Similarly, metabolic disorders of current adulthood, such as obesity, stroke, and diabetes mellitus, have been observed as the risk-causing factors of AD. Environmental influences induce genetic mutations that result in the development of several diseases. Metabolic disorders develop when individuals are exposed to an environment where food is easily accessible and requires minimal energy expenditure. Obesity and diabetes are among the most significant worldwide health concerns. Obesity arises because of an imbalance between the amount of energy consumed and the amount of energy expended, which is caused by both behavioral and physiological factors. Obesity, insulin resistance syndrome, hypertension, and inflammation are factors that contribute to the worldwide risk of developing diabetes mellitus and neurodegenerative diseases. FOXO transcription factors are preserved molecules that play an important part in assorted biological progressions, precisely in aging as well as metabolism. Apoptosis, cell division and differentiation, oxidative stress, metabolism, and lifespan are among the physiological processes that the FOXO proteins are adept at controlling. In this review, we explored the correlation between signaling pathways and the cellular functions of FOXO proteins. We have also summarized the intricate role of FOXO in AD, with a focus on metabolic stress, and discussed the prospect of FOXO as a molecular link between AD and metabolic disorders.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273321002240919102841
2024-10-28
2025-01-18
Loading full text...

Full text loading...

References

  1. ScarmeasN. LuchsingerJ.A. SchupfN. Physical activity, diet, and risk of Alzheimer disease.JAMA2009302662763710.1001/jama.2009.1144 19671904
    [Google Scholar]
  2. KhanH. TiwariP. KaurA. SinghT.G. Sirtuin acetylation and deacetylation: A complex paradigm in neurodegenerative disease.Mol. Neurobiol.20215883903391710.1007/s12035‑021‑02387‑w 33877561
    [Google Scholar]
  3. SaklaniP. KhanH. SinghT.G. GuptaS. GrewalA.K. Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: A proposed mechanistic insight.Mol. Biol. Rep.20224910101011011310.1007/s11033‑022‑07594‑9 35657450
    [Google Scholar]
  4. PrabhakarN.K. KhanH. GrewalA.K. SinghT.G. Intervention of neuroinflammation in the traumatic brain injury trajectory: In vivo and clinical approaches.Int. Immunopharmacol.202210810890210.1016/j.intimp.2022.108902 35729835
    [Google Scholar]
  5. BomfimT.R. Forny-GermanoL. SathlerL.B. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Aβ oligomers.J. Clin. Invest.201212241339135310.1172/JCI57256 22476196
    [Google Scholar]
  6. MaT. TrinhM.A. WexlerA.J. Suppression of eIF2α kinases alleviates AD-related synaptic plasticity and spatial memory deficits.Nat. Neurosci.2013169129910.1038/nn.3486 23933749
    [Google Scholar]
  7. De FeliceF.G. LourencoM.V. FerreiraS.T. How does brain insulin resistance develop in Alzheimer’s disease?Alzheimers Dement.2014101SSuppl.S26S3210.1016/j.jalz.2013.12.004 24529521
    [Google Scholar]
  8. WatsonG.S. CholertonB.A. RegerM.A. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study.Am. J. Geriatr. Psychiatry2005131195095810.1176/appi.ajgp.13.11.950 16286438
    [Google Scholar]
  9. MartinB. GoldenE. CarlsonO.D. Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington’s disease.Diabetes200958231832810.2337/db08‑0799
    [Google Scholar]
  10. CaiH CongW JiS RothmanS MaudsleyS MartinB Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders.Curr. Alzheimer Res.20129151710.2174/156720512799015064 22329649
    [Google Scholar]
  11. YanX. HuY. WangB. WangS. ZhangX. Metabolic dysregulation contributes to the progression of Alzheimer’s disease.Front. Neurosci.20201453021910.3389/fnins.2020.530219 33250703
    [Google Scholar]
  12. WellenK.E. ThompsonC.B. Cellular metabolic stress: Considering how cells respond to nutrient excess.Mol. Cell201040232333210.1016/j.molcel.2010.10.004 20965425
    [Google Scholar]
  13. GargN. SinghT.G. KhanH. AroraS. KaurA. MannanA. Mechanistic interventions of selected Ocimum species in management of diabetes, obesity, and liver disorders: Transformative developments from preclinical to clinical approaches.Biointerface Res. Appl. Chem.20211211304132310.33263/BRIAC121.13041323
    [Google Scholar]
  14. KhanH. GargN. SinghT.G. KaurA. ThapaK. Calpain inhibitors as potential therapeutic modulators in neurodegenerative diseases.Neurochem. Res.20224751125114910.1007/s11064‑021‑03521‑9 34982393
    [Google Scholar]
  15. AhmadM. TharumalayR.D. DinM. BalqisN.S. The effects of circadian rhythm disruption towards metabolic stress and mental health: A review.Malays. J. Sci.2020181
    [Google Scholar]
  16. KalraP. KhanH. KaurA. SinghT.G. Mechanistic insight on autophagy modulated molecular pathways in cerebral ischemic injury: From preclinical to clinical perspective.Neurochem. Res.202247482584310.1007/s11064‑021‑03500‑0 34993703
    [Google Scholar]
  17. LiuW. Ruiz-VelascoA. WangS. Metabolic stress-induced cardiomyopathy is caused by mitochondrial dysfunction due to attenuated Erk5 signaling.Nat. Commun.20178149410.1038/s41467‑017‑00664‑8 28887535
    [Google Scholar]
  18. SchoultzI. SöderholmJ.D. McKayD.M. Is metabolic stress a common denominator in inflammatory bowel disease?Inflamm. Bowel Dis.20111792008201810.1002/ibd.21556 21830276
    [Google Scholar]
  19. GargC. khan H, Kaur A, Singh TG, Sharma VK, Singh SK. Therapeutic implications of sonic hedgehog pathway in metabolic disorders: Novel target for effective treatment.Pharmacol. Res.202217910619410.1016/j.phrs.2022.106194 35364246
    [Google Scholar]
  20. KhanH. GuptaA. SinghT.G. KaurA. Mechanistic insight on the role of leukotriene receptors in ischemic-reperfusion injury.Pharmacol. Rep.20217351240125410.1007/s43440‑021‑00258‑8 33818747
    [Google Scholar]
  21. GongY. ChangL. ViolaK.L. Alzheimer’s disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss.Proc. Natl. Acad. Sci. USA200310018104171042210.1073/pnas.1834302100 12925731
    [Google Scholar]
  22. XiaW. YangT. ShankarG. A specific enzyme-linked immunosorbent assay for measuring β-amyloid protein oligomers in human plasma and brain tissue of patients with Alzheimer disease.Arch. Neurol.200966219019910.1001/archneurol.2008.565 19204155
    [Google Scholar]
  23. van der VosK.E. CofferP.J. The extending network of FOXO transcriptional target genes.Antioxid. Redox Signal.201114457959210.1089/ars.2010.3419 20673124
    [Google Scholar]
  24. JüngerM.A. RintelenF. StockerH. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling.J. Biol.2003232010.1186/1475‑4924‑2‑20 12908874
    [Google Scholar]
  25. PuigO. MarrM.T. RuhfM.L. TjianR. Control of cell number by Drosophila FOXO: Downstream and feedback regulation of the insulin receptor pathway.Genes Dev.200317162006202010.1101/gad.1098703 12893776
    [Google Scholar]
  26. GiannakouM.E. GossM. JüngerM.A. HafenE. LeeversS.J. PartridgeL. Long-lived Drosophila with overexpressed dFOXO in adult fat body.Science2004305568236110.1126/science.1098219 15192154
    [Google Scholar]
  27. HwangboD.S. GershamB. TuM.P. PalmerM. TatarM. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body.Nature2004429699156256610.1038/nature02549 15175753
    [Google Scholar]
  28. ZhaoY. ZhaoB. Oxidative stress and the pathogenesis of Alzheimer’s disease.Oxid. Med. Cell. Longev.2013201311010.1155/2013/316523 23983897
    [Google Scholar]
  29. WangX. WangZ. ChenY. FoxO mediates APP-induced AICD-dependent cell death.Cell Death Dis.201455e123310.1038/cddis.2014.196 24832605
    [Google Scholar]
  30. ManolopoulosK.N. KlotzL-O. KorstenP. BornsteinS.R. BarthelA. Linking Alzheimer’s disease to insulin resistance: The FoxO response to oxidative stress.Mol. Psychiatry201015111046105210.1038/mp.2010.17 20966918
    [Google Scholar]
  31. GreerE.L. BrunetA. FOXO transcription factors at the interface between longevity and tumor suppression.Oncogene200524507410742510.1038/sj.onc.1209086 16288288
    [Google Scholar]
  32. ShiC. ViccaroK. LeeH. ShahK. Cdk5–Foxo3 axis: Initially neuroprotective, eventually neurodegenerative in Alzheimer’s disease models.J. Cell Sci.201612991815183010.1242/jcs.185009 28157684
    [Google Scholar]
  33. SalihD.A.M. BrunetA. FoxO transcription factors in the maintenance of cellular homeostasis during aging.Curr. Opin. Cell Biol.200820212613610.1016/j.ceb.2008.02.005 18394876
    [Google Scholar]
  34. WongH.K.A. VeremeykoT. PatelN. De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease.Hum. Mol. Genet.201322153077309210.1093/hmg/ddt164 23585551
    [Google Scholar]
  35. BellingerF.P. HeQ.P. BellingerM.T. Association of selenoprotein p with Alzheimer’s pathology in human cortex.J. Alzheimers Dis.200815346547210.3233/JAD‑2008‑15313 18997300
    [Google Scholar]
  36. PradhanR. YadavS.K. PremN.N. Serum FOXO3A: A ray of hope for early diagnosis of Alzheimer’s disease.Mech. Ageing Dev.202019011129010.1016/j.mad.2020.111290 32603667
    [Google Scholar]
  37. SanphuiP. BiswasS.C. FoxO3a is activated and executes neuron death via Bim in response to β-amyloid.Cell Death Dis.201345e62510.1038/cddis.2013.148 23661003
    [Google Scholar]
  38. QinW. ZhaoW. HoL. Regulation of forkhead transcription factor FoxO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration.Ann. N. Y. Acad. Sci.20081147133534710.1196/annals.1427.024 19076455
    [Google Scholar]
  39. JopeR.S. JohnsonG.V.W. The glamour and gloom of glycogen synthase kinase-3.Trends Biochem. Sci.20042929510210.1016/j.tibs.2003.12.004 15102436
    [Google Scholar]
  40. YamaguchiH. IshiguroK. UchidaT. TakashimaA. LemereC.A. ImahoriK. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3β and cyclin-dependent kinase 5, a component of TPK II.Acta Neuropathol.199692323224110.1007/s004010050513 8870824
    [Google Scholar]
  41. IshizawaT. SaharaN. IshiguroK. Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice.Am. J. Pathol.200316331057106710.1016/S0002‑9440(10)63465‑7 12937146
    [Google Scholar]
  42. PhielC.J. WilsonC.A. LeeV.M.Y. KleinP.S. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides.Nature2003423693843543910.1038/nature01640 12761548
    [Google Scholar]
  43. HooperC. KillickR. LovestoneS. The GSK3 hypothesis of Alzheimer’s disease.J. Neurochem.200810461433143910.1111/j.1471‑4159.2007.05194.x 18088381
    [Google Scholar]
  44. BrewsterJ.L. LinsemanD.A. BouchardR.J. Endoplasmic reticulum stress and trophic factor withdrawal activate distinct signaling cascades that induce glycogen synthase kinase-3β and a caspase-9-dependent apoptosis in cerebellar granule neurons.Mol. Cell. Neurosci.200632324225310.1016/j.mcn.2006.04.006 16765055
    [Google Scholar]
  45. ValentiL. RamettaR. DongiovanniP. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis.Diabetes20085751355136210.2337/db07‑0714 18316359
    [Google Scholar]
  46. MartinB. MattsonM.P. MaudsleyS. Caloric restriction and intermittent fasting: Two potential diets for successful brain aging.Ageing Res. Rev.20065333235310.1016/j.arr.2006.04.002 16899414
    [Google Scholar]
  47. O’BrienR.J. WongP.C. Amyloid precursor protein processing and Alzheimer’s disease.Annu. Rev. Neurosci.201134118520410.1146/annurev‑neuro‑061010‑113613 21456963
    [Google Scholar]
  48. ClaeysenS. CochetM. DonnegerR. DumuisA. BockaertJ. GiannoniP. Alzheimer culprits: Cellular crossroads and interplay.Cell. Signal.20122491831184010.1016/j.cellsig.2012.05.008 22627093
    [Google Scholar]
  49. RajendranL. AnnaertW. Membrane trafficking pathways in Alzheimer’s disease.Traffic201213675977010.1111/j.1600‑0854.2012.01332.x 22269004
    [Google Scholar]
  50. SeamanM.N. Endosome protein sorting: Motifs and machinery.Cell. Mol. Life Sci.200865182842285810.1007/s00018‑008‑8354‑1 18726175
    [Google Scholar]
  51. TanJ. EvinG. β-Site APP-cleaving enzyme 1 trafficking and Alzheimer’s disease pathogenesis.J. Neurochem.2012120686988010.1111/j.1471‑4159.2011.07623.x 22171895
    [Google Scholar]
  52. De StrooperB. Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process.Physiol. Rev.201090246549410.1152/physrev.00023.2009 20393191
    [Google Scholar]
  53. SmallS.A. KentK. PierceA. Model‐guided microarray implicates the retromer complex in Alzheimer’s disease.Ann. Neurol.200558690991910.1002/ana.20667 16315276
    [Google Scholar]
  54. BonifacinoJ.S. HurleyJ.H. Retromer.Curr. Opin. Cell Biol.200820442743610.1016/j.ceb.2008.03.009 18472259
    [Google Scholar]
  55. BurdC.G. Physiology and pathology of endosome-to-Golgi retrograde sorting.Traffic201112894895510.1111/j.1600‑0854.2011.01188.x 21382144
    [Google Scholar]
  56. SullivanC.P. JayA.G. StackE.C. Retromer disruption promotes amyloidogenic APP processing.Neurobiol. Dis.201143233834510.1016/j.nbd.2011.04.002 21515373
    [Google Scholar]
  57. TavassolyO. SatoT. TavassolyI. Inhibition of brain epidermal growth factor receptor activation: A novel target in neurodegenerative diseases and brain injuries.Mol. Pharmacol.2020981132210.1124/mol.120.119909 32350120
    [Google Scholar]
  58. De MatteisM.A. LuiniA. Exiting the golgi complex.Nat. Rev. Mol. Cell Biol.20089427328410.1038/nrm2378 18354421
    [Google Scholar]
  59. DorvashM. FarahmandniaM. TavassolyI. A systems biology roadmap to decode mTOR control system in cancer.Interdiscip. Sci.202012111110.1007/s12539‑019‑00347‑6 31531812
    [Google Scholar]
  60. GrewalA.K. SinghN. SinghT.G. Effects of resveratrol postconditioning on cerebral ischemia in mice: Role of the sirtuin-1 pathway.Can. J. Physiol. Pharmacol.201997111094110110.1139/cjpp‑2019‑0188 31340128
    [Google Scholar]
  61. MicaroniM. The role of calcium in intracellular trafficking.Curr. Mol. Med.201010876377310.2174/156652410793384204 20937019
    [Google Scholar]
  62. KhanH. SharmaK. KumarA. KaurA. SinghT.G. Therapeutic implications of cyclooxygenase (COX) inhibitors in ischemic injury.Inflamm. Res.202271327729210.1007/s00011‑022‑01546‑6 35175358
    [Google Scholar]
  63. KhanH. SharmaR. KaurA. SinghT.G. The endocannabioids system and their implications in various disorders.Int. J. Pharm. Sci. Rev. Res.2018
    [Google Scholar]
  64. WangY. LinY. WangL. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer’s disease mice.Aging20201220208622087910.18632/aging.104104 33065553
    [Google Scholar]
  65. PonugotiB. DongG. GravesD.T. Role of forkhead transcription factors in diabetes-induced oxidative stress.Exp. Diabetes Res.201220121710.1155/2012/939751 22454632
    [Google Scholar]
  66. KalogerakisG. BakerA.M. ChristovS. Oxidative stress and high-density lipoprotein function in Type I diabetes and end-stage renal disease.Clin. Sci.2005108649750610.1042/CS20040312 15634192
    [Google Scholar]
  67. CameronV.A. MocattaT.J. PilbrowA.P. Angiotensin type-1 receptor A1166C gene polymorphism correlates with oxidative stress levels in human heart failure.Hypertension20064761155116110.1161/01.HYP.0000222893.85662.cd 16651460
    [Google Scholar]
  68. BehlT. BungauS. KumarK. Pleotropic effects of polyphenols in cardiovascular system.Biomed. Pharmacother.202013011071410.1016/j.biopha.2020.110714 34321158
    [Google Scholar]
  69. LandrethG. Therapeutic use of agonists of the nuclear receptor PPARgamma in Alzheimer’s disease.Curr. Alzheimer Res.20074215916410.2174/156720507780362092 17430241
    [Google Scholar]
  70. GhoneumM.H. El SayedN.S. Protective effect of Biobran/MGN-3 against sporadic Alzheimer’s disease mouse model: Possible role of oxidative stress and apoptotic pathways.Oxid. Med. Cell. Longev.202120211884506410.1155/2021/8845064 33574982
    [Google Scholar]
  71. CojocaruI.M. CojocaruM. MiuG. SapiraV. Study of interleukin-6 production in Alzheimer’s disease.Rom. J. Intern. Med.20114915558 22026253
    [Google Scholar]
  72. AlamQ. AlamM.Z. MushtaqG. Inflammatory process in Alzheimer’s and Parkinson’s diseases: Central role of cytokines.Curr. Pharm. Des.201622554154810.2174/1381612822666151125000300 26601965
    [Google Scholar]
  73. HuangY. WilkinsonG.F. WillarsG.B. Role of the signal peptide in the synthesis and processing of the glucagon-like peptide-1 receptor.Br. J. Pharmacol.2010159123725110.1111/j.1476‑5381.2009.00517.x 20002095
    [Google Scholar]
  74. LiY. TweedieD. MattsonM.P. HollowayH.W. GreigN.H. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells.J. Neurochem.201011361621163110.1111/j.1471‑4159.2010.06731.x 20374430
    [Google Scholar]
  75. HarderH. NielsenL. ThiT.D.T. AstrupA. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes.Diabetes Care20042781915192110.2337/diacare.27.8.1915 15277417
    [Google Scholar]
  76. LiuJ. WeiL. WangZ. Protective effect of Liraglutide on diabetic retinal neurodegeneration via inhibiting oxidative stress and endoplasmic reticulum stress.Neurochem. Int.202013310462410.1016/j.neuint.2019.104624 31794832
    [Google Scholar]
  77. SmithW.W. NortonD.D. GorospeM. Phosphorylation of p66Shc and forkhead proteins mediates Aβ toxicity.J. Cell Biol.2005169233133910.1083/jcb.200410041 15837797
    [Google Scholar]
  78. HanyuH. SatoT. KiuchiA. SakuraiH. IwamotoT. Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus.J. Am. Geriatr. Soc.200957117717910.1111/j.1532‑5415.2009.02067.x 19170800
    [Google Scholar]
  79. PanX. ZhangY. KimH.G. LiangpunsakulS. DongX.C. FOXO transcription factors protect against the diet-induced fatty liver disease.Sci. Rep.2017714459710.1038/srep44597 28300161
    [Google Scholar]
  80. GrossD.N. WanM. BirnbaumM.J. The role of FOXO in the regulation of metabolism.Curr. Diab. Rep.20099320821410.1007/s11892‑009‑0034‑5 19490822
    [Google Scholar]
  81. Abd-ElbasetM. MansourA.M. AhmedO.M. Abo-YoussefA.M. The potential chemotherapeutic effect of β-ionone and/or sorafenib against hepatocellular carcinoma via its antioxidant effect, PPAR-γ, FOXO-1, Ki-67, Bax, and Bcl-2 signaling pathways.Naunyn Schmiedebergs Arch. Pharmacol.202039391611162410.1007/s00210‑020‑01863‑9 32270258
    [Google Scholar]
  82. KangC.H. JayasooriyaR.G.P.T. ChoiY.H. MoonS.K. KimW.J. KimG.Y. β-Ionone attenuates LPS-induced pro-inflammatory mediators such as NO, PGE2 and TNF-α in BV2 microglial cells via suppression of the NF-κB and MAPK pathway.Toxicol. In Vitro201327278278710.1016/j.tiv.2012.12.012 23268108
    [Google Scholar]
  83. WangS. XiaP. HuangG. FoxO1-mediated autophagy is required for NK cell development and innate immunity.Nat. Commun.2016711102310.1038/ncomms11023 27010363
    [Google Scholar]
  84. NagashimaT. ShigematsuN. MarukiR. Discovery of novel forkhead box O1 inhibitors for treating type 2 diabetes: Improvement of fasting glycemia in diabetic db/db mice.Mol. Pharmacol.201078596197010.1124/mol.110.065714 20736318
    [Google Scholar]
  85. DingH. TangZ. TangN. Protective properties of FOXO1 inhibition in a murine model of non-alcoholic fatty liver disease are associated with attenuation of ER stress and necroptosis.Front. Physiol.20201117710.3389/fphys.2020.00177 32218743
    [Google Scholar]
  86. LiJ.Q. YuJ.T. JiangT. TanL. Endoplasmic reticulum dysfunction in Alzheimer’s disease.Mol. Neurobiol.201551138339510.1007/s12035‑014‑8695‑8 24715417
    [Google Scholar]
  87. SalminenA. KauppinenA. SuuronenT. KaarnirantaK. OjalaJ. ER stress in Alzheimer’s disease: A novel neuronal trigger for inflammation and Alzheimer’s pathology.J. Neuroinflammation2009614110.1186/1742‑2094‑6‑41 20035627
    [Google Scholar]
  88. WangL. ZhuX. SunX. FoxO3 regulates hepatic triglyceride metabolism via modulation of the expression of sterol regulatory-element binding protein 1c.Lipids Health Dis.20191811210.1186/s12944‑018‑0950‑y 30611256
    [Google Scholar]
  89. MarwarhaG. Claycombe-LarsonK. LundJ. GhribiO. Palmitate-Induced SREBP1 expression and activation underlies the increased BACE 1 activity and amyloid beta genesis.Mol. Neurobiol.20195675256526910.1007/s12035‑018‑1451‑8 30569418
    [Google Scholar]
  90. DuS. ZhengH. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases.Cell Biosci.202111118810.1186/s13578‑021‑00700‑7 34727995
    [Google Scholar]
  91. GudalaK. BansalD. SchifanoF. BhansaliA. Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies.J. Diabetes Investig.20134664065010.1111/jdi.12087 24843720
    [Google Scholar]
  92. AnsteyK.J. CherbuinN. BudgeM. YoungJ. Body mass index in midlife and late-life as a risk factor for dementia: A meta-analysis of prospective studies.Obes. Rev.2011125e426e43710.1111/j.1467‑789X.2010.00825.x 21348917
    [Google Scholar]
  93. PiconeP. Di CarloM. NuzzoD. Obesity and Alzheimer’s disease: Molecular bases.Eur. J. Neurosci.20205283944395010.1111/ejn.14758 32323378
    [Google Scholar]
  94. ZemvaJ. SchilbachK. StöhrO. Central FoxO3a and FoxO6 expression is down-regulated in obesity induced diabetes but not in aging.Exp. Clin. Endocrinol. Diabetes2011120634035010.1055/s‑0031‑1297970 22187289
    [Google Scholar]
  95. MollL. SchubertM. The role of insulin and insulin-like growth factor-1/FoxO-mediated transcription for the pathogenesis of obesity-associated dementia.Curr. Gerontol. Geriatr. Res.2012201211310.1155/2012/384094 22654904
    [Google Scholar]
  96. MatsuzakiK. NakajimaA. GuoY. OhizumiY. A narrative review of the effects of citrus peels and extracts on human brain health and metabolism.Nutrients2022149184710.3390/nu14091847 35565814
    [Google Scholar]
  97. KangK. BaiJ. ZhongS. Down-regulation of insulin like growth factor 1 involved in alzheimer’s disease via MAPK, Ras, and FoxO signaling pathways.Oxid. Med. Cell. Longev.2022202211510.1155/2022/8169981 35571248
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273321002240919102841
Loading
/content/journals/cnsnddt/10.2174/0118715273321002240919102841
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer’s disease; dementia; diabetes; FOXO; obesity; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test