Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Parkinson's Disease (PD) is a progressive neurodegenerative disorder marked by the deterioration of dopamine-producing neurons, resulting in motor impairments like tremors and rigidity. While the precise cause remains elusive, genetic and environmental factors are implicated. Mitochondrial dysfunction, oxidative stress, and protein misfolding contribute to the disease's pathology. Current therapeutics primarily aim at symptom alleviation, employing dopamine replacement and deep brain stimulation. However, the quest for disease-modifying treatments persists. Ongoing clinical trials explore novel approaches, such as neuroprotective agents and gene therapies, reflecting the evolving PD research landscape. This review provides a comprehensive overview of PD, covering its basics, causal factors, major pathways, existing treatments, and a nuanced exploration of ongoing clinical trials. As the scientific community strives to unravel PD's complexities, this review offers insights into the multifaceted strategies pursued for a better understanding and enhanced management of this debilitating condition.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273323074241001071645
2024-10-11
2025-04-25
Loading full text...

Full text loading...

References

  1. KouliA. TorsneyK.M. KuanW.L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. StokerT.B. GreenlandJ.C. Parkinson’s Disease: Pathogenesis and Clinical Aspects.Codon Publications201810.15586/codonpublications.parkinsonsdisease.2018.ch1
    [Google Scholar]
  2. ChaudhuriK.R. Prieto-JurcynskaC. NaiduY. The nondeclaration of nonmotor symptoms of Parkinson’s disease to health care professionals: An international study using the nonmotor symptoms questionnaire.Mov. Disord.201025670470910.1002/mds.22868 20437539
    [Google Scholar]
  3. GabaB. KhanT. HaiderM.F. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model.BioMed Res. Int.2019201912010.1155/2019/2382563 31111044
    [Google Scholar]
  4. FunayamaM. NishiokaK. LiY. HattoriN. Molecular genetics of Parkinson’s disease: Contributions and global trends.Japan Soc Human Genetics J202368125130
    [Google Scholar]
  5. BunielloA. MacArthurJ.A.L. CerezoM. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019.Nucleic Acids Res.201947D1D1005D101210.1093/nar/gky1120 30445434
    [Google Scholar]
  6. SchalkampA.K. PeallK.J. HarrisonN.A. SandorC. Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis.Nat. Med.20232982048205610.1038/s41591‑023‑02440‑2 37400639
    [Google Scholar]
  7. ParkinsonJ. An Essay on the Shaking Palsy. Sherwood, Neely, and Jones 1817.20021422233610.1176/jnp.14.2.223 11983801
    [Google Scholar]
  8. AdnanM. AfzalO. S A Altamimi A, Alamri MA, Haider T, Faheem Haider M. Development and optimization of transethosomal gel of apigenin for topical delivery: In-vitro, ex-vivo and cell line assessment.Int. J. Pharm.202363112250610.1016/j.ijpharm.2022.122506 36535455
    [Google Scholar]
  9. ThomasB. BealM.F. Parkinson’s disease.Hum. Mol. Genet.200716R2R183R19410.1093/hmg/ddm159 17911161
    [Google Scholar]
  10. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  11. FearnleyJ.M. LeesA.J. Ageing and Parkinson’s disease: substantia nigra regional selectivity.Brain199111452283230110.1093/brain/114.5.2283 1933245
    [Google Scholar]
  12. OvallathS. DeepaP. The history of parkinsonism: Descriptions in ancient Indian medical literature.Mov. Disord.201328556656810.1002/mds.25420 23483637
    [Google Scholar]
  13. PatilR.R. Epidemiology of Parkinson’s disease-current understanding of causation and risk factors.Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation.Springer2022
    [Google Scholar]
  14. AlamT. KhanS. GabaB. HaiderM.F. BabootaS. AliJ. Nanocarriers as treatment modalities for hypertension.Drug Deliv.201724135836910.1080/10717544.2016.1255999 28165823
    [Google Scholar]
  15. NussbaumR.L. EllisC.E. Alzheimer’s disease and Parkinson’s disease.N. Engl. J. Med.2003348141356136410.1056/NEJM2003ra020003 12672864
    [Google Scholar]
  16. FeiginV.L. NicholsE. AlamT. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016.Lancet Neurol.201918545948010.1016/S1474‑4422(18)30499‑X 30879893
    [Google Scholar]
  17. PapapetropoulosS. AdiN. EllulJ. ArgyriouA.A. ChroniE. A prospective study of familial versus sporadic Parkinson’s disease.Neurodegener. Dis.20074642442710.1159/000107702 17934325
    [Google Scholar]
  18. SingletonA. HardyJ. The evolution of genetics: Alzheimer’s and Parkinson’s diseases.Neuron20169061154116310.1016/j.neuron.2016.05.040 27311081
    [Google Scholar]
  19. AlamT. KhanS. GabaB. HaiderM.F. BabootaS. AliJ. Adaptation of quality by design-based development of isradipine nanostructured-lipid carrier and its evaluation for in vitro gut permeation and in vivo solubilization fate.J. Pharm. Sci.2018107112914292610.1016/j.xphs.2018.07.021 30076853
    [Google Scholar]
  20. HirschE.C. HunotS. Neuroinflammation in Parkinson’s disease: A target for neuroprotection?Lancet Neurol.20098438239710.1016/S1474‑4422(09)70062‑6 19296921
    [Google Scholar]
  21. SchapiraA.H. JennerP. Etiology and pathogenesis of Parkinson’s disease.Mov. Disord.20112661049105510.1002/mds.23732 21626550
    [Google Scholar]
  22. SpillantiniM.G. GoedertM. Synucleinopathies: past, present, and future.Mov. Disord.2013284417427
    [Google Scholar]
  23. LangA.E. LozanoA.M. Parkinson’s Disease.N. Engl. J. Med.1998339161130114310.1056/NEJM199810153391607 9770561
    [Google Scholar]
  24. PoeweW. SeppiK. TannerC.M. Parkinson disease.Nat. Rev. Dis. Primers2017311701310.1038/nrdp.2017.13 28332488
    [Google Scholar]
  25. AhmadM.A. KareemO. KhushtarM. Neuroinflammation: A potential risk for dementia.Int. J. Mol. Sci.202223261610.3390/ijms23020616 35054805
    [Google Scholar]
  26. WassoufZ. Schulze-HentrichJ.M. Alpha‐synuclein at the nexus of genes and environment: the impact of environmental enrichment and stress on brain health and disease.J. Neurochem.2019150559160410.1111/jnc.14787 31165472
    [Google Scholar]
  27. GoedertM. Alpha-synuclein and neurodegenerative diseases.Nat. Rev. Neurosci.20012749250110.1038/35081564 11433374
    [Google Scholar]
  28. HaiderM.F. KanoujiaJ. TripathiC.B. AryaM. KaithwasG. SarafS.A. Pioglitazone loaded vesicular carriers for anti-diabetic activity: development and optimization as per central composite design.J. Pharm. Sci. Pharmacol.201521112010.1166/jpsp.2015.1042
    [Google Scholar]
  29. SpillantiniM.G. SchmidtM.L. LeeV.M.Y. TrojanowskiJ.Q. JakesR. GoedertM. α-Synuclein in Lewy bodies.Nature1997388664583984010.1038/42166 9278044
    [Google Scholar]
  30. Estaun-PanzanoJ. ArotcarenaM.L. BezardE. Monitoring α-synuclein aggregation.Neurobiol. Dis.202317610596610.1016/j.nbd.2022.105966 36527982
    [Google Scholar]
  31. KitadaT. AsakawaS. HattoriN. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism.Nature1998392667660560810.1038/33416 9560156
    [Google Scholar]
  32. DebatisseM. Le TallecB. LetessierA. DutrillauxB. BrisonO. Common fragile sites: mechanisms of instability revisited.Trends Genet.2012281223210.1016/j.tig.2011.10.003 22094264
    [Google Scholar]
  33. PuspitaL. ChungS.Y. ShimJ. Oxidative stress and cellular pathologies in Parkinson’s disease.Mol. Brain20171015310.1186/s13041‑017‑0340‑9 29183391
    [Google Scholar]
  34. PalacinoJ.J. SagiD. GoldbergM.S. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.J. Biol. Chem.200427918186141862210.1074/jbc.M401135200 14985362
    [Google Scholar]
  35. SevegnaniM. LamaA. GirardiF. Parkin R274W mutation affects muscle and mitochondrial physiology.Biochim. Biophys. Acta Mol. Basis Dis.20241870716730210.1016/j.bbadis.2024.167302 38878834
    [Google Scholar]
  36. GeorgiouG. NounesisG. FilippakisH. The Role of PINK1 Gene in Parkinson’s Disease.Parkinson’s Disease and Beyond.Springer2021203216
    [Google Scholar]
  37. OteroPA FricklasG NigamA Endogenous PTEN-induced kinase 1 regulates dendritic architecture and spinogenesis.J Neurosci20224241JN-RM-0785-2210.1523/JNEUROSCI.0785‑22.2022 36414008
    [Google Scholar]
  38. CzajkaA. MalikA.N. Hyperactivation of PINK1‐Parkin‐mediated mitophagy leads to neurodegeneration in a Drosophila model of Parkinson disease.Autophagy20181471308131010.1080/15548627.2018.1465164
    [Google Scholar]
  39. PuschmannA. New Genes Causing Hereditary Parkinson’s Disease or Parkinsonism.Curr. Neurol. Neurosci. Rep.20171796610.1007/s11910‑017‑0780‑8 28733970
    [Google Scholar]
  40. LangstonJ.W. BallardP. TetrudJ.W. IrwinI. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.Science1983219458797998010.1126/science.6823561 6823561
    [Google Scholar]
  41. BurnsR.S. ChiuehC.C. MarkeyS.P. EbertM.H. JacobowitzD.M. KopinI.J. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Proc. Natl. Acad. Sci. USA198380144546455010.1073/pnas.80.14.4546 6192438
    [Google Scholar]
  42. SrivastavaS. HaiderM.F. AhmadA. AhmadU. ArifM. AliA. Exploring nanoemulsions for prostate cancer therapy.Drug Res. (Stuttg.)202171841742810.1055/a‑1518‑6606 34157752
    [Google Scholar]
  43. SchneiderJ.S. DenaroF.J. Astrocytic responses to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in cat and mouse brain.J. Neuropathol. Exp. Neurol.198847445245810.1097/00005072‑198807000‑00006 2898510
    [Google Scholar]
  44. SayreL.M. Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Toxicol. Lett.198948212114910.1016/0378‑4274(89)90168‑9 2672418
    [Google Scholar]
  45. TiptonK.F. SingerT.P. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds.J. Neurochem.19936141191120610.1111/j.1471‑4159.1993.tb13610.x 8376979
    [Google Scholar]
  46. SchapiraA.H.V. CooperJ.M. DexterD. ClarkJ.B. JennerP. MarsdenC.D. Mitochondrial complex I deficiency in Parkinson’s disease.J. Neurochem.199054382382710.1111/j.1471‑4159.1990.tb02325.x 2154550
    [Google Scholar]
  47. GreenamyreJ.T. ShererT.B. BetarbetR. PanovA.V. Complex I and Parkinson’s Disease.IUBMB Life2001523-513514110.1080/15216540152845939 11798025
    [Google Scholar]
  48. SchlichtmannB.W. KalyanaramanB. SchlichtmannR.L. Functionalized polyanhydride nanoparticles for improved treatment of mitochondrial dysfunction.J. Biomed. Mater. Res. B Appl. Biomater.2022110245045910.1002/jbm.b.34922 34312984
    [Google Scholar]
  49. WangQ. LiuY. ZhouJ. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target.Transl. Neurodegener.2015411910.1186/s40035‑015‑0042‑0 26464797
    [Google Scholar]
  50. AmbrosiG. CerriS. BlandiniF. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease.J. Neural Transm.2014121849859
    [Google Scholar]
  51. van der BrugM.P. SingletonA. GasserT. LewisP.A. Parkinson’s disease: From human genetics to clinical trials.Sci. Transl. Med.20157305205ps2010.1126/scitranslmed.aaa8280 26378242
    [Google Scholar]
  52. Paisán-RuízC. JainS. EvansE.W. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease.Neuron200444459560010.1016/j.neuron.2004.10.023 15541308
    [Google Scholar]
  53. ZimprichA. BiskupS. LeitnerP. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology.Neuron200444460160710.1016/j.neuron.2004.11.005 15541309
    [Google Scholar]
  54. FunayamaM. HasegawaK. KowaH. SaitoM. TsujiS. ObataF. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2–q13.1.Ann. Neurol.200251329630110.1002/ana.10113 11891824
    [Google Scholar]
  55. Vilariño-GüellC. WiderC. RossO.A. VPS35 mutations in Parkinson disease.Am. J. Hum. Genet.201189116216710.1016/j.ajhg.2011.06.001 21763482
    [Google Scholar]
  56. JennerP OlanowCW Oxidative stress and the pathogenesis of Parkinson’s disease.Neurology1996476_suppl_3)(Suppl. 3S1617010.1212/WNL.47.6_Suppl_3.161S 8959985
    [Google Scholar]
  57. BlesaJ. Trigo-DamasI. Quiroga-VarelaA. Jackson-LewisV.R. Oxidative stress and Parkinson’s disease.Front. Neuroanat.201599110.3389/fnana.2015.00091 26217195
    [Google Scholar]
  58. HenchcliffeC. BealM.F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis.Nat. Clin. Pract. Neurol.200841160060910.1038/ncpneuro0924 18978800
    [Google Scholar]
  59. OlanowC.W. PrusinerS.B. Is Parkinson’s disease a prion disorder?Proc. Natl. Acad. Sci. USA200910631125711257210.1073/pnas.0906759106 19666621
    [Google Scholar]
  60. HaiderM.F. KhanS. GabaB. Optimization of rivastigmine nanoemulsion for enhanced brain delivery: in-vivo and toxicity evaluation.J. Mol. Liq.201825538439610.1016/j.molliq.2018.01.123
    [Google Scholar]
  61. RoccaW.A. The burden of Parkinson’s disease: a worldwide perspective.Lancet Neurol.2018171192892910.1016/S1474‑4422(18)30355‑7 30287052
    [Google Scholar]
  62. Dementia Forecasting CollaboratorsEstimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019.Lancet Public Heal.202272E105E125
    [Google Scholar]
  63. RascolO. PayouxP. OryF. FerreiraJ.J. Brefel-CourbonC. MontastrucJ.L. Limitations of current Parkinson’s disease therapy.Ann. Neurol.200353S3Suppl. 3S3S1510.1002/ana.10513 12666094
    [Google Scholar]
  64. MarsdenC.D. Problems with long-term levodopa therapy for Parkinson’s disease.Clin. Neuropharmacol.199417Suppl. 2S32S44 9358193
    [Google Scholar]
  65. JagaranK. SinghM. Lipid nanoparticles: promising treatment approach for Parkinson’s disease.Int. J. Mol. Sci.20222316936110.3390/ijms23169361 36012619
    [Google Scholar]
  66. HabibS. SinghM. Angiopep-2-modified nanoparticles for brain-directed delivery of therapeutics: A review.Polymers (Basel)202214471210.3390/polym14040712 35215625
    [Google Scholar]
  67. PolettiM. BonuccelliU. Acute and chronic cognitive effects of levodopa and dopamine agonists on patients with Parkinson’s disease: a review.Ther. Adv. Psychopharmacol.20133210111310.1177/2045125312470130 24167681
    [Google Scholar]
  68. EmamzadehF.N. SurguchovA. Parkinson’s disease: Biomarkers, treatment, and risk factors.Front. Neurosci.20181261210.3389/fnins.2018.00612 30214392
    [Google Scholar]
  69. van VlietE.F. KnolM.J. SchiffelersR.M. CaiazzoM. FensM.H.A.M. Levodopa-loaded nanoparticles for the treatment of Parkinson’s disease.J. Control. Release202336021222410.1016/j.jconrel.2023.06.026 37343725
    [Google Scholar]
  70. QamarZ AshharMU Annu Lipid nanocarrier of selegiline augmented anti-Parkinson’s effect via P-gp modulation using quercetin.Int. J. Pharm.202160912113110.1016/j.ijpharm.2021.121131 34563617
    [Google Scholar]
  71. AdnanM. HaiderM.F. NaseemN. HaiderT. Transethosomes: a promising challenge for topical delivery short title: transethosomes for topical delivery.Drug Res. (Stuttg.)202373420021210.1055/a‑1974‑9078 36736354
    [Google Scholar]
  72. AlbertiC. Drug-induced retroperitoneal fibrosis: short aetiopathogenetic note, from the past times of ergot-derivatives large use to currently applied bio-pharmacology.Giornale di Chirurgia - Journal of Surgery201536418719110.11138/gchir/2015.36.4.187 26712075
    [Google Scholar]
  73. De MirandaB.R. MillerJ.A. HansenR.J. Neuroprotective efficacy and pharmacokinetic behavior of novel anti-inflammatory para-phenyl substituted diindolylmethanes in a mouse model of Parkinson’s disease.J. Pharmacol. Exp. Ther.2013345112513810.1124/jpet.112.201558 23318470
    [Google Scholar]
  74. ConnollyB.S. LangA.E. Pharmacological treatment of Parkinson disease: a review.JAMA2014311161670168310.1001/jama.2014.3654 24756517
    [Google Scholar]
  75. FinbergJ.P.M. Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson’s disease.J. Neural Transm. (Vienna)2019126443344810.1007/s00702‑018‑1952‑7 30386930
    [Google Scholar]
  76. HongC.T. ChanL. WuD. ChenW.T. ChienL.N. Antiparkinsonism anticholinergics increase dementia risk in patients with Parkinson’s disease.Parkinsonism Relat. Disord.20196522422910.1016/j.parkreldis.2019.06.022 31255536
    [Google Scholar]
  77. RajanR. SainiA. VermaB. Anticholinergics may carry significant cognitive and gait burden in Parkinson’s Disease.Mov. Disord. Clin. Pract. (Hoboken)20207780380910.1002/mdc3.13032 33043076
    [Google Scholar]
  78. SheuJ.J. TsaiM.T. EricksonS.R. WuC.H. Association between anticholinergic medication use and risk of dementia among patients with Parkinson’s disease.Pharmacotherapy201939879880810.1002/phar.2305 31251824
    [Google Scholar]
  79. AradiS.D. HauserR.A. Medical management and prevention of motor complications in Parkinson’s disease.Neurotherapeutics20201741339136510.1007/s13311‑020‑00889‑4 32761324
    [Google Scholar]
  80. AbbasiH. KouchakM. MirveisZ. What we need to know about liposomes as drug nanocarriers: An updated review.Adv. Pharm. Bull.2023131723 36721822
    [Google Scholar]
  81. SvensonS. What nanomedicine in the clinic right now really forms nanoparticles?Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20146212513510.1002/wnan.1257 24415653
    [Google Scholar]
  82. TorchilinV.P. Nanocarriers.Pharm. Res.200724122333233410.1007/s11095‑007‑9463‑5 17934800
    [Google Scholar]
  83. SaidiT. FortuinJ. DouglasT.S. Nanomedicine for drug delivery in South Africa: a protocol for systematic review.Syst. Rev.20187115410.1186/s13643‑018‑0823‑5 30292237
    [Google Scholar]
  84. VenkatasJ. SinghM. Nanomedicine-mediated optimization of immunotherapeutic approaches in cervical cancer.Nanomedicine (Lond.)202116151311132810.2217/nnm‑2021‑0044 34027672
    [Google Scholar]
  85. AdnanM. AkhterM.H. AfzalO. Exploring nanocarriers as treatment modalities for skin cancer.Molecules20232815590510.3390/molecules28155905 37570875
    [Google Scholar]
  86. MaiyoF.C. MbathaL.S. SinghM. Selenium nanoparticles in folate-targeted delivery of the pCMV-Luc DNA reporter gene.Curr. Nanosci.202117687188010.2174/1573413716666201207141657
    [Google Scholar]
  87. MbathaL.S. MaiyoF. DanielsA. SinghM. Dendrimer-coated gold nanoparticles for efficient folate-targeted mRNA delivery in vitro.Pharmaceutics202113690010.3390/pharmaceutics13060900 34204271
    [Google Scholar]
  88. DanielsA.N. SinghM. Sterically stabilized siRNA: Gold nanocomplexes enhance c-MYC silencing in a breast cancer cell model.Nanomedicine (Lond.)201914111387140110.2217/nnm‑2018‑0462 31166141
    [Google Scholar]
  89. Monge-FuentesV. Biolchi MayerA. LimaM.R. Dopamine-loaded nanoparticle systems circumvent the blood-brain barrier restoring motor function in mouse model for Parkinson’s disease.Sci. Rep.20211111518510.1038/s41598‑021‑94175‑8 34312413
    [Google Scholar]
  90. DudhipalaN. GorreT. Neuroprotective effect of ropinirole lipid nanoparticles enriched hydrogel for Parkinson’s disease: In vitro, ex vivo, pharmacokinetic, and pharmacodynamic evaluation.Pharmaceutics202012544810.3390/pharmaceutics12050448 32414195
    [Google Scholar]
  91. AgrawalM Ajazuddin TripathiDK Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease.J. Control. Release2017260617710.1016/j.jconrel.2017.05.019 28549949
    [Google Scholar]
  92. LiT. CipollaD. RadesT. BoydB.J. Drug nanocrystallisation within liposomes.J. Control. Release20182889611010.1016/j.jconrel.2018.09.001 30184465
    [Google Scholar]
  93. LiX. TsibouklisJ. WengT. Nano carriers for drug transport across the blood-brain barrier.J. Drug Target.2017251172810.1080/1061186X.2016.1184272 27126681
    [Google Scholar]
  94. PatelM.M. PatelB.M. Crossing the Blood–Brain Barrier: Recent Advances in Drug Delivery to the Brain.CNS Drugs201731210913310.1007/s40263‑016‑0405‑9 28101766
    [Google Scholar]
  95. LiM. DuC. GuoN. Composition design and medical application of liposomes.Eur. J. Med. Chem.201916464065310.1016/j.ejmech.2019.01.007 30640028
    [Google Scholar]
  96. KangY.S. JungH.J. OhJ.S. SongD.Y. Use of PEGylated Immunoliposomes to deliver dopamine across the blood-brain barrier in a rat model of Parkinson’s disease.CNS Neurosci. Ther.2016221081782310.1111/cns.12580 27350533
    [Google Scholar]
  97. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c04996 34181394
    [Google Scholar]
  98. PaliwalR. PaliwalS.R. KenwatR. KurmiB.D. SahuM.K. Solid lipid nanoparticles: A review on recent perspectives and patents.Expert Opin. Ther. Pat.20203017919410.1080/13543776.2020.1720649
    [Google Scholar]
  99. HaiderM. AbdinS.M. KamalL. OriveG. Nanostructured lipid carriers for delivery of chemotherapeutics: A review.Pharmaceutics202012328810.3390/pharmaceutics12030288 32210127
    [Google Scholar]
  100. HabibS. SinghM. Recent advances in lipid-based nanosystems for gemcitabine and gemcitabine-combination therapy.Nanomaterials (Basel)202111359710.3390/nano11030597 33673636
    [Google Scholar]
  101. RahmanA. HaiderM.F. NaseemN. RahmanN. Solubility of drugs, their enhancement, factors affecting and their limitations: A review.Int. J. Pharm. Sci. Rev. Res.2023792789410.47583/ijpsrr.2023.v79i02.014
    [Google Scholar]
  102. ZhuF.D. HuY.J. YuL. Nanoparticles: A hope for the treatment of inflammation in CNS.Front. Pharmacol.20211268393510.3389/fphar.2021.683935 34122112
    [Google Scholar]
  103. AlabrahimO.A.A. AzzazyH.M.E.S. Polymeric nanoparticles for dopamine and levodopa replacement in Parkinson’s disease.Nanoscale Adv.20224245233524410.1039/D2NA00524G 36540116
    [Google Scholar]
  104. NiraleP. PaulA. YadavK.S. Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer’s, Parkinson’s and Prion’s.Life Sci.202024511739410.1016/j.lfs.2020.117394 32017870
    [Google Scholar]
  105. AzeemA. TalegaonkarS. NegiL.M. AhmadF.J. KharR.K. IqbalZ. Oil based nanocarrier system for transdermal delivery of ropinirole: A mechanistic, pharmacokinetic and biochemical investigation.Int. J. Pharm.20124221-243644410.1016/j.ijpharm.2011.10.039 22057087
    [Google Scholar]
  106. SoniK.S. DesaleS.S. BronichT.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation.J. Control. Release201624010912610.1016/j.jconrel.2015.11.009 26571000
    [Google Scholar]
  107. HajebiS. RabieeN. BagherzadehM. Stimulus-responsive polymeric nanogels as smart drug delivery systems.Acta Biomater.20199211810.1016/j.actbio.2019.05.018 31096042
    [Google Scholar]
  108. KhanZ. HaiderM.F. NaseemN. SiddiquiM.A. AhmadU. KhanM.M. Nanocarrier for the treatment of liver cancer.J Pharmaceutical Sciences and Research20221411944957
    [Google Scholar]
  109. AraujoR.V. New advances in general biomedical applications of PAMAM dendrimers.Molecules20182311284910.3390/molecules23112849
    [Google Scholar]
  110. DiasA.P. da Silva SantosS. da SilvaJ.V. Dendrimers in the context of nanomedicine.Int. J. Pharm.202057311881410.1016/j.ijpharm.2019.118814 31759101
    [Google Scholar]
  111. ChauhanA.S. Dendrimers for drug delivery.Molecules201823493810.3390/molecules23040938 29670005
    [Google Scholar]
  112. SherjeA.P. JadhavM. DravyakarB.R. KadamD. Dendrimers: A versatile nanocarrier for drug delivery and targeting.Int. J. Pharm.2018548170772010.1016/j.ijpharm.2018.07.030 30012508
    [Google Scholar]
  113. LyuZ. DingL. TintaruA. PengL. Self-Assembling Supramolecular Dendrimers for Biomedical Applications: Lessons Learned from Poly(amidoamine) Dendrimers.Acc. Chem. Res.202053122936294910.1021/acs.accounts.0c00589 33275845
    [Google Scholar]
  114. Sandoval-YañezC. Castro RodriguezC. Dendrimers: Amazing platforms for bioactive molecule delivery systems.Materials (Basel)202013357010.3390/ma13030570 31991703
    [Google Scholar]
  115. YousefiM. NarmaniA. JafariS.M. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals.Adv. Colloid Interface Sci.202027810212510.1016/j.cis.2020.102125 32109595
    [Google Scholar]
  116. FiguerolaA. Di CoratoR. MannaL. PellegrinoT. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications.Pharmacol. Res.201062212614310.1016/j.phrs.2009.12.012 20044004
    [Google Scholar]
  117. DinaliR. EbrahiminezhadA. Manley-HarrisM. GhasemiY. BerenjianA. Iron oxide nanoparticles in modern microbiology and biotechnology.Crit. Rev. Microbiol.201743449350710.1080/1040841X.2016.1267708 28068855
    [Google Scholar]
  118. XuH. ChengL. WangC. MaX. LiY. LiuZ. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery.Biomaterials201132359364937310.1016/j.biomaterials.2011.08.053 21880364
    [Google Scholar]
  119. DuY. LaiP. LeungC. PongP. Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI).Int. J. Mol. Sci.2013149186821871010.3390/ijms140918682 24030719
    [Google Scholar]
  120. KhandharA.P. FergusonR.M. AramiH. KrishnanK.M. Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging.Biomaterials201334153837384510.1016/j.biomaterials.2013.01.087 23434348
    [Google Scholar]
  121. KhanA NaquviKJ HaiderMF KhanMA Quality by design-newer technique for pharmaceutical product development Intell Pharm202321122129
    [Google Scholar]
  122. SchleichN. DanhierF. PréatV. Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation.J. Control. Release2015198355410.1016/j.jconrel.2014.11.024 25481448
    [Google Scholar]
  123. WuH.Y. ChungM.C. WangC.C. HuangC.H. LiangH.J. JanT.R. Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells.Part. Fibre Toxicol.20131014610.1186/1743‑8977‑10‑46 24047432
    [Google Scholar]
  124. VanceM.E. KuikenT. VejeranoE.P. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory.Beilstein J. Nanotechnol.201561769178010.3762/bjnano.6.181 26425429
    [Google Scholar]
  125. DurfeeP.N. LinY.S. DunphyD.R. Mesoporous silica nanoparticle-supported lipid bilayers (Protocells) for active targeting and delivery to individual leukemia cells.ACS Nano20161098325834510.1021/acsnano.6b02819 27419663
    [Google Scholar]
  126. EchazúM.I.A. TuttolomondoM.V. FogliaM.L. MebertA.M. AlvarezG.S. DesimoneM.F. Advances in collagen, chitosan and silica biomaterials for oral tissue regeneration: from basics to clinical trials.J. Mater. Chem. B Mater. Biol. Med.20164436913692910.1039/C6TB02108E 32263559
    [Google Scholar]
  127. LiuD. LinB. ShaoW. ZhuZ. JiT. YangC. In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier.ACS Appl. Mater. Interfaces2014632131213610.1021/am405219u 24417514
    [Google Scholar]
  128. MuraliK. KeneseiK. LiY. DemeterK. KörnyeiZ. MadarászE. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells.Nanoscale2015794199421010.1039/C4NR06849A 25673096
    [Google Scholar]
  129. FatimaA. NaseemN. HaiderM.F. A comprehensive review on nanocarriers as a targeted delivery system for the treatment of breast cancer.Intelligent Pharmacy20242341542610.1016/j.ipha.2024.04.001
    [Google Scholar]
  130. YouR. HoY.S. HungC.H.L. Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation.Part. Fibre Toxicol.20181512810.1186/s12989‑018‑0263‑3 29970116
    [Google Scholar]
  131. ArmstrongM.J. OkunM.S. Diagnosis and treatment of Parkinson disease: a review.JAMA2020323654856010.1001/jama.2019.22360 32044947
    [Google Scholar]
  132. UppuluriC.T. RaviP.R. DalviA.V. Design, optimization and pharmacokinetic evaluation of Piribedil loaded solid lipid nanoparticles dispersed in nasal in situ gelling system for effective management of Parkinson’s disease.Int. J. Pharm.202160612088110.1016/j.ijpharm.2021.120881 34273426
    [Google Scholar]
  133. PangeniR. SharmaS. MustafaG. AliJ. BabootaS. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress.Nanotechnology2014254848510210.1088/0957‑4484/25/48/485102 25392203
    [Google Scholar]
  134. RashedE.R. Abd El-RehimH.A. El-GhazalyM.A. Potential efficacy of dopamine loaded-PVP/PAA nanogel in experimental models of Parkinsonism: Possible disease modifying activity.J. Biomed. Mater. Res. A201510351713172010.1002/jbm.a.35312 25131611
    [Google Scholar]
  135. OrdonioM.B. ZakiR.M. ElkordyA.A. Dendrimers-based drug delivery System: A novel approach in addressing Parkinson’s disease.Future Pharmacol20222441543010.3390/futurepharmacol2040027
    [Google Scholar]
  136. LiuX. LuS. LiuD. ScFv-conjugated superparamagnetic iron oxide nanoparticles for MRI-based diagnosis in transgenic mouse models of Parkinson’s and Huntington’s diseases.Brain Res.2019170714115310.1016/j.brainres.2018.11.034 30481502
    [Google Scholar]
  137. NaseemN. KushwahaP. HaiderF. Leveraging nanostructured lipid carriers to enhance targeted delivery and efficacy in breast cancer therapy: A comprehensive review.Naunyn Schmiedebergs Arch. Pharmacol.202412010.1007/s00210‑024‑03408‑w 39196394
    [Google Scholar]
  138. NtetsikaT. PapathomaP.E. MarkakiI. Novel targeted therapies for Parkinson’s disease.Mol. Med.20212711710.1186/s10020‑021‑00279‑2 33632120
    [Google Scholar]
  139. FabbriM. RascolO. FoltynieT. Advantages and challenges of platform trials for disease modifying therapies in Parkinson’s Disease.Mov. Disord.20243991468147710.1002/mds.29899 38925541
    [Google Scholar]
  140. Parkinson's disease drug.Patent JP2022119144A2024
  141. RahmanA. HaiderM.F. A comprehensive review on glucocorticoids induced osteoporosis: A medication caused disease.Steroids202420710944010.1016/j.steroids.2024.109440 38754651
    [Google Scholar]
  142. YànqīngG ChǔhuáL LìL Gold nanoparticle compound modified by liposome and application thereof in treating Parkinson’s disease.Patent CN109331186B2019
  143. SharmaY. ShobhaK. SundeepM. PinnelliV.B. ParveenS. DhanushkodiA. Neural basis of dental pulp stem cells and its potential application in Parkinson’s disease.CNS Neurol Disord2022211627610.2174/1871527320666210311122921
    [Google Scholar]
  144. DingH WuQ NanY An Example Interpretation of the ROBISIS Tool for Assessing Systematic Review Bias Risk.
    [Google Scholar]
  145. GuoX.Z. Osteocalcin ameliorates motor dysfunction in a 6-hydroxydopamine-induced Parkinson’s disease rat model through AKT/GSK3β Signaling.Front. Mol. Neurosci.201811343
    [Google Scholar]
  146. YanJ. Effects of aclidine on behavioral and brain mitochondrial autophagy levels in a parkinson’s disease mouse model.Chinese J Behav Med Brain Sci20213011521
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273323074241001071645
Loading
/content/journals/cnsnddt/10.2174/0118715273323074241001071645
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test