Skip to content
2000
image of A Comprehensive Review on Repurposing the Nanocarriers for the Treatment of Parkinson’s Disease: An Updated Patent and Clinical Trials

Abstract

Parkinson's Disease (PD) is a progressive neurodegenerative disorder marked by the deterioration of dopamine-producing neurons, resulting in motor impairments like tremors and rigidity. While the precise cause remains elusive, genetic and environmental factors are implicated. Mitochondrial dysfunction, oxidative stress, and protein misfolding contribute to the disease's pathology. Current therapeutics primarily aim at symptom alleviation, employing dopamine replacement and deep brain stimulation. However, the quest for disease-modifying treatments persists. Ongoing clinical trials explore novel approaches, such as neuroprotective agents and gene therapies, reflecting the evolving PD research landscape. This review provides a comprehensive overview of PD, covering its basics, causal factors, major pathways, existing treatments, and a nuanced exploration of ongoing clinical trials. As the scientific community strives to unravel PD's complexities, this review offers insights into the multifaceted strategies pursued for a better understanding and enhanced management of this debilitating condition.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273323074241001071645
2024-10-11
2024-11-26
Loading full text...

Full text loading...

References

  1. Kouli A. Torsney K.M. Kuan W.L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Stoker T.B. Greenland J.C. Codon Publications 2018 10.15586/codonpublications.parkinsonsdisease.2018.ch1
    [Google Scholar]
  2. Chaudhuri K.R. Prieto-Jurcynska C. Naidu Y. Mitra T. Frades-Payo B. Tluk S. Ruessmann A. Odin P. Macphee G. Stocchi F. Ondo W. Sethi K. Schapira A.H.V. Castrillo J.C.M. Martinez-Martin P. The nondeclaration of nonmotor symptoms of Parkinson’s disease to health care professionals: An international study using the nonmotor symptoms questionnaire. Mov. Disord. 2010 25 6 704 709 10.1002/mds.22868 20437539
    [Google Scholar]
  3. Gaba B. Khan T. Haider M.F. Alam T. Baboota S. Parvez S. Ali J. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. BioMed Res. Int. 2019 2019 1 20 10.1155/2019/2382563 31111044
    [Google Scholar]
  4. Funayama M. Nishioka K. Li Y. Hattori N. Molecular genetics of Parkinson’s disease: Contributions and global trends. Japan Soc. Human Genetics J. 2023 68 125 130
    [Google Scholar]
  5. Buniello A. MacArthur J.A.L. Cerezo M. Harris L.W. Hayhurst J. Malangone C. McMahon A. Morales J. Mountjoy E. Sollis E. Suveges D. Vrousgou O. Whetzel P.L. Amode R. Guillen J.A. Riat H.S. Trevanion S.J. Hall P. Junkins H. Flicek P. Burdett T. Hindorff L.A. Cunningham F. Parkinson H. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019 47 D1 D1005 D1012 10.1093/nar/gky1120 30445434
    [Google Scholar]
  6. Schalkamp A.K. Peall K.J. Harrison N.A. Sandor C. Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis. Nat. Med. 2023 29 8 2048 2056 10.1038/s41591‑023‑02440‑2 37400639
    [Google Scholar]
  7. Parkinson J. An Essay on the Shaking Palsy. Sherwood, Neely, and Jones 1817
    [Google Scholar]
  8. Adnan M. Afzal O. S A Altamimi A. Alamri M.A. Haider T. Faheem Haider M. Development and optimization of transethosomal gel of apigenin for topical delivery: In-vitro, ex-vivo and cell line assessment. Int. J. Pharm. 2023 631 122506 10.1016/j.ijpharm.2022.122506 36535455
    [Google Scholar]
  9. Thomas B. Beal M.F. Parkinson’s disease. Hum. Mol. Genet. 2007 16 R2 R183 R194 10.1093/hmg/ddm159 17911161
    [Google Scholar]
  10. Bloem B.R. Okun M.S. Klein C. Parkinson’s disease. Lancet 2021 397 10291 2284 2303 10.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  11. Fearnley J.M. Lees A.J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991 114 5 2283 2301 10.1093/brain/114.5.2283 1933245
    [Google Scholar]
  12. Ovallath S. Deepa P. The history of parkinsonism: Descriptions in ancient Indian medical literature. Mov. Disord. 2013 28 5 566 568 10.1002/mds.25420 23483637
    [Google Scholar]
  13. Patil R.R. Epidemiology of Parkinson’s disease—current understanding of causation and risk factors. Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation Springer 2022
    [Google Scholar]
  14. Alam T. Khan S. Gaba B. Haider M.F. Baboota S. Ali J. Nanocarriers as treatment modalities for hypertension. Drug Deliv. 2017 24 1 358 369 10.1080/10717544.2016.1255999 28165823
    [Google Scholar]
  15. Nussbaum R.L. Ellis C.E. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med. 2003 348 14 1356 1364 10.1056/NEJM2003ra020003 12672864
    [Google Scholar]
  16. Feigin V.L. Nichols E. Alam T. Bannick M.S. Beghi E. Blake N. Culpepper W.J. Dorsey E.R. Elbaz A. Ellenbogen R.G. Fisher J.L. Fitzmaurice C. Giussani G. Glennie L. James S.L. Johnson C.O. Kassebaum N.J. Logroscino G. Marin B. Mountjoy-Venning W.C. Nguyen M. Ofori-Asenso R. Patel A.P. Piccininni M. Roth G.A. Steiner T.J. Stovner L.J. Szoeke C.E.I. Theadom A. Vollset S.E. Wallin M.T. Wright C. Zunt J.R. Abbasi N. Abd-Allah F. Abdelalim A. Abdollahpour I. Aboyans V. Abraha H.N. Acharya D. Adamu A.A. Adebayo O.M. Adeoye A.M. Adsuar J.C. Afarideh M. Agrawal S. Ahmadi A. Ahmed M.B. Aichour A.N. Aichour I. Aichour M.T.E. Akinyemi R.O. Akseer N. Al-Eyadhy A. Al-Shahi Salman R. Alahdab F. Alene K.A. Aljunid S.M. Altirkawi K. Alvis-Guzman N. Anber N.H. Antonio C.A.T. Arabloo J. Aremu O. Ärnlöv J. Asayesh H. Asghar R.J. Atalay H.T. Awasthi A. Ayala Quintanilla B.P. Ayuk T.B. Badawi A. Banach M. Banoub J.A.M. Barboza M.A. Barker-Collo S.L. Bärnighausen T.W. Baune B.T. Bedi N. Behzadifar M. Behzadifar M. Béjot Y. Bekele B.B. Belachew A.B. Bennett D.A. Bensenor I.M. Berhane A. Beuran M. Bhattacharyya K. Bhutta Z.A. Biadgo B. Bijani A. Bililign N. Bin Sayeed M.S. Blazes C.K. Brayne C. Butt Z.A. Campos-Nonato I.R. Cantu-Brito C. Car M. Cárdenas R. Carrero J.J. Carvalho F. Castañeda-Orjuela C.A. Castro F. Catalá-López F. Cerin E. Chaiah Y. Chang J-C. Chatziralli I. Chiang P.P-C. Christensen H. Christopher D.J. Cooper C. Cortesi P.A. Costa V.M. Criqui M.H. Crowe C.S. Damasceno A.A.M. Daryani A. De la Cruz-Góngora V. De la Hoz F.P. De Leo D. Demoz G.T. Deribe K. Dharmaratne S.D. Diaz D. Dinberu M.T. Djalalinia S. Doku D.T. Dubey M. Dubljanin E. Duken E.E. Edvardsson D. El-Khatib Z. Endres M. Endries A.Y. Eskandarieh S. Esteghamati A. Esteghamati S. Farhadi F. Faro A. Farzadfar F. Farzaei M.H. Fatima B. Fereshtehnejad S-M. Fernandes E. Feyissa G.T. Filip I. Fischer F. Fukumoto T. Ganji M. Gankpe F.G. Garcia-Gordillo M.A. Gebre A.K. Gebremichael T.G. Gelaw B.K. Geleijnse J.M. Geremew D. Gezae K.E. Ghasemi-Kasman M. Gidey M.Y. Gill P.S. Gill T.K. Girma E.T. Gnedovskaya E.V. Goulart A.C. Grada A. Grosso G. Guo Y. Gupta R. Gupta R. Haagsma J.A. Hagos T.B. Haj-Mirzaian A. Haj-Mirzaian A. Hamadeh R.R. Hamidi S. Hankey G.J. Hao Y. Haro J.M. Hassankhani H. Hassen H.Y. Havmoeller R. Hay S.I. Hegazy M.I. Heidari B. Henok A. Heydarpour F. Hoang C.L. Hole M.K. Homaie Rad E. Hosseini S.M. Hu G. Igumbor E.U. Ilesanmi O.S. Irvani S.S.N. Islam S.M.S. Jakovljevic M. Javanbakht M. Jha R.P. Jobanputra Y.B. Jonas J.B. Jozwiak J.J. Jürisson M. Kahsay A. Kalani R. Kalkonde Y. Kamil T.A. Kanchan T. Karami M. Karch A. Karimi N. Kasaeian A. Kassa T.D. Kassa Z.Y. Kaul A. Kefale A.T. Keiyoro P.N. Khader Y.S. Khafaie M.A. Khalil I.A. Khan E.A. Khang Y-H. Khazaie H. Kiadaliri A.A. Kiirithio D.N. Kim A.S. Kim D. Kim Y-E. Kim Y.J. Kisa A. Kokubo Y. Koyanagi A. Krishnamurthi R.V. Kuate Defo B. Kucuk Bicer B. Kumar M. Lacey B. Lafranconi A. Lansingh V.C. Latifi A. Leshargie C.T. Li S. Liao Y. Linn S. Lo W.D. Lopez J.C.F. Lorkowski S. Lotufo P.A. Lucas R.M. Lunevicius R. Mackay M.T. Mahotra N.B. Majdan M. Majdzadeh R. Majeed A. Malekzadeh R. Malta D.C. Manafi N. Mansournia M.A. Mantovani L.G. März W. Mashamba-Thompson T.P. Massenburg B.B. Mate K.K.V. McAlinden C. McGrath J.J. Mehta V. Meier T. Meles H.G. Melese A. Memiah P.T.N. Memish Z.A. Mendoza W. Mengistu D.T. Mengistu G. Meretoja A. Meretoja T.J. Mestrovic T. Miazgowski B. Miazgowski T. Miller T.R. Mini G.K. Mirrakhimov E.M. Moazen B. Mohajer B. Mohammad Gholi Mezerji N. Mohammadi M. Mohammadi-Khanaposhtani M. Mohammadibakhsh R. Mohammadnia-Afrouzi M. Mohammed S. Mohebi F. Mokdad A.H. Monasta L. Mondello S. Moodley Y. Moosazadeh M. Moradi G. Moradi-Lakeh M. Moradinazar M. Moraga P. Moreno Velásquez I. Morrison S.D. Mousavi S.M. Muhammed O.S. Muruet W. Musa K.I. Mustafa G. Naderi M. Nagel G. Naheed A. Naik G. Najafi F. Nangia V. Negoi I. Negoi R.I. Newton C.R.J. Ngunjiri J.W. Nguyen C.T. Nguyen L.H. Ningrum D.N.A. Nirayo Y.L. Nixon M.R. Norrving B. Noubiap J.J. Nourollahpour Shiadeh M. Nyasulu P.S. Ogah O.S. Oh I-H. Olagunju A.T. Olagunju T.O. Olivares P.R. Onwujekwe O.E. Oren E. Owolabi M.O. Pa M. Pakpour A.H. Pan W-H. Panda-Jonas S. Pandian J.D. Patel S.K. Pereira D.M. Petzold M. Pillay J.D. Piradov M.A. Polanczyk G.V. Polinder S. Postma M.J. Poulton R. Poustchi H. Prakash S. Prakash V. Qorbani M. Radfar A. Rafay A. Rafiei A. Rahim F. Rahimi-Movaghar V. Rahman M. Rahman M.H.U. Rahman M.A. Rajati F. Ram U. Ranta A. Rawaf D.L. Rawaf S. Reinig N. Reis C. Renzaho A.M.N. Resnikoff S. Rezaeian S. Rezai M.S. Rios González C.M. Roberts N.L.S. Roever L. Ronfani L. Roro E.M. Roshandel G. Rostami A. Sabbagh P. Sacco R.L. Sachdev P.S. Saddik B. Safari H. Safari-Faramani R. Safi S. Safiri S. Sagar R. Sahathevan R. Sahebkar A. Sahraian M.A. Salamati P. Salehi Zahabi S. Salimi Y. Samy A.M. Sanabria J. Santos I.S. Santric Milicevic M.M. Sarrafzadegan N. Sartorius B. Sarvi S. Sathian B. Satpathy M. Sawant A.R. Sawhney M. Schneider I.J.C. Schöttker B. Schwebel D.C. Seedat S. Sepanlou S.G. Shabaninejad H. Shafieesabet A. Shaikh M.A. Shakir R.A. Shams-Beyranvand M. Shamsizadeh M. Sharif M. Sharif-Alhoseini M. She J. Sheikh A. Sheth K.N. Shigematsu M. Shiri R. Shirkoohi R. Shiue I. Siabani S. Siddiqi T.J. Sigfusdottir I.D. Sigurvinsdottir R. Silberberg D.H. Silva J.P. Silveira D.G.A. Singh J.A. Sinha D.N. Skiadaresi E. Smith M. Sobaih B.H. Sobhani S. Soofi M. Soyiri I.N. Sposato L.A. Stein D.J. Stein M.B. Stokes M.A. Sufiyan M.B. Sykes B.L. Sylaja P.N. Tabarés-Seisdedos R. Te Ao B.J. Tehrani-Banihashemi A. Temsah M-H. Temsah O. Thakur J.S. Thrift A.G. Topor-Madry R. Tortajada-Girbés M. Tovani-Palone M.R. Tran B.X. Tran K.B. Truelsen T.C. Tsadik A.G. Tudor Car L. Ukwaja K.N. Ullah I. Usman M.S. Uthman O.A. Valdez P.R. Vasankari T.J. Vasanthan R. Veisani Y. Venketasubramanian N. Violante F.S. Vlassov V. Vosoughi K. Vu G.T. Vujcic I.S. Wagnew F.S. Waheed Y. Wang Y-P. Weiderpass E. Weiss J. Whiteford H.A. Wijeratne T. Winkler A.S. Wiysonge C.S. Wolfe C.D.A. Xu G. Yadollahpour A. Yamada T. Yano Y. Yaseri M. Yatsuya H. Yimer E.M. Yip P. Yisma E. Yonemoto N. Yousefifard M. Yu C. Zaidi Z. Zaman S.B. Zamani M. Zandian H. Zare Z. Zhang Y. Zodpey S. Naghavi M. Murray C.J.L. Vos T. GBD 2016 Neurology Collaborators Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 18 5 459 480 10.1016/S1474‑4422(18)30499‑X 30879893
    [Google Scholar]
  17. Papapetropoulos S. Adi N. Ellul J. Argyriou A.A. Chroni E. A prospective study of familial versus sporadic Parkinson’s disease. Neurodegener. Dis. 2007 4 6 424 427 10.1159/000107702 17934325
    [Google Scholar]
  18. Singleton A. Hardy J. The evolution of genetics: Alzheimer’s and Parkinson’s diseases. Neuron 2016 90 6 1154 1163 10.1016/j.neuron.2016.05.040 27311081
    [Google Scholar]
  19. Alam T. Khan S. Gaba B. Haider M.F. Baboota S. Ali J. Adaptation of quality by design-based development of isradipine nanostructured–lipid carrier and its evaluation for in vitro gut permeation and in vivo solubilization fate. J. Pharm. Sci. 2018 107 11 2914 2926 10.1016/j.xphs.2018.07.021 30076853
    [Google Scholar]
  20. Hirsch E.C. Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009 8 4 382 397 10.1016/S1474‑4422(09)70062‑6 19296921
    [Google Scholar]
  21. Schapira A.H. Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov. Disord. 2011 26 6 1049 1055 10.1002/mds.23732 21626550
    [Google Scholar]
  22. Spillantini M.G. Goedert M. Synucleinopathies: past, present, and future. Mov. Disord. 2013 28 4 417 427
    [Google Scholar]
  23. Lang A.E. Lozano A.M. Parkinson’s Disease. N. Engl. J. Med. 1998 339 16 1130 1143 10.1056/NEJM199810153391607 9770561
    [Google Scholar]
  24. Poewe W. Seppi K. Tanner C.M. Halliday G.M. Brundin P. Volkmann J. Schrag A.E. Lang A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017 3 1 17013 10.1038/nrdp.2017.13 28332488
    [Google Scholar]
  25. Ahmad M.A. Kareem O. Khushtar M. Akbar M. Haque M.R. Iqubal A. Haider M.F. Pottoo F.H. Abdulla F.S. Al-Haidar M.B. Alhajri N. Neuroinflammation: a potential risk for dementia. Int. J. Mol. Sci. 2022 23 2 616 10.3390/ijms23020616 35054805
    [Google Scholar]
  26. Wassouf Z. Schulze-Hentrich J.M. Alpha‐synuclein at the nexus of genes and environment: the impact of environmental enrichment and stress on brain health and disease. J. Neurochem. 2019 150 5 591 604 10.1111/jnc.14787 31165472
    [Google Scholar]
  27. Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2001 2 7 492 501 10.1038/35081564 11433374
    [Google Scholar]
  28. Haider M.F. Kanoujia J. Tripathi C.B. Arya M. Kaithwas G. Saraf S.A. Pioglitazone loaded vesicular carriers for anti-diabetic activity: development and optimization as per central composite design. J. Pharm. Sci. Pharmacol. 2015 2 1 11 20 10.1166/jpsp.2015.1042
    [Google Scholar]
  29. Spillantini M.G. Schmidt M.L. Lee V.M.Y. Trojanowski J.Q. Jakes R. Goedert M. α-Synuclein in Lewy bodies. Nature 1997 388 6645 839 840 10.1038/42166 9278044
    [Google Scholar]
  30. Estaun-Panzano J. Arotcarena M.L. Bezard E. Monitoring α-synuclein aggregation. Neurobiol. Dis. 2023 176 105966 10.1016/j.nbd.2022.105966 36527982
    [Google Scholar]
  31. Kitada T. Asakawa S. Hattori N. Matsumine H. Yamamura Y. Minoshima S. Yokochi M. Mizuno Y. Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998 392 6676 605 608 10.1038/33416 9560156
    [Google Scholar]
  32. Debatisse M. Le Tallec B. Letessier A. Dutrillaux B. Brison O. Common fragile sites: mechanisms of instability revisited. Trends Genet. 2012 28 1 22 32 10.1016/j.tig.2011.10.003 22094264
    [Google Scholar]
  33. Puspita L. Chung S.Y. Shim J. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain 2017 10 1 53 10.1186/s13041‑017‑0340‑9 29183391
    [Google Scholar]
  34. Palacino J.J. Sagi D. Goldberg M.S. Krauss S. Motz C. Wacker M. Klose J. Shen J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 2004 279 18 18614 18622 10.1074/jbc.M401135200 14985362
    [Google Scholar]
  35. Sevegnani M. Lama A. Girardi F. Hess M.W. Castelo M.P. Pichler I. Biressi S. Piccoli G. Parkin R274W mutation affects muscle and mitochondrial physiology. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 7 167302 10.1016/j.bbadis.2024.167302 38878834
    [Google Scholar]
  36. Georgiou G. Nounesis G. Filippakis H. The Role of PINK1 Gene in Parkinson’s Disease. Parkinson’s Disease and Beyond. Springer 2021 203 216
    [Google Scholar]
  37. Otero P.A. Fricklas G. Nigam A. Lizama B.N. Wills Z.P. Johnson J.W. Chu C.T. Endogenous PTEN-induced kinase 1 regulates dendritic architecture and spinogenesis. J. Neurosci. 2022 42 41 JN-RM-0785-22 10.1523/JNEUROSCI.0785‑22.2022 36414008
    [Google Scholar]
  38. Czajka A. Malik A.N. Hyperactivation of PINK1‐Parkin‐mediated mitophagy leads to neurodegeneration in a Drosophila model of Parkinson disease. Autophagy 2018 14 7 1308 1310 10.1080/15548627.2018.1465164
    [Google Scholar]
  39. Puschmann A. New Genes Causing Hereditary Parkinson’s Disease or Parkinsonism. Curr. Neurol. Neurosci. Rep. 2017 17 9 66 10.1007/s11910‑017‑0780‑8 28733970
    [Google Scholar]
  40. Langston J.W. Ballard P. Tetrud J.W. Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983 219 4587 979 980 10.1126/science.6823561 6823561
    [Google Scholar]
  41. Burns R.S. Chiueh C.C. Markey S.P. Ebert M.H. Jacobowitz D.M. Kopin I.J. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 1983 80 14 4546 4550 10.1073/pnas.80.14.4546 6192438
    [Google Scholar]
  42. Srivastava S. Haider M.F. Ahmad A. Ahmad U. Arif M. Ali A. Exploring nanoemulsions for prostate cancer therapy. Drug Res. (Stuttg.) 2021 71 8 417 428 10.1055/a‑1518‑6606 34157752
    [Google Scholar]
  43. Schneider J.S. Denaro F.J. Astrocytic responses to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in cat and mouse brain. J. Neuropathol. Exp. Neurol. 1988 47 4 452 458 10.1097/00005072‑198807000‑00006 2898510
    [Google Scholar]
  44. Sayre L.M. Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol. Lett. 1989 48 2 121 149 10.1016/0378‑4274(89)90168‑9 2672418
    [Google Scholar]
  45. Tipton K.F. Singer T.P. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J. Neurochem. 1993 61 4 1191 1206 10.1111/j.1471‑4159.1993.tb13610.x 8376979
    [Google Scholar]
  46. Schapira A.H.V. Cooper J.M. Dexter D. Clark J.B. Jenner P. Marsden C.D. Mitochondrial complex I deficiency in Parkinson’s disease. J. Neurochem. 1990 54 3 823 827 10.1111/j.1471‑4159.1990.tb02325.x 2154550
    [Google Scholar]
  47. Greenamyre J.T. Sherer T.B. Betarbet R. Panov A.V. Complex I and Parkinson’s Disease. IUBMB Life 2001 52 3-5 135 141 10.1080/15216540152845939 11798025
    [Google Scholar]
  48. Schlichtmann B.W. Kalyanaraman B. Schlichtmann R.L. Panthani M.G. Anantharam V. Kanthasamy A.G. Mallapragada S.K. Narasimhan B. Functionalized polyanhydride nanoparticles for improved treatment of mitochondrial dysfunction. J. Biomed. Mater. Res. B Appl. Biomater. 2022 110 2 450 459 10.1002/jbm.b.34922 34312984
    [Google Scholar]
  49. Wang Q. Liu Y. Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener. 2015 4 1 19 10.1186/s40035‑015‑0042‑0 26464797
    [Google Scholar]
  50. Ambrosi G. Cerri S. Blandini F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J. Neural. Transm. 2014 121 849 859
    [Google Scholar]
  51. van der Brug M.P. Singleton A. Gasser T. Lewis P.A. Parkinson’s disease: From human genetics to clinical trials. Sci. Transl. Med. 2015 7 305 205ps20 10.1126/scitranslmed.aaa8280 26378242
    [Google Scholar]
  52. Paisán-Ruíz C. Jain S. Evans E.W. Gilks W.P. Simón J. van der Brug M. de Munain A.L. Aparicio S. Gil A.M. Khan N. Johnson J. Martinez J.R. Nicholl D. Carrera I.M. Peňa A.S. de Silva R. Lees A. Martí-Massó J.F. Pérez-Tur J. Wood N.W. Singleton A.B. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004 44 4 595 600 10.1016/j.neuron.2004.10.023 15541308
    [Google Scholar]
  53. Zimprich A. Biskup S. Leitner P. Lichtner P. Farrer M. Lincoln S. Kachergus J. Hulihan M. Uitti R.J. Calne D.B. Stoessl A.J. Pfeiffer R.F. Patenge N. Carbajal I.C. Vieregge P. Asmus F. Müller-Myhsok B. Dickson D.W. Meitinger T. Strom T.M. Wszolek Z.K. Gasser T. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004 44 4 601 607 10.1016/j.neuron.2004.11.005 15541309
    [Google Scholar]
  54. Funayama M. Hasegawa K. Kowa H. Saito M. Tsuji S. Obata F. A new locus for Parkinson’s disease ( PARK8 ) maps to chromosome 12p11.2–q13.1. Ann. Neurol. 2002 51 3 296 301 10.1002/ana.10113 11891824
    [Google Scholar]
  55. Vilariño-Güell C. Wider C. Ross O.A. Dachsel J.C. Kachergus J.M. Lincoln S.J. Soto-Ortolaza A.I. Cobb S.A. Wilhoite G.J. Bacon J.A. Behrouz B. Melrose H.L. Hentati E. Puschmann A. Evans D.M. Conibear E. Wasserman W.W. Aasly J.O. Burkhard P.R. Djaldetti R. Ghika J. Hentati F. Krygowska-Wajs A. Lynch T. Melamed E. Rajput A. Rajput A.H. Solida A. Wu R.M. Uitti R.J. Wszolek Z.K. Vingerhoets F. Farrer M.J. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 2011 89 1 162 167 10.1016/j.ajhg.2011.06.001 21763482
    [Google Scholar]
  56. Jenner P. Olanow C.W. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 1996 47 6_suppl_3 Suppl. 3 S161 S170 10.1212/WNL.47.6_Suppl_3.161S 8959985
    [Google Scholar]
  57. Blesa J. Trigo-Damas I. Quiroga-Varela A. Jackson-Lewis V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat. 2015 9 91 10.3389/fnana.2015.00091 26217195
    [Google Scholar]
  58. Henchcliffe C. Beal M.F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol. 2008 4 11 600 609 10.1038/ncpneuro0924 18978800
    [Google Scholar]
  59. Olanow C.W. Prusiner S.B. Is Parkinson’s disease a prion disorder? Proc. Natl. Acad. Sci. USA 2009 106 31 12571 12572 10.1073/pnas.0906759106 19666621
    [Google Scholar]
  60. Haider M.F. Khan S. Gaba B. Alam T. Baboota S. Ali J. Ali A. Optimization of rivastigmine nanoemulsion for enhanced brain delivery: in-vivo and toxicity evaluation. J. Mol. Liq. 2018 255 384 396 10.1016/j.molliq.2018.01.123
    [Google Scholar]
  61. Rocca W.A. The burden of Parkinson’s disease: a worldwide perspective. Lancet Neurol. 2018 17 11 928 929 10.1016/S1474‑4422(18)30355‑7 30287052
    [Google Scholar]
  62. Dementia Forecasting Collaborators Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019. Lancet Public Heal. 2022 7 2 E105 E125
    [Google Scholar]
  63. Rascol O. Payoux P. Ory F. Ferreira J.J. Brefel-Courbon C. Montastruc J.L. Limitations of current Parkinson’s disease therapy. Ann. Neurol. 2003 53 S3 Suppl. 3 S3 S15 10.1002/ana.10513 12666094
    [Google Scholar]
  64. Marsden C.D. Problems with long-term levodopa therapy for Parkinson’s disease. Clin. Neuropharmacol. 1994 17 Suppl. 2 S32 S44 9358193
    [Google Scholar]
  65. Jagaran K. Singh M. Lipid nanoparticles: promising treatment approach for Parkinson’s disease. Int. J. Mol. Sci. 2022 23 16 9361 10.3390/ijms23169361 36012619
    [Google Scholar]
  66. Habib S. Singh M. Angiopep-2-modified nanoparticles for brain-directed delivery of therapeutics: A review. Polymers (Basel) 2022 14 4 712 10.3390/polym14040712 35215625
    [Google Scholar]
  67. Poletti M. Bonuccelli U. Acute and chronic cognitive effects of levodopa and dopamine agonists on patients with Parkinson’s disease: a review. Ther. Adv. Psychopharmacol. 2013 3 2 101 113 10.1177/2045125312470130 24167681
    [Google Scholar]
  68. Emamzadeh F.N. Surguchov A. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front. Neurosci. 2018 12 612 10.3389/fnins.2018.00612 30214392
    [Google Scholar]
  69. van Vliet E.F. Knol M.J. Schiffelers R.M. Caiazzo M. Fens M.H.A.M. Levodopa-loaded nanoparticles for the treatment of Parkinson’s disease. J. Control. Release 2023 360 212 224 10.1016/j.jconrel.2023.06.026 37343725
    [Google Scholar]
  70. Qamar Z. Ashhar M.U. Annu Qizilibash F.F. Sahoo P.K. Ali A. Ali J. Baboota S. Lipid nanocarrier of selegiline augmented anti-Parkinson’s effect via P-gp modulation using quercetin. Int. J. Pharm. 2021 609 121131 10.1016/j.ijpharm.2021.121131 34563617
    [Google Scholar]
  71. Adnan M. Haider M.F. Naseem N. Haider T. Transethosomes: a promising challenge for topical delivery short title: transethosomes for topical delivery. Drug Res. (Stuttg.) 2023 73 4 200 212 10.1055/a‑1974‑9078 36736354
    [Google Scholar]
  72. Alberti C. Drug-induced retroperitoneal fibrosis: short aetiopathogenetic note, from the past times of ergot-derivatives large use to currently applied bio-pharmacology. Giornale di Chirurgia - Journal of Surgery 2015 36 4 187 191 10.11138/gchir/2015.36.4.187 26712075
    [Google Scholar]
  73. De Miranda B.R. Miller J.A. Hansen R.J. Lunghofer P.J. Safe S. Gustafson D.L. Colagiovanni D. Tjalkens R.B. Neuroprotective efficacy and pharmacokinetic behavior of novel anti-inflammatory para-phenyl substituted diindolylmethanes in a mouse model of Parkinson’s disease. J. Pharmacol. Exp. Ther. 2013 345 1 125 138 10.1124/jpet.112.201558 23318470
    [Google Scholar]
  74. Connolly B.S. Lang A.E. Pharmacological treatment of Parkinson disease: a review. JAMA 2014 311 16 1670 1683 10.1001/jama.2014.3654 24756517
    [Google Scholar]
  75. Finberg J.P.M. Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson’s disease. J. Neural Transm. (Vienna) 2019 126 4 433 448 10.1007/s00702‑018‑1952‑7 30386930
    [Google Scholar]
  76. Hong C.T. Chan L. Wu D. Chen W.T. Chien L.N. Antiparkinsonism anticholinergics increase dementia risk in patients with Parkinson’s disease. Parkinsonism Relat. Disord. 2019 65 224 229 10.1016/j.parkreldis.2019.06.022 31255536
    [Google Scholar]
  77. Rajan R. Saini A. Verma B. Choudhary N. Gupta A. Vishnu V.Y. Bhatia R. Singh M.B. Srivastava A.K. Srivastava M.V.P. Anticholinergics may carry significant cognitive and gait burden in Parkinson’s Disease. Mov. Disord. Clin. Pract. (Hoboken) 2020 7 7 803 809 10.1002/mdc3.13032 33043076
    [Google Scholar]
  78. Sheu J.J. Tsai M.T. Erickson S.R. Wu C.H. Association between anticholinergic medication use and risk of dementia among patients with Parkinson’s disease. Pharmacotherapy 2019 39 8 798 808 10.1002/phar.2305 31251824
    [Google Scholar]
  79. Aradi S.D. Hauser R.A. Medical management and prevention of motor complications in Parkinson’s disease. Neurotherapeutics 2020 17 4 1339 1365 10.1007/s13311‑020‑00889‑4 32761324
    [Google Scholar]
  80. Abbasi H. Kouchak M. Mirveis Z. Hajipour F. Khodarahmi M. Rahbar N. Handali S. What We Need to Know about Liposomes as Drug Nanocarriers: An Updated Review. Adv. Pharm. Bull. 2023 13 1 7 23 36721822
    [Google Scholar]
  81. Svenson S. What nanomedicine in the clinic right now really forms nanoparticles? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014 6 2 125 135 10.1002/wnan.1257 24415653
    [Google Scholar]
  82. Torchilin V.P. Nanocarriers. Pharm. Res. 2007 24 12 2333 2334 10.1007/s11095‑007‑9463‑5 17934800
    [Google Scholar]
  83. Saidi T. Fortuin J. Douglas T.S. Nanomedicine for drug delivery in South Africa: a protocol for systematic review. Syst. Rev. 2018 7 1 154 10.1186/s13643‑018‑0823‑5 30292237
    [Google Scholar]
  84. Venkatas J. Singh M. Nanomedicine-mediated optimization of immunotherapeutic approaches in cervical cancer. Nanomedicine (Lond.) 2021 16 15 1311 1328 10.2217/nnm‑2021‑0044 34027672
    [Google Scholar]
  85. Adnan M. Akhter M.H. Afzal O. Altamimi A.S.A. Ahmad I. Alossaimi M.A. Jaremko M. Emwas A.H. Haider T. Haider M.F. Exploring Nanocarriers as Treatment Modalities for Skin Cancer. Molecules 2023 28 15 5905 10.3390/molecules28155905 37570875
    [Google Scholar]
  86. Maiyo F.C. Mbatha L.S. Singh M. Selenium nanoparticles in folate-targeted delivery of the pCMV-Luc DNA reporter gene. Curr. Nanosci. 2021 17 6 871 880 10.2174/1573413716666201207141657
    [Google Scholar]
  87. Mbatha L.S. Maiyo F. Daniels A. Singh M. Dendrimer-coated gold nanoparticles for efficient folate-targeted mRNA delivery in vitro. Pharmaceutics 2021 13 6 900 10.3390/pharmaceutics13060900 34204271
    [Google Scholar]
  88. Daniels A.N. Singh M. Sterically stabilized siRNA:gold nanocomplexes enhance c-MYC silencing in a breast cancer cell model. Nanomedicine (Lond.) 2019 14 11 1387 1401 10.2217/nnm‑2018‑0462 31166141
    [Google Scholar]
  89. Monge-Fuentes V. Biolchi Mayer A. Lima M.R. Geraldes L.R. Zanotto L.N. Moreira K.G. Martins O.P. Piva H.L. Felipe M.S.S. Amaral A.C. Bocca A.L. Tedesco A.C. Mortari M.R. Dopamine-loaded nanoparticle systems circumvent the blood–brain barrier restoring motor function in mouse model for Parkinson’s Disease. Sci. Rep. 2021 11 1 15185 10.1038/s41598‑021‑94175‑8 34312413
    [Google Scholar]
  90. Dudhipala N. Gorre T. Neuroprotective effect of ropinirole lipid nanoparticles enriched hydrogel for Parkinson’s disease: In vitro, ex vivo, pharmacokinetic, and pharmacodynamic evaluation. Pharmaceutics 2020 12 5 448 10.3390/pharmaceutics12050448 32414195
    [Google Scholar]
  91. Agrawal M. Ajazuddin Tripathi D.K. Saraf S. Saraf S. Antimisiaris S.G. Mourtas S. Hammarlund-Udenaes M. Alexander A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release 2017 260 61 77 10.1016/j.jconrel.2017.05.019 28549949
    [Google Scholar]
  92. Li T. Cipolla D. Rades T. Boyd B.J. Drug nanocrystallisation within liposomes. J. Control. Release 2018 288 96 110 10.1016/j.jconrel.2018.09.001 30184465
    [Google Scholar]
  93. Li X. Tsibouklis J. Weng T. Zhang B. Yin G. Feng G. Cui Y. Savina I.N. Mikhalovska L.I. Sandeman S.R. Howel C.A. Mikhalovsky S.V. Nano carriers for drug transport across the blood–brain barrier. J. Drug Target. 2017 25 1 17 28 10.1080/1061186X.2016.1184272 27126681
    [Google Scholar]
  94. Patel M.M. Patel B.M. Crossing the Blood–Brain Barrier: Recent Advances in Drug Delivery to the Brain. CNS Drugs 2017 31 2 109 133 10.1007/s40263‑016‑0405‑9 28101766
    [Google Scholar]
  95. Li M. Du C. Guo N. Teng Y. Meng X. Sun H. Li S. Yu P. Galons H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019 a 164 640 653 10.1016/j.ejmech.2019.01.007 30640028
    [Google Scholar]
  96. Kang Y.S. Jung H.J. Oh J.S. Song D.Y. Use of PEGylated Immunoliposomes to Deliver Dopamine Across the Blood–Brain Barrier in a Rat Model of Parkinson’s Disease. CNS Neurosci. Ther. 2016 22 10 817 823 10.1111/cns.12580 27350533
    [Google Scholar]
  97. Tenchov R. Bird R. Curtze A.E. Zhou Q. Lipid nanoparticles—From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021 15 11 16982 17015 10.1021/acsnano.1c04996 34181394
    [Google Scholar]
  98. Paliwal R. Paliwal S.R. Kenwat R. Kurmi B.D. Sahu M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Ther. Pat. 2020 30 179 194 10.1080/13543776.2020.1720649
    [Google Scholar]
  99. Haider M. Abdin S.M. Kamal L. Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics 2020 12 3 288 10.3390/pharmaceutics12030288 32210127
    [Google Scholar]
  100. Habib S. Singh M. Recent advances in lipid-based nanosystems for gemcitabine and gemcitabine–combination therapy. Nanomaterials (Basel) 2021 11 3 597 10.3390/nano11030597 33673636
    [Google Scholar]
  101. Rahman A. Haider M.F. Naseem N. Rahman N. Solubility of Drugs, Their Enhancement, Factors Affecting and Their Limitations: A Review. Int. J. Pharm. Sci. Rev. Res. 2023 79 2 78 94 10.47583/ijpsrr.2023.v79i02.014
    [Google Scholar]
  102. Zhu F.D. Hu Y.J. Yu L. Zhou X.G. Wu J.M. Tang Y. Qin D.L. Fan Q.Z. Wu A.G. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front. Pharmacol. 2021 12 683935 10.3389/fphar.2021.683935 34122112
    [Google Scholar]
  103. Alabrahim O.A.A. Azzazy H.M.E.S. Polymeric nanoparticles for dopamine and levodopa replacement in Parkinson’s disease. Nanoscale Adv. 2022 4 24 5233 5244 10.1039/D2NA00524G 36540116
    [Google Scholar]
  104. Nirale P. Paul A. Yadav K.S. Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer’s, Parkinson’s and Prion’s. Life Sci. 2020 245 117394 10.1016/j.lfs.2020.117394 32017870
    [Google Scholar]
  105. Azeem A. Talegaonkar S. Negi L.M. Ahmad F.J. Khar R.K. Iqbal Z. Oil based nanocarrier system for transdermal delivery of ropinirole: A mechanistic, pharmacokinetic and biochemical investigation. Int. J. Pharm. 2012 422 1-2 436 444 10.1016/j.ijpharm.2011.10.039 22057087
    [Google Scholar]
  106. Soni K.S. Desale S.S. Bronich T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release 2016 240 109 126 10.1016/j.jconrel.2015.11.009 26571000
    [Google Scholar]
  107. Hajebi S. Rabiee N. Bagherzadeh M. Ahmadi S. Rabiee M. Roghani-Mamaqani H. Tahriri M. Tayebi L. Hamblin M.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 2019 92 1 18 10.1016/j.actbio.2019.05.018 31096042
    [Google Scholar]
  108. Khan Z. Haider M.F. Naseem N. Siddiqui M.A. Ahmad U. Khan M.M. Nanocarrier for the treatment of liver cancer. Journal of Pharmaceutical Sciences and Research 2022 14 11 944 957
    [Google Scholar]
  109. Araujo R.V. New advances in general biomedical applications of PAMAM dendrimers. Molecules 2018 23 11 2849 10.3390/molecules23112849
    [Google Scholar]
  110. Dias A.P. da Silva Santos S. da Silva J.V. Parise-Filho R. Igne Ferreira E. Seoud O.E. Giarolla J. Dendrimers in the context of nanomedicine. Int. J. Pharm. 2020 573 118814 10.1016/j.ijpharm.2019.118814 31759101
    [Google Scholar]
  111. Chauhan A.S. Dendrimers for Drug Delivery. Molecules 2018 23 4 938 10.3390/molecules23040938 29670005
    [Google Scholar]
  112. Sherje A.P. Jadhav M. Dravyakar B.R. Kadam D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm. 2018 548 1 707 720 10.1016/j.ijpharm.2018.07.030 30012508
    [Google Scholar]
  113. Lyu Z. Ding L. Tintaru A. Peng L. Self-Assembling Supramolecular Dendrimers for Biomedical Applications: Lessons Learned from Poly(amidoamine) Dendrimers. Acc. Chem. Res. 2020 53 12 2936 2949 10.1021/acs.accounts.0c00589 33275845
    [Google Scholar]
  114. Sandoval-Yañez C. Castro Rodriguez C. Dendrimers: Amazing Platforms for Bioactive Molecule Delivery Systems. Materials (Basel) 2020 13 3 570 10.3390/ma13030570 31991703
    [Google Scholar]
  115. Yousefi M. Narmani A. Jafari S.M. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv. Colloid Interface Sci. 2020 278 102125 10.1016/j.cis.2020.102125 32109595
    [Google Scholar]
  116. Figuerola A. Di Corato R. Manna L. Pellegrino T. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol. Res. 2010 62 2 126 143 10.1016/j.phrs.2009.12.012 20044004
    [Google Scholar]
  117. Dinali R. Ebrahiminezhad A. Manley-Harris M. Ghasemi Y. Berenjian A. Iron oxide nanoparticles in modern microbiology and biotechnology. Crit. Rev. Microbiol. 2017 43 4 493 507 10.1080/1040841X.2016.1267708 28068855
    [Google Scholar]
  118. Xu H. Cheng L. Wang C. Ma X. Li Y. Liu Z. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 2011 32 35 9364 9373 10.1016/j.biomaterials.2011.08.053 21880364
    [Google Scholar]
  119. Du Y. Lai P. Leung C. Pong P. Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI). Int. J. Mol. Sci. 2013 14 9 18682 18710 10.3390/ijms140918682 24030719
    [Google Scholar]
  120. Khandhar A.P. Ferguson R.M. Arami H. Krishnan K.M. Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials 2013 34 15 3837 3845 10.1016/j.biomaterials.2013.01.087 23434348
    [Google Scholar]
  121. Khan A. Naquvi K.J. Haider M.F. Khan M.A. Quality by design-newer technique for pharmaceutical product development. Intell. Pharm. 2023 2 1 122 129
    [Google Scholar]
  122. Schleich N. Danhier F. Préat V. Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation. J. Control. Release 2015 198 35 54 10.1016/j.jconrel.2014.11.024 25481448
    [Google Scholar]
  123. Wu H.Y. Chung M.C. Wang C.C. Huang C.H. Liang H.J. Jan T.R. Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells. Part. Fibre Toxicol. 2013 10 1 46 10.1186/1743‑8977‑10‑46 24047432
    [Google Scholar]
  124. Vance M.E. Kuiken T. Vejerano E.P. McGinnis S.P. Hochella M.F. Jr Rejeski D. Hull M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015 6 1769 1780 10.3762/bjnano.6.181 26425429
    [Google Scholar]
  125. Durfee P.N. Lin Y.S. Dunphy D.R. Muñiz A.J. Butler K.S. Humphrey K.R. Lokke A.J. Agola J.O. Chou S.S. Chen I.M. Wharton W. Townson J.L. Willman C.L. Brinker C.J. Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells. ACS Nano 2016 10 9 8325 8345 10.1021/acsnano.6b02819 27419663
    [Google Scholar]
  126. Echazú M.I.A. Tuttolomondo M.V. Foglia M.L. Mebert A.M. Alvarez G.S. Desimone M.F. Advances in collagen, chitosan and silica biomaterials for oral tissue regeneration: from basics to clinical trials. J. Mater. Chem. B Mater. Biol. Med. 2016 4 43 6913 6929 10.1039/C6TB02108E 32263559
    [Google Scholar]
  127. Liu D. Lin B. Shao W. Zhu Z. Ji T. Yang C. In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier. ACS Appl. Mater. Interfaces 2014 6 3 2131 2136 10.1021/am405219u 24417514
    [Google Scholar]
  128. Murali K. Kenesei K. Li Y. Demeter K. Környei Z. Madarász E. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells. Nanoscale 2015 7 9 4199 4210 10.1039/C4NR06849A 25673096
    [Google Scholar]
  129. Fatima A. Naseem N. Haider M.F. Rahman M.A. Mall J. Saifi M.S. Akhtar J. A comprehensive review on nanocarriers as a targeted delivery system for the treatment of breast cancer. Intelligent Pharmacy 2024 2 3 415 426 10.1016/j.ipha.2024.04.001
    [Google Scholar]
  130. You R. Ho Y.S. Hung C.H.L. Liu Y. Huang C.X. Chan H.N. Ho S.L. Lui S.Y. Li H.W. Chang R.C.C. Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation. Part. Fibre Toxicol. 2018 15 1 28 10.1186/s12989‑018‑0263‑3 29970116
    [Google Scholar]
  131. Armstrong M.J. Okun M.S. Diagnosis and treatment of Parkinson disease: a review. JAMA 2020 323 6 548 560 10.1001/jama.2019.22360 32044947
    [Google Scholar]
  132. Uppuluri C.T. Ravi P.R. Dalvi A.V. Design, optimization and pharmacokinetic evaluation of Piribedil loaded solid lipid nanoparticles dispersed in nasal in situ gelling system for effective management of Parkinson’s disease. Int. J. Pharm. 2021 606 120881 10.1016/j.ijpharm.2021.120881 34273426
    [Google Scholar]
  133. Pangeni R. Sharma S. Mustafa G. Ali J. Baboota S. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress. Nanotechnology 2014 25 48 485102 10.1088/0957‑4484/25/48/485102 25392203
    [Google Scholar]
  134. Rashed E.R. Abd El-Rehim H.A. El-Ghazaly M.A. Potential efficacy of dopamine loaded‐PVP/PAA nanogel in experimental models of Parkinsonism: Possible disease modifying activity. J. Biomed. Mater. Res. A 2015 103 5 1713 1720 10.1002/jbm.a.35312 25131611
    [Google Scholar]
  135. Ordonio M.B. Zaki R.M. Elkordy A.A. Dendrimers-Based Drug Delivery System: A Novel Approach in Addressing Parkinson’s Disease. Future Pharmacol. 2022 2 4 415 430 10.3390/futurepharmacol2040027
    [Google Scholar]
  136. Liu X. Lu S. Liu D. Zhang L. Zhang L. Yu X. Liu R. ScFv-conjugated superparamagnetic iron oxide nanoparticles for MRI-based diagnosis in transgenic mouse models of Parkinson’s and Huntington’s diseases. Brain Res. 2019 1707 141 153 10.1016/j.brainres.2018.11.034 30481502
    [Google Scholar]
  137. Naseem N. Kushwaha P. Haider F. Leveraging nanostructured lipid carriers to enhance targeted delivery and efficacy in breast cancer therapy: a comprehensive review. Naunyn Schmiedebergs Arch. Pharmacol. 2024 ••• 1 20 10.1007/s00210‑024‑03408‑w 39196394
    [Google Scholar]
  138. Ntetsika T. Papathoma P.E. Markaki I. Novel targeted therapies for Parkinson’s disease. Mol. Med. 2021 27 1 17 10.1186/s10020‑021‑00279‑2 33632120
    [Google Scholar]
  139. Fabbri M. Rascol O. Foltynie T. Carroll C. Postuma R.B. Porcher R. Corvol J.C. Advantages and challenges of platform trials for disease modifying therapies in Parkinson’s Disease. Mov. Disord. 2024 39 9 1468 1477 10.1002/mds.29899 38925541
    [Google Scholar]
  140. Parkinson's disease drug. Patent JP2022119144A, 2024.
  141. Rahman A. Haider M.F. A comprehensive review on glucocorticoids induced osteoporosis: A medication caused disease. Steroids 2024 207 109440 10.1016/j.steroids.2024.109440 38754651
    [Google Scholar]
  142. Yànqīng G. Chǔhuá L. Lì L. Míngchāo L. Jiālín Y. Jùnyíng W. Xiǎodié Z. Sùbīng Z. Gold nanoparticle compound modified by liposome and application thereof in treating Parkinson’s disease. Patent CN109331186B, 2019.
  143. Sharma Y. Shobha K. Sundeep M. Pinnelli V. B. Parveen S. Dhanushkodi A. Neural basis of dental pulp stem cells and its potential application in Parkinson’s disease. CNS Neurol. Disord. 2022 21 1 62 76 10.2174/1871527320666210311122921
    [Google Scholar]
  144. Ding H. Wu Q. Nan Y. Wei D. Qi W. Liang Y. Wang X. Dang W. Chen Y. An Example Interpretation of the ROBISIS Tool for Assessing Systematic Review Bias Risk.
    [Google Scholar]
  145. Guo X.Z. Osteocalcin Ameliorates Motor Dysfunction in a 6-Hydroxydopamine-Induced Parkinson's Disease Rat Model Through AKT/GSK3β Signaling. Front Mol. Neurosci. 2018 11 343
    [Google Scholar]
  146. Yan J. Effects of aclidine on behavioral and brain mitochondrial autophagy levels in a parkinson's disease mouse model. Chinese J. Behav. Med. Brain Sci. 2021 30 1 15 21
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273323074241001071645
Loading
/content/journals/cnsnddt/10.2174/0118715273323074241001071645
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: nanocarriers ; dopamine ; patent ; clinical trials ; Neurodegenerative
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test