Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

In this review, we have discussed the invasive and non-invasive treatment options for Parkinson’s Disease (PD) following their safety, specificity, and reliability. Initially, this study has highlighted the invasive treatment options and the side effects they possess. A deep understanding of L-Dopa treatment, as oral or infusion, and the use of dopamine agonists has indicated that there is a need to acquire an alternative treatment for PD. The combined therapy with L-Dopa has been proven to affect PD, but with some limitations, such as mild to chronic side effects, with particular requirements of age and health of the patient and a large amount of expenditure. In the discussion of noninvasive methods to treat PD, we have found that this approach is comparatively slow and requires repetitive sessions, but is safe, effective, and reliable at any stage of PD. Electroconvulsive therapy has revealed its effectiveness in various neurological diseases, including PD. Transcranial current stimulation (direct or alternative) has already been shown to have an alleviative response to PD symptoms. Transcranial magnetic stimulations and other strategies of using the magnetic field for potential treatment options for PD need to be explored further imminently.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273318429240812094557
2024-09-02
2025-01-18
Loading full text...

Full text loading...

References

  1. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  2. IsroilovichA.E. JumanazarovichM.R. MuxsinovnaK.K. AskarovhchM.B. YunusovuchN.O. Texas.J Med Sci2022516
    [Google Scholar]
  3. CostaH.N. EstevesA.R. EmpadinhasN. CardosoS.M. Parkinson’s Disease: A Multisystem Disorder.Neurosci. Bull.202339111312410.1007/s12264‑022‑00934‑6 35994167
    [Google Scholar]
  4. TysnesO.B. StorsteinA. Epidemiology of Parkinson’s disease.J. Neural Transm.2017124890190510.1007/s00702‑017‑1686‑y 28150045
    [Google Scholar]
  5. MarinoB.L.B. de SouzaL.R. SousaK.P.A. Parkinson’s Disease: A Review from Pathophysiology to Treatment.Mini Rev. Med. Chem.202020975476710.2174/1389557519666191104110908 31686637
    [Google Scholar]
  6. VaccariC. El DibR. de CamargoJ.L.V. Paraquat and Parkinson’s disease: a systematic review protocol according to the OHAT approach for hazard identification.Syst. Rev.2017619810.1186/s13643‑017‑0491‑x 28506248
    [Google Scholar]
  7. NairA.T. RamachandranV. JogheeN.M. AntonyS. RamalingamG. Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s disease: a critical review.J. Neurogastroenterol. Motil.2018241304210.5056/jnm17105 29291606
    [Google Scholar]
  8. MarekK. JenningsD. LaschS. Parkinson Progression Marker Initiative.The Parkinson progression marker initiative (PPMI).Prog. Neurobiol.201195462963510.1016/j.pneurobio.2011.09.005 21930184
    [Google Scholar]
  9. LitvinenkoI.V. KrasakovI.V. BisagaG.N. SkulyabinD.I. PoltavskyI.D. Modern conception of the pathogenesis of neurodegenerative diseases and therapeutic strategy.Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova2017117631010.17116/jnevro2017117623‑10 28980606
    [Google Scholar]
  10. WeintraubD. AarslandD. ChaudhuriK.R. The neuropsychiatry of Parkinson’s disease: Advances and challenges.Lancet Neurol.20222118910210.1016/S1474‑4422(21)00330‑6 34942142
    [Google Scholar]
  11. OlanowC.W. WattsR.L. KollerW.C. An algorithm (decision tree) for the management of Parkinson’s disease (2001).Neurology20015611Suppl. 5S1S8810.1212/WNL.56.suppl_5.S1 11402154
    [Google Scholar]
  12. PangS.Y.Y. HoP.W.L. LiuH.F. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease.Transl. Neurodegener.2019812310.1186/s40035‑019‑0165‑9 31428316
    [Google Scholar]
  13. AminR. QuispeC. DoceaA.O. The role of Tumour Necrosis Factor in neuroinflammation associated with Parkinson’s disease and targeted therapies.Neurochem. Int.202215810537610.1016/j.neuint.2022.105376 35667491
    [Google Scholar]
  14. MendellJ.R. Al-ZaidyS.A. Rodino-KlapacL.R. Current clinical applications of in vivo gene therapy with AAVs.Molecular therapy: The Journal of the American Society of Gene Therapy202129464488
    [Google Scholar]
  15. SteinkellnerT. ConradW.S. KovacsI. Dopamine neurons exhibit emergent glutamatergic identity in Parkinson’s disease.Brain2022145387988610.1093/brain/awab373 35258081
    [Google Scholar]
  16. MallP.K. YadavR.K. RaiA.K. NarayanV. SrivastavaS. Early Warning Signs Of Parkinson’s Disease Prediction Using Machine Learning Technique.J. Pharm. Negat. Results202247844792
    [Google Scholar]
  17. GroverS. BhartiaS. YadavA. SeejaK. Predicting severity of Parkinson’s disease using deep learning.Procedia Comput. Sci.20181321788179410.1016/j.procs.2018.05.154
    [Google Scholar]
  18. MontgomeryE.B.Jr Heavy metals and the etiology of Parkinson’s disease and other movement disorders.Toxicology1995971-33910.1016/0300‑483X(94)02962‑T 7716790
    [Google Scholar]
  19. WiseR.M. WagenerA. FietzekU.M. Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson’s disease and Neurodegeneration with Brain Iron Accumulation disorders.Neurobiol. Dis.202217510592010.1016/j.nbd.2022.105920 36351559
    [Google Scholar]
  20. NuytemansK. TheunsJ. CrutsM. Van BroeckhovenC. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update.Hum. Mutat.201031776378010.1002/humu.21277 20506312
    [Google Scholar]
  21. KenborgL. LassenC.F. RitzB. Lifestyle, family history, and risk of idiopathic Parkinson disease: A large Danish case-control study.Am. J. Epidemiol.20151811080881610.1093/aje/kwu332 25925389
    [Google Scholar]
  22. ColemanC. MartinI. Unraveling Parkinson’s Disease Neurodegeneration: Does Aging Hold the Clues?J. Parkinsons Dis.20221282321233810.3233/JPD‑223363 36278358
    [Google Scholar]
  23. GilliesG.E. VirdeeK. McArthurS. DalleyJ.W. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: A molecular, cellular and behavioral analysis.Neuroscience2014282698510.1016/j.neuroscience.2014.05.033 24943715
    [Google Scholar]
  24. ChoongC.J. MochizukiH. Involvement of Mitochondria in Parkinson’s Disease.Int. J. Mol. Sci.202324231702710.3390/ijms242317027 38069350
    [Google Scholar]
  25. PajaresM. Inflammation in Parkinson’s Disease: Mechanisms and Therapeutic Implications.Cells20209
    [Google Scholar]
  26. OertelW. SchulzJ.B. Current and experimental treatments of Parkinson disease: A guide for neuroscientists.J. Neurochem.2016139S1Suppl. 132533710.1111/jnc.13750 27577098
    [Google Scholar]
  27. AntoniniA. D’OnofrioV. GuerraA. Current and novel infusion therapies for patients with Parkinson’s disease.J. Neural Transm.2023130111349135810.1007/s00702‑023‑02693‑8 37672049
    [Google Scholar]
  28. FahnS. OakesD. ShoulsonI. Parkinson study groupLevodopa and the progression of Parkinson’s disease.N. Engl. J. Med.2004351242498250810.1056/NEJMoa033447 15590952
    [Google Scholar]
  29. TaoY. VermilyeaS.C. ZammitM. Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys.Nat. Med.202127463263910.1038/s41591‑021‑01257‑1 33649496
    [Google Scholar]
  30. Jung KangU. AuingerP. FahnS. Parkinson Study Group ELLDOPA InvestigatorsActivity enhances dopaminergic long-duration response in Parkinson disease.Neurology201278151146114910.1212/WNL.0b013e31824f8056 22459675
    [Google Scholar]
  31. FranceschelliS. LanutiP. FerroneA. Patruno, modulation of apoptotic cell death and neuroprotective effects of glutathione-L-dopa codrug against H2O2-induced cellular toxicity In: (Basel, Switzerland).Antioxidants20198
    [Google Scholar]
  32. MacleodA.D. TaylorK.S.M. CounsellC.E. Mortality in Parkinson’s disease: A systematic review and meta‐analysis.Mov. Disord.201429131615162210.1002/mds.25898 24821648
    [Google Scholar]
  33. OlanowC.W. KieburtzK. OdinP. LCIG horizon study group. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: A randomised, controlled, double-blind, double-dummy study.Lancet Neurol.201413214114910.1016/S1474‑4422(13)70293‑X 24361112
    [Google Scholar]
  34. BaianoC. BaroneP. TrojanoL. SantangeloG. Prevalence and clinical aspects of mild cognitive impairment in Parkinson’s disease: A meta-analysis.Mov. Disord.2020351455410.1002/mds.27902 31743500
    [Google Scholar]
  35. NakagawaM. InoueN. TakiseS. Buried bumper syndrome in percutaneous endoscopic gastrostomy with a jejunal extension tube in patients undergoing levodopa-carbidopa intestinal gel treatment.Surg. Case Rep.20239121310.1186/s40792‑023‑01785‑7 38072871
    [Google Scholar]
  36. KatzenschlagerR. HughesA. EvansA. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: A prospective study using single‐dose challenges.Mov. Disord.200520215115710.1002/mds.20276 15390035
    [Google Scholar]
  37. SchenkmanM. MooreC.G. KohrtW.M. Effect of High-intensity treadmill exercise on motor symptoms in patients with de novo Parkinson disease.JAMA Neurol.201875221922610.1001/jamaneurol.2017.3517 29228079
    [Google Scholar]
  38. KwonD.K. KwatraM. WangJ. KoH.S. Levodopa-induced dyskinesia in Parkinson’s disease: Pathogenesis and emerging treatment strategies.Cells20221123373610.3390/cells11233736 36496996
    [Google Scholar]
  39. EspayA.J. StocchiF. PahwaR. Boundless study groupSafety and efficacy of continuous subcutaneous levodopa–carbidopa infusion (ND0612) For Parkinson’s Disease with motor fluctuations (Boundless): A phase 3, randomised, double-blind, double-dummy, multicentre trial.Lancet Neurol.202423546547610.1016/S1474‑4422(24)00052‑8 38499015
    [Google Scholar]
  40. FénelonG. Giménez-RoldánS. MontastrucJ.L. Efficacy and tolerability of entacapone in patients with Parkinson’s disease treated with levodopa plus a dopamine agonist and experiencing wearing-off motor fluctuations. A randomized, double-blind, multicentre study.J. Neural Transm. (Vienna)2003110323925110.1007/s00702‑002‑0799‑z 12658373
    [Google Scholar]
  41. HeinonenE.H. RinneU.K. Selegiline in the treatment of Parkinson’s disease.Acta Neurol. Scand. Suppl.1989126103111 2515715
    [Google Scholar]
  42. NayakL. HenchcliffeC. Rasagiline in treatment of Parkinson’s disease.Neuropsychiatr. Dis. Treat.2008412332 18728823
    [Google Scholar]
  43. Perez-LloretS. ReyM.V. RattiL. RascolO. Pramipexole for the treatment of early Parkinson’s disease.Expert Rev. Neurother.201111792593510.1586/ern.11.75 21721909
    [Google Scholar]
  44. NashatizadehM.M. LyonsK.E. PahwaR. A review of ropinirole prolonged release in Parkinson’s disease.Clin. Interv. Aging20094179186 19503779
    [Google Scholar]
  45. PahwaR. TannerC.M. HauserR.A. Amantadine extended release for levodopa‐induced dyskinesia in Parkinson’s disease (EASED Study).Mov. Disord.201530678879510.1002/mds.26159 25650051
    [Google Scholar]
  46. DingW. DingL.J. LiF.F. HanY. MuL. Neurodegeneration and cognition in Parkinson’s disease: a review.Eur. Rev. Med. Pharmacol. Sci.2015191222752281 26166654
    [Google Scholar]
  47. PoeweW. When a Parkinson’s disease patient starts to hallucinate.Pract. Neurol.20088423824110.1136/jnnp.2008.152579 18644910
    [Google Scholar]
  48. KashiharaK. MaedaT. YoshidaK. Safety and tolerability of aripiprazole in patients with psychosis associated with Parkinson’s disease-Results of a multicenter open trial.Neuropsychopharmacol. Rep.202242213514110.1002/npr2.12235 35226404
    [Google Scholar]
  49. CostaJ. LunetN. SantosC. SantosJ. Vaz-CarneiroA. Caffeine exposure and the risk of Parkinson’s disease: A systematic review and meta-analysis of observational studies.J. Alzheimers Dis.201020s1Suppl. 1S221S23810.3233/JAD‑2010‑091525 20182023
    [Google Scholar]
  50. WillsA.M.A. EberlyS. TennisM. Parkinson Study GroupCaffeine consumption and risk of dyskinesia in CALM ‐ PD.Mov. Disord.201328338038310.1002/mds.25319 23339054
    [Google Scholar]
  51. PostumaR.B. LangA.E. MunhozR.P. Caffeine for treatment of Parkinson disease.Neurology201279765165810.1212/WNL.0b013e318263570d 22855866
    [Google Scholar]
  52. ZhangN. ShuH.Y. HuangT. Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity.PLoS One201496e10028610.1371/journal.pone.0100286 24959672
    [Google Scholar]
  53. de LauL.M.L. KoudstaalP.J. HofmanA. BretelerM.M.B. Serum uric acid levels and the risk of Parkinson disease.Ann. Neurol.200558579780010.1002/ana.20663 16240356
    [Google Scholar]
  54. WeisskopfM. O’ReillyE. ChenH. SchwarzschildM. AscherioA. Plasma urate and risk of Parkinson’s disease.Am. J. Epidemiol.2007166556156710.1093/aje/kwm127 17584757
    [Google Scholar]
  55. AscherioA. LeWittP.A. XuK. Parkinson Study Group DATATOP InvestigatorsUrate as a predictor of the rate of clinical decline in Parkinson disease.Arch. Neurol.200966121460146810.1001/archneurol.2009.247 19822770
    [Google Scholar]
  56. WangQ. DuW. WangH. Nicotine’s effect on cognition, a friend or foe?Prog. Neuropsychopharmacol. Biol. Psychiatry202312411072310.1016/j.pnpbp.2023.110723 36736944
    [Google Scholar]
  57. DeuschlG. AntoniniA. CostaJ. European Academy of Neurology/Movement Disorder Society‐European Section Guideline on the Treatment of Parkinson’s Disease: I. Invasive Therapies.Mov. Disord.20223771360137410.1002/mds.29066 35791767
    [Google Scholar]
  58. RascolO. FabbriM. PoeweW. Amantadine in the treatment of Parkinson’s disease and other movement disorders.Lancet Neurol.202120121048105610.1016/S1474‑4422(21)00249‑0 34678171
    [Google Scholar]
  59. OliveiraA.M. CoelhoL. CarvalhoE. Ferreira-PintoM.J. VazR. AguiarP. Machine learning for adaptive deep brain stimulation in Parkinson’s disease: closing the loop.J. Neurol.2023270115313532610.1007/s00415‑023‑11873‑1 37530789
    [Google Scholar]
  60. ChenR. GargR.R. LozanoA.M. LangA.E. Effects of internal globus pallidus stimulation on motor cortex excitability.Neurology200156671672310.1212/WNL.56.6.716 11274304
    [Google Scholar]
  61. CunicD. RoshanL. KhanF.I. LozanoA.M. LangA.E. ChenR. Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease.Neurology200258111665167210.1212/WNL.58.11.1665 12058096
    [Google Scholar]
  62. BoucaiL. CerquettiD. MerelloM. Functional surgery for Parkinson’s disease treatment: a structured analysis of a decade of published literature.Br. J. Neurosurg.200418321322210.1080/02688690410001732625 15327220
    [Google Scholar]
  63. LannonM. DudaT. MastrolonardoA. Economic Evaluations Comparing Deep Brain Stimulation to Best Medical Therapy for Movement Disorders: A Meta-Analysis.PharmacoEconomics2024421416810.1007/s40273‑023‑01318‑y 37751075
    [Google Scholar]
  64. ChmielJ. RybakowskiF. LeszekJ. Effect of Transcranial Direct Current Stimulation (tDCS) on Depression in Parkinson’s Disease—A Narrative Review.J. Clin. Med.202413369910.3390/jcm13030699 38337395
    [Google Scholar]
  65. TakamiyaA. SekiM. KudoS. Electroconvulsive Therapy for Parkinson’s Disease: A Systematic Review and Meta‐Analysis.Mov. Disord.2021361505810.1002/mds.28335 33280168
    [Google Scholar]
  66. FregniF. SimonD.K. WuA. Pascual-LeoneA. Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature.J. Neurol. Neurosurg. Psychiatry200576121614162310.1136/jnnp.2005.069849 16291882
    [Google Scholar]
  67. KjærK. JørgensenM.B. HagemanI. MiskowiakK.W. WörtweinG. The effect of erythropoietin on electroconvulsive stimulation induced cognitive impairment in rats.Behav. Brain Res.202038211248410.1016/j.bbr.2020.112484 31954736
    [Google Scholar]
  68. MurayamaT. KobayashiS. MatsuokaT. Effectiveness of Electroconvulsive Therapy in Patients With Advanced Parkinson Disease.J. ECT2021372889310.1097/YCT.0000000000000732 33337651
    [Google Scholar]
  69. CumperS.K. AhleG.M. LiebmanL.S. KellnerC.H. Electroconvulsive therapy (ECT) in Parkinson’s disease: ECS and dopamine enhancement.J. ECT201430212212410.1097/YCT.0000000000000142 24810775
    [Google Scholar]
  70. JoriA. DolfiniE. CasatiC. ArgentaG. Effect of ECT and imipramine treatment on the concentration of 5-hydroxyindoleacetic acid (5HIAA) and homovanillic acid (HVA) in the cerebrospinal fluid of depressed patients.Psychopharmacology (Berl.)1975441879010.1007/BF00421189 1105628
    [Google Scholar]
  71. KennedyR. MittalD. O’JileJ. Electroconvulsive therapy in movement disorders: an update.J. Neuropsychiatry Clin. Neurosci.200315440742110.1176/jnp.15.4.407 14627767
    [Google Scholar]
  72. FallP.A. GranérusA.K. Maintenance ECT in Parkinson’s disease.J. Neural Transm. (Vienna)19991067-873774110.1007/s007020050194 10907732
    [Google Scholar]
  73. XiaM. WangJ. ShengJ. Effect of Electroconvulsive Therapy on Medial Prefrontal γ-Aminobutyric Acid Among Schizophrenia Patients.J. ECT201834422723210.1097/YCT.0000000000000507 29877964
    [Google Scholar]
  74. YangC. QiuY. QingY. Synergistic effect of electric stimulation and mesenchymal stem cells against Parkinson’s disease.Aging (Albany NY)20201216160621607110.18632/aging.103477 32836217
    [Google Scholar]
  75. PintorL. ValldeoriolaF. Fernández-EgeaE. Use of electroconvulsive therapy in Parkinson disease with residual axial symptoms partially unresponsive to L-dopa: a pilot study.J. ECT2012282879110.1097/YCT.0b013e31823c98c0 22531200
    [Google Scholar]
  76. UedaS. KoyamaK. OkuboY. Marked improvement of psychotic symptoms after electroconvulsive therapy in Parkinson disease.J. ECT201026211111510.1097/YCT.0b013e3181c18a3d 20386461
    [Google Scholar]
  77. AfshariD. ShakeriJ. KhodamoradiM. AbadiR.N.S. RahkanJ. Afshar HezarkhaniL. Efficacy of electroconvulsive therapy in Parkinson’s disease: A clinical trial.Neurosci. Lett.202277213644910.1016/j.neulet.2022.136449 35026333
    [Google Scholar]
  78. NitscheM.A. PaulusW. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.J. Physiol.2000527363363910.1111/j.1469‑7793.2000.t01‑1‑00633.x 10990547
    [Google Scholar]
  79. PrioriA. BerardelliA. RonaS. AccorneroN. ManfrediM. Polarization of the human motor cortex through the scalp.Neuroreport19989102257226010.1097/00001756‑199807130‑00020 9694210
    [Google Scholar]
  80. NikolinS. MoffaA. RazzaL. Time-course of the tDCS antidepressant effect: An individual participant data meta-analysis.Prog. Neuropsychopharmacol. Biol. Psychiatry202312511075210.1016/j.pnpbp.2023.110752 36931456
    [Google Scholar]
  81. DorukD. GrayZ. BravoG.L. Pascual-LeoneA. FregniF. Effects of tDCS on executive function in Parkinson’s disease.Neurosci. Lett.2014582273110.1016/j.neulet.2014.08.043 25179996
    [Google Scholar]
  82. CaumoW. Lopes RamosR. Vicuña SerranoP. Efficacy of Home-Based Transcranial Direct Current Stimulation Over the Primary Motor Cortex and Dorsolateral Prefrontal Cortex in the Disability Due to Pain in Fibromyalgia: A Factorial Sham-Randomized Clinical Study.J. Pain202425237639210.1016/j.jpain.2023.09.001 37689323
    [Google Scholar]
  83. BenningerD.H. LomarevM. LopezG. Transcranial direct current stimulation for the treatment of Parkinson’s disease.J. Neurol. Neurosurg. Psychiatry201182 20870863
    [Google Scholar]
  84. LiuA FregniF HummelF Pascual-LeoneA Therapeutic applications of transcranial magnetic stimulation/transcranial direct current stimulation in neurology.Transcranial brain stimulation2012359412
    [Google Scholar]
  85. PezzettaR. GambarotaF. TarantinoV. A meta-analysis of non-invasive brain stimulation (NIBS) effects on cerebellar-associated cognitive processes.Neurosci. Biobehav. Rev.202415710550910.1016/j.neubiorev.2023.105509 38101590
    [Google Scholar]
  86. NonnekesJ. ArrogiA. MunnekeM.A.M. Subcortical structures in humans can be facilitated by transcranial direct current stimulation.PLoS One201499e10773110.1371/journal.pone.0107731 25233458
    [Google Scholar]
  87. LuC. WeiY. HuR. WangY. LiK. LiX. Transcranial direct current stimulation ameliorates behavioral deficits and reduces oxidative stress in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of Parkinson’s disease.Neuromodulation201518644244710.1111/ner.12302 25929279
    [Google Scholar]
  88. FengX.J. HuangY.T. HuangY.Z. Early transcranial direct current stimulation treatment exerts neuroprotective effects on 6-OHDA-induced Parkinsonism in rats.Brain Stimul.202013365566310.1016/j.brs.2020.02.002 32289694
    [Google Scholar]
  89. PolaníaR. NitscheM.A. PaulusW. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation.Hum. Brain Mapp.20113281236124910.1002/hbm.21104 20607750
    [Google Scholar]
  90. KarabanovA. ZiemannU. ClassenJ. SiebnerH.R. Understanding homeostatic metaplasticity, Transcranial brain stimulation.In: CRC Press2012
    [Google Scholar]
  91. BandeiraI.D. Lins-SilvaD.H. BarouhJ.L. Neuroplasticity and non-invasive brain stimulation in the developing brain.Prog Brain Res2021264578910.1016/bs.pbr.2021.04.003 34167665
    [Google Scholar]
  92. HartyS. RobertsonI.H. MiniussiC. Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age.J. Neurosci.201434103646365210.1523/JNEUROSCI.5308‑13.2014 24599463
    [Google Scholar]
  93. MiniussiC. HarrisJ.A. RuzzoliM. Modelling non-invasive brain stimulation in cognitive neuroscience.Neurosci. Biobehav. Rev.20133781702171210.1016/j.neubiorev.2013.06.014 23827785
    [Google Scholar]
  94. AiY. LiuY. YinM. Interactions between tDCS treatment and COMT Val158Met in poststroke cognitive impairment.Clin. Neurophysiol.2024158435510.1016/j.clinph.2023.12.011 38176157
    [Google Scholar]
  95. GratwickeJ. JahanshahiM. FoltynieT. Parkinson’s disease dementia: A neural networks perspective.Brain201513861454147610.1093/brain/awv104 25888551
    [Google Scholar]
  96. BolognaM. SuppaA. ConteA. LatorreA. RothwellJ.C. BerardelliA. Are studies of motor cortex plasticity relevant in human patients with Parkinson’s disease?Clin. Neurophysiol.20161271505910.1016/j.clinph.2015.02.009 25792075
    [Google Scholar]
  97. LaiM.H. YuX.M. LuY. Effectiveness and brain mechanism of multi-target transcranial alternating current stimulation (tACS) on motor learning in stroke patients: Study protocol for a randomized controlled trial.Trials20242519710.1186/s13063‑024‑07913‑4 38291500
    [Google Scholar]
  98. WischnewskiM. AlekseichukI. OpitzA. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation.Trends Cogn. Sci.202327218920510.1016/j.tics.2022.11.013 36543610
    [Google Scholar]
  99. RiddleJ. FrohlichF. Targeting neural oscillations with transcranial alternating current stimulation.Brain Res.2021176514749110.1016/j.brainres.2021.147491 33887251
    [Google Scholar]
  100. ChenX. WuY. ShiX. Neuromodulatory effects of high-definition theta transcranial alternating current stimulation on the parietal cortex: a pilot study of healthy males.Front. Neurosci.202317125512410.3389/fnins.2023.1255124 38027510
    [Google Scholar]
  101. GuerraA. ColellaD. GiangrossoM. Driving motor cortex oscillations modulates bradykinesia in Parkinson’s disease.Brain2022145122423610.1093/brain/awab257 34245244
    [Google Scholar]
  102. WitkowskiM. Garcia-CossioE. ChanderB.S. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS).Neuroimage2016140899810.1016/j.neuroimage.2015.10.024 26481671
    [Google Scholar]
  103. De KoninckB.P. BrazeauD. GuayS. Herrero BabiloniA. De BeaumontL. Transcranial alternating current stimulation to modulate alpha activity: A systematic review. Neuromodulation.Journal of the International Neuromodulation Society2023261549158410.1016/j.neurom.2022.12.007
    [Google Scholar]
  104. Del FeliceA. CastigliaL. FormaggioE. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: A randomized cross-over trial.Neuroimage Clin.20192210176810.1016/j.nicl.2019.101768 30921609
    [Google Scholar]
  105. GuerraA. AsciF. D’OnofrioV. Enhancing gamma oscillations restores primary motor cortex plasticity in Parkinson’s disease.J. Neurosci.202040244788479610.1523/JNEUROSCI.0357‑20.2020 32430296
    [Google Scholar]
  106. KrauseV. WachC. SüdmeyerM. FerreaS. SchnitzlerA. PollokB. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease.Front. Hum. Neurosci.2014792810.3389/fnhum.2013.00928 24474912
    [Google Scholar]
  107. ShillH.A. ObradovS. KatsnelsonY. PizingerR. A randomized, double‐blind trial of transcranial electrostimulation in early Parkinson’s disease.Mov. Disord.20112681477148010.1002/mds.23591 21538515
    [Google Scholar]
  108. JoundiR.A. BrittainJ.S. GreenA.L. AzizT.Z. BrownP. JenkinsonN. Persistent suppression of subthalamic beta-band activity during rhythmic finger tapping in Parkinson’s disease.Clin. Neurophysiol.2013124356557310.1016/j.clinph.2012.07.029 23085388
    [Google Scholar]
  109. GuerraA. D’OnofrioV. AsciF. Assessing the interaction between L‐dopa and γ ‐transcranial alternating current stimulation effects on primary motor cortex plasticity in Parkinson’s disease.Eur. J. Neurosci.202357120121210.1111/ejn.15867 36382537
    [Google Scholar]
  110. HillG. JohnsonF. UyJ. Moderate intensity aerobic exercise may enhance neuroplasticity of the contralesional hemisphere after stroke: A randomised controlled study.Sci. Rep.20231311444010.1038/s41598‑023‑40902‑2 37660093
    [Google Scholar]
  111. ZhaoD. LiY. LiuT. VoonV. YuanT.F. Twice-daily theta burst stimulation of the dorsolateral prefrontal cortex reduces methamphetamine craving: a pilot study.Front. Neurosci.20201420810.3389/fnins.2020.00208 32273837
    [Google Scholar]
  112. LeeC.W. WuH.F. ChuM.C. Mechanism of intermittent theta-burst stimulation in synaptic pathology in the prefrontal cortex in an antidepressant-resistant depression rat model.Cereb. Cortex202131157559010.1093/cercor/bhaa244 32901273
    [Google Scholar]
  113. JinZ. WangY. MengD. Intermittent theta-burst stimulation combined with physical therapy as an optimal rehabilitation in Parkinson’s disease: study protocol for a randomised, double-blind, controlled trial.Trials202324141010.1186/s13063‑023‑07425‑7 37328845
    [Google Scholar]
  114. ObermanL. EdwardsD. EldaiefM. Pascual-LeoneA. Safety of theta burst transcranial magnetic stimulation: a systematic review of the literature.J. Clin. Neurophysiol.2011281677410.1097/WNP.0b013e318205135f 21221011
    [Google Scholar]
  115. ChangK.Y. TikM. Mizutani-TiebelY. Neural response during prefrontal theta burst stimulation: Interleaved TMS-fMRI of full iTBS protocols.Neuroimage202429112059610.1016/j.neuroimage.2024.120596 38554783
    [Google Scholar]
  116. HoyK.E. BaileyN. MichaelM. Enhancement of working memory and task-related oscillatory activity following intermittent theta burst stimulation in healthy controls.Cereb. Cortex201626124563457310.1093/cercor/bhv193 26400923
    [Google Scholar]
  117. SchicktanzN. FastenrathM. MilnikA. Continuous theta burst stimulation over the left dorsolateral prefrontal cortex decreases medium load working memory performance in healthy humans.PLoS One2015103e012064010.1371/journal.pone.0120640 25781012
    [Google Scholar]
  118. EkmanU. ErikssonJ. ForsgrenL. MoS.J. RiklundK. NybergL. Functional brain activity and presynaptic dopamine uptake in patients with Parkinson’s disease and mild cognitive impairment: a cross-sectional study.Lancet Neurol.201211867968710.1016/S1474‑4422(12)70138‑2 22742929
    [Google Scholar]
  119. MonchiO. DegrootC. Mejia-ConstainB. BruneauM.A. Neuroimaging studies of different cognitive profiles in Parkinson’s disease.Parkinsonism Relat. Disord.201218Suppl. 1S77S7910.1016/S1353‑8020(11)70025‑6 22166462
    [Google Scholar]
  120. MonchiO. StoesslA.J. Imaging neural correlates of mild cognitive impairment in Parkinson’s disease.Lancet Neurol.201211865365510.1016/S1474‑4422(12)70162‑X 22814534
    [Google Scholar]
  121. TsaiP.Y. LinW.S. TsaiK.T. KuoC.Y. LinP.H. High-frequency versus theta burst transcranial magnetic stimulation for the treatment of poststroke cognitive impairment in humans.J. Psychiatry Neurosci.202045426227010.1503/jpn.190060 32159313
    [Google Scholar]
  122. HeW. WangJ.C. TsaiP.Y. Theta burst magnetic stimulation improves Parkinson’s-related cognitive impairment: a randomised controlled study.Neurorehabil. Neural Repair2021351198699510.1177/15459683211041311 34467796
    [Google Scholar]
  123. BrakI.V. FilimonovaE. ZakhariyaO. KhasanovR. StepanyanI. Transcranial Current Stimulation as a Tool of Neuromodulation of Cognitive Functions in Parkinson’s Disease.Front. Neurosci.20221678148810.3389/fnins.2022.781488 35903808
    [Google Scholar]
  124. WuT. HallettM. Reply: The cerebellum in Parkinson’s disease and parkinsonism in cerebellar disorders.Brain20131369e249e910.1093/brain/awt100 23739172
    [Google Scholar]
  125. LewisM.M. GalleyS. JohnsonS. StevensonJ. HuangX. McKeownM.J. The role of the cerebellum in the pathophysiology of Parkinson’s disease.Can. J. Neurol. Sci.201340329930610.1017/S0317167100014232 23603164
    [Google Scholar]
  126. OzgenMN SahinNE ErtanN SahinB Investigation of total cerebellar and flocculonodular lobe volume in Parkinson's disease and healthy individuals: a brain segmentation study.Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology202410.1007/s10072‑024‑07509‑5
    [Google Scholar]
  127. KochG. BrusaL. CarrilloF. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease.Neurology200973211311910.1212/WNL.0b013e3181ad5387 19597133
    [Google Scholar]
  128. KishoreA. PopaT. BalachandranA. Cerebellar sensory processing alterations impact motor cortical plasticity in Parkinson’s disease: clues from dyskinetic patients.Cereb. Cortex20142482055206710.1093/cercor/bht058 23535177
    [Google Scholar]
  129. BolognaM. Di BiasioF. ConteA. IezziE. ModugnoN. BerardelliA. Effects of cerebellar continuous theta burst stimulation on resting tremor in Parkinson’s disease.Parkinsonism Relat. Disord.20152191061106610.1016/j.parkreldis.2015.06.015 26117437
    [Google Scholar]
  130. Pascual-LeoneA. Valls-SoléJ. WassermannE.M. HallettM. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.Brain1994117484785810.1093/brain/117.4.847 7922470
    [Google Scholar]
  131. ChenR. ClassenJ. GerloffC. Depression of motor cortex excitability by low‐frequency transcranial magnetic stimulation.Neurology19974851398140310.1212/WNL.48.5.1398 9153480
    [Google Scholar]
  132. WeiY. TuL. HeL. Research hotspots and trends of transcranial magnetic stimulation in Parkinson’s disease: a bibliometric analysis.Front. Neurosci.202317128018010.3389/fnins.2023.1280180 37928722
    [Google Scholar]
  133. ElahiB. ElahiB. ChenR. Effect of transcranial magnetic stimulation on Parkinson motor function—Systematic review of controlled clinical trials.Mov. Disord.200924335736310.1002/mds.22364 18972549
    [Google Scholar]
  134. BenningerD.H. BermanB.D. HoudayerE. Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease.Neurology201176760160910.1212/WNL.0b013e31820ce6bb 21321333
    [Google Scholar]
  135. ShirotaY. OhtsuH. HamadaM. EnomotoH. UgawaY. Research Committee on rTMS Treatment of Parkinson’s Disease.Supplementary motor area stimulation for Parkinson disease.Neurology201380151400140510.1212/WNL.0b013e31828c2f66 23516319
    [Google Scholar]
  136. DragaševicN. PotrebićA. DamjanovićA. StefanovaE. KostićV.S. Therapeutic efficacy of bilateral prefrontal slow repetitive transcranial magnetic stimulation in depressed patients with Parkinson’s disease: An open study.Mov. Disord.200217352853210.1002/mds.10109 12112202
    [Google Scholar]
  137. SommerM. KammT. TergauF. UlmG. PaulusW. Repetitive paired-pulse transcranial magnetic stimulation affects corticospinal excitability and finger tapping in Parkinson’s disease.Clin. Neurophysiol.2002113694495010.1016/S1388‑2457(02)00061‑5 12048055
    [Google Scholar]
  138. IkeguchiM. TougeT. NishiyamaY. TakeuchiH. KuriyamaS. OhkawaM. Effects of successive repetitive transcranial magnetic stimulation on motor performances and brain perfusion in idiopathic Parkinson’s disease.J. Neurol. Sci.20032091-2414610.1016/S0022‑510X(02)00459‑8 12686400
    [Google Scholar]
  139. LefaucheurJ.P. DrouotX. Von RaisonF. Ménard-LefaucheurI. CesaroP. NguyenJ.P. Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease.Clin. Neurophysiol.2004115112530254110.1016/j.clinph.2004.05.025 15465443
    [Google Scholar]
  140. Pascual-LeoneA. TormosJ.M. KeenanJ. TarazonaF. CañeteC. CataláM.D. Study and modulation of human cortical excitability with transcranial magnetic stimulation.J. Clin. Neurophysiol.199815433334310.1097/00004691‑199807000‑00005 9736467
    [Google Scholar]
  141. KhedrE.M. FarweezH.M. IslamH. Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients.Eur. J. Neurol.200310556757210.1046/j.1468‑1331.2003.00649.x 12940840
    [Google Scholar]
  142. LomarevM.P. KanchanaS. Bara-JimenezW. IyerM. WassermannE.M. HallettM. Placebo‐controlled study of rTMS for the treatment of Parkinson’s disease.Mov. Disord.200621332533110.1002/mds.20713 16211618
    [Google Scholar]
  143. KhedrE.M. RothwellJ.C. ShawkyO.A. AhmedM.A. HamdyA. Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease.Mov. Disord.200621122201220510.1002/mds.21089 17219616
    [Google Scholar]
  144. KochG. BrusaL. CaltagironeC. rTMS of supplementary motor area modulates therapy-induced dyskinesias in Parkinson disease.Neurology200565462362510.1212/01.wnl.0000172861.36430.95 16116131
    [Google Scholar]
  145. BrusaL. VersaceV. KochG. Low frequency rTMS of the SMA transiently ameliorates peak-dose LID in Parkinson’s disease.Clin. Neurophysiol.200611791917192110.1016/j.clinph.2006.03.033 16887383
    [Google Scholar]
  146. Wagle-ShuklaA. AngelM.J. ZadikoffC. Low-frequency repetitive transcranial magnetic stimulation for treatment of levodopa-induced dyskinesias.Neurology200768970470510.1212/01.wnl.0000256036.20927.a5 17325284
    [Google Scholar]
  147. FilipovićS.R. RothwellJ.C. van de WarrenburgB.P. BhatiaK. Repetitive transcranial magnetic stimulation for levodopa‐induced dyskinesias in Parkinson’s disease.Mov. Disord.200924224625310.1002/mds.22348 18951540
    [Google Scholar]
  148. Wagle ShuklaA. ShusterJ.J. ChungJ.W. Repetitive transcranial magnetic stimulation (rTMS) therapy in Parkinson disease: a meta-analysis.PM R20168435636610.1016/j.pmrj.2015.08.009 26314233
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273318429240812094557
Loading
/content/journals/cnsnddt/10.2174/0118715273318429240812094557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test