Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Background and Objective

The brain α7 nicotinic acetylcholine receptor (α7 nAChR) has a critical role in the pathophysiology of Major Depressive Disorder (MDD) involving neuroinflammation. The α7 nAChR stimulation has been shown to modulate the anti-inflammatory effects of nuclear peroxisome proliferator-activated receptor-α (PPAR-α) its endogenous ligands in the brain. The present study determined the effects of α7 nAChR modulator PNU120596 on PPAR-α, an inhibitor of κB (IκB) and nuclear factor-κB (NF-κB) expression and interleukin-1β (IL-1β) 
level in the hippocampus and prefrontal cortex (PFC) in an inflammatory mouse model of MDD induced by lipopolysaccharide (LPS). We also evaluated the combined effects of PNU120596 and GW6471, a PPAR-α antagonist, on depressive-like and cognitive deficit-like behaviors in mice.

Materials and Methods

Male C57BL/6J mice were treated with PNU120596, followed by systemic LPS (1 mg/kg, i.p.) administration. The effects of PNU120596 on the mRNA expression of PPAR-α and IκB were assessed in the hippocampus and PFC using qRT-PCR following LPS administration. Similarly, the effects of PNU120596 on the immunoreactivity of PPAR-α and NF-κB were measured in the hippocampus and PFC using an immunofluorescence assay. Furthermore, the effects of PNU120596 on pro-inflammatory cytokine IL-1β levels were measured in the hippocampus and PFC using ELISA. The combined effects of PNU120596 and GW6471 were also assessed against LPS-induced depressive-like and cognitive deficit-like behaviors using the Tail Suspension Test (TST), Forced Swim Test (FST), and Y-maze test.

Results

PNU120596 (4 mg/kg) significantly prevented LPS-induced dysregulation of PPAR-α, IκB, p-NF-κB p65, and IL-1β in the hippocampus and PFC. Pretreatment with PNU120596 showed significant antidepressant-like effects by reducing immobility time in the TST and FST. Similarly, pretreatment with PNU120596 significantly reduced cognitive deficit-like behavior in the Y-maze test. The antidepressant and pro-cognitive-like effects of PNU120596 were reversed by PPAR-α 
antagonist GW6471 (2 mg/kg).

Conclusion

These results suggest that PNU120596 prevented LPS-induced MDD and cognitive-like behavior by regulating α7 nAChR/PPAR-α signaling pathway in the hippocampus and PFC.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273311527240916050749
2024-09-30
2025-01-18
Loading full text...

Full text loading...

References

  1. MalhiG.S. MannJ.J. Depression.Lancet2018392101612299231210.1016/S0140‑6736(18)31948‑2 30396512
    [Google Scholar]
  2. BeurelE. ToupsM. NemeroffC.B. The bidirectional relationship of depression and inflammation: Double trouble.Neuron2020107223425610.1016/j.neuron.2020.06.002 32553197
    [Google Scholar]
  3. WoelferM. KastiesV. KahlfussS. WalterM. The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder.Neuroscience20194039311010.1016/j.neuroscience.2018.03.034 29604382
    [Google Scholar]
  4. MineurY.S. PicciottoM.R. Nicotine receptors and depression: Revisiting and revising the cholinergic hypothesis.Trends Pharmacol. Sci.2010311258058610.1016/j.tips.2010.09.004 20965579
    [Google Scholar]
  5. RahmanS. AlzareaS. Glial mechanisms underlying major depressive disorder: Potential therapeutic opportunities.Prog. Mol. Biol. Transl. Sci.201916715917810.1016/bs.pmbts.2019.06.010 31601403
    [Google Scholar]
  6. LiuH. ZhangX. ShiP. α7 Nicotinic acetylcholine receptor: A key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect.J. Neuroinflammation20232018410.1186/s12974‑023‑02768‑z 36973813
    [Google Scholar]
  7. CorradiJ. BouzatC. Understanding the bases of function and modulation of α 7 nicotinic receptors: Implications for drug discovery.Mol. Pharmacol.201690328829910.1124/mol.116.104240 27190210
    [Google Scholar]
  8. GottiC. ZoliM. ClementiF. Brain nicotinic acetylcholine receptors: Native subtypes and their relevance.Trends Pharmacol. Sci.200627948249110.1016/j.tips.2006.07.004 16876883
    [Google Scholar]
  9. de JongeW.J. UlloaL. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation.Br. J. Pharmacol.2007151791592910.1038/sj.bjp.0707264 17502850
    [Google Scholar]
  10. DantzerR. O’ConnorJ.C. FreundG.G. JohnsonR.W. KelleyK.W. From inflammation to sickness and depression: Wwhen the immune system subjugates the brain.Nat. Rev. Neurosci.200891465610.1038/nrn2297 18073775
    [Google Scholar]
  11. KalkmanH.O. FeuerbachD. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders.Cell. Mol. Life Sci.201673132511253010.1007/s00018‑016‑2175‑4 26979166
    [Google Scholar]
  12. WilliamsD.K. WangJ. PapkeR.L. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: Advantages and limitations.Biochem. Pharmacol.201182891593010.1016/j.bcp.2011.05.001 21575610
    [Google Scholar]
  13. MarcusM.M. BjörkholmC. MalmerfeltA. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study.Eur. Neuropsychopharmacol.20162691401141110.1016/j.euroneuro.2016.07.004 27474687
    [Google Scholar]
  14. MelisM. ScheggiS. CartaG. PPARα regulates cholinergic-driven activity of midbrain dopamine neurons via a novel mechanism involving α7 nicotinic acetylcholine receptors.J. Neurosci.201333146203621110.1523/JNEUROSCI.4647‑12.2013 23554501
    [Google Scholar]
  15. ZhaoD. XuX. PanL. Pharmacologic activation of cholinergic alpha7 nicotinic receptors mitigates depressive-like behavior in a mouse model of chronic stress.J. Neuroinflammation201714123410.1186/s12974‑017‑1007‑2 29197398
    [Google Scholar]
  16. PapkeR.L. KemW.R. SotiF. López-HernándezG.Y. HorensteinN.A. Activation and desensitization of nicotinic alpha7-type acetylcholine receptors by benzylidene anabaseines and nicotine.J. Pharmacol. Exp. Ther.2009329279180710.1124/jpet.108.150151 19223664
    [Google Scholar]
  17. AbbasM. AlzareaS. PapkeR.L. RahmanS. The α7 nicotinic acetylcholine receptor positive allosteric modulator attenuates lipopolysaccharide-induced activation of hippocampal IκB and CD11b gene expression in mice.Drug Discov. Ther.201711420621110.5582/ddt.2017.01038 28867753
    [Google Scholar]
  18. AlzareaS. RahmanS. Alpha-7 nicotinic receptor allosteric modulator PNU120596 prevents lipopolysaccharide-induced anxiety, cognitive deficit and depression-like behaviors in mice.Behav. Brain Res.2019366192810.1016/j.bbr.2019.03.019 30877025
    [Google Scholar]
  19. AlzareaS. KhanA. RonanP.J. LutfyK. RahmanS. The α-7 nicotinic receptor positive allosteric modulator alleviates lipopolysaccharide induced depressive-like behavior by regulating microglial function, trophic factor, and chloride transporters in mice.Brain Sci.202414329010.3390/brainsci14030290 38539677
    [Google Scholar]
  20. Targowska-DudaK.M. FeuerbachD. BialaG. JozwiakK. AriasH.R. Antidepressant activity in mice elicited by 3-furan-2-yl-N-p-tolyl-acrylamide, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor.Neurosci. Lett.201456912613010.1016/j.neulet.2014.03.067 24708923
    [Google Scholar]
  21. RakhshandehrooM. KnochB. MüllerM. KerstenS. Peroxisome proliferator-activated receptor alpha target genes.PPAR Res.2010201012010.1155/2010/612089 20936127
    [Google Scholar]
  22. PistisM. MelisM. From surface to nuclear receptors: the endocannabinoid family extends its assets.Curr. Med. Chem.201017141450146710.2174/092986710790980014 20166922
    [Google Scholar]
  23. O’ConnorJ.C. LawsonM.A. AndréC. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice.Mol. Psychiatry200914551152210.1038/sj.mp.4002148 18195714
    [Google Scholar]
  24. WalkerA.K. BudacD.P. BisulcoS. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice.Neuropsychopharmacology20133891609161610.1038/npp.2013.71 23511700
    [Google Scholar]
  25. ParrottJ.M. RedusL. Santana-CoelhoD. MoralesJ. GaoX. O’ConnorJ.C. Neurotoxic kynurenine metabolism is increased in the dorsal hippocampus and drives distinct depressive behaviors during inflammation.Transl. Psychiatry2016610e918a10.1038/tp.2016.200 27754481
    [Google Scholar]
  26. ParrottJ.M. RedusL. O’ConnorJ.C. Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge.J. Neuroinflammation2016131124b10.1186/s12974‑016‑0590‑y 27233247
    [Google Scholar]
  27. LaumetG. EdralinJ.D. ChiangA.C.A. DantzerR. HeijnenC.J. KavelaarsA. Resolution of inflammation-induced depression requires T lymphocytes and endogenous brain interleukin-10 signaling.Neuropsychopharmacology201843132597260510.1038/s41386‑018‑0154‑1 30054585
    [Google Scholar]
  28. AlzareaS. RahmanS. Effects of alpha-7 nicotinic allosteric modulator PNU 120596 on depressive-like behavior after lipopolysaccharide administration in mice.Prog. Neuropsychopharmacol. Biol. Psychiatry20188621822810.1016/j.pnpbp.2018.05.018 29800595
    [Google Scholar]
  29. AbbasM. AlzareaS. PapkeR.L. RahmanS. Effects of α7 nicotinic acetylcholine receptor positive allosteric modulator on BDNF, NKCC1 and KCC2 expression in the hippocampus following lipopolysaccharide-induced allodynia and hyperalgesia in a mouse model of inflammatory pain.CNS Neurol. Disord. Drug Targets2021204366377
    [Google Scholar]
  30. RoniM.A. RahmanS. The effects of lobeline on nicotine withdrawal-induced depression-like behavior in mice.Psychopharmacology2014231152989299810.1007/s00213‑014‑3472‑y 24682499
    [Google Scholar]
  31. RoniM.A. RahmanS. Antidepressant-like effects of lobeline in mice: Behavioral, neurochemical, and neuroendocrine evidence.Prog. Neuropsychopharmacol. Biol. Psychiatry201341445110.1016/j.pnpbp.2012.11.011 23200829
    [Google Scholar]
  32. RoniM.A. RahmanS. Lobeline attenuates ethanol abstinence-induced depression-like behavior in mice.Alcohol201761637010.1016/j.alcohol.2017.01.015 28554528
    [Google Scholar]
  33. KingJ.R. GillevetT.C. KabbaniN. A G protein‐coupled α7 nicotinic receptor regulates signaling and TNF ‐α release in microglia.FEBS Open Bio2017791350136110.1002/2211‑5463.12270 28904864
    [Google Scholar]
  34. PatelH. McIntireJ. RyanS. DunahA. LoringR. Anti-inflammatory effects of astroglial α7 nicotinic acetylcholine receptors are mediated by inhibition of the NF-κB pathway and activation of the Nrf2 pathway.J. Neuroinflammation201714119210.1186/s12974‑017‑0967‑6 28950908
    [Google Scholar]
  35. KabbaniN. NicholsR.A. Beyond the channel: Metabotropic signaling by nicotinic receptors.Trends Pharmacol. Sci.201839435436610.1016/j.tips.2018.01.002 29428175
    [Google Scholar]
  36. NisbettK.E. PinnaG. Emerging therapeutic role of PPAR-α in cognition and emotions.Front. Pharmacol.2018999810.3389/fphar.2018.00998 30356872
    [Google Scholar]
  37. LiuT. ZhangL. JooD. SunS.C. NF-κB signaling in inflammation.Signal Transduct. Target. Ther.2017211702310.1038/sigtrans.2017.23 29158945
    [Google Scholar]
  38. BrightJ.J. KanakasabaiS. ChearwaeW. ChakrabortyS. PPAR regulation of inflammatory signaling in CNS diseases.PPAR Res.20082008165852010.1155/2008/658520 18670616
    [Google Scholar]
  39. DidonatoJ. MercurioF. RosetteC. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation.Mol. Cell. Biol.19961641295130410.1128/MCB.16.4.1295 8657102
    [Google Scholar]
  40. SilvermanH.A. DanchoM. Regnier-GolanovA. Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation.Mol. Med.201420160161110.2119/molmed.2014.00147 25299421
    [Google Scholar]
  41. GaoY. LeckerS. PostM.J. Inhibition of ubiquitin-proteasome pathway–mediated IκBα degradation by a naturally occurring antibacterial peptide.J. Clin. Invest.2000106343944810.1172/JCI9826 10930447
    [Google Scholar]
  42. SunS.C. GanchiP.A. BallardD.W. GreeneW.C. NF-kappa B controls expression of inhibitor I kappa B alpha: Evidence for an inducible autoregulatory pathway.Science199325951031912191510.1126/science.8096091 8096091
    [Google Scholar]
  43. XuH.E. StanleyT.B. MontanaV.G. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα.Nature2002415687381381710.1038/415813a 11845213
    [Google Scholar]
  44. KooJ.W. DumanR.S. Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression.Curr. Opin. Investig. Drugs2009107664671 19579172
    [Google Scholar]
  45. GoshenI. KreiselT. Ben-Menachem-ZidonO. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression.Mol. Psychiatry200813771772810.1038/sj.mp.4002055 17700577
    [Google Scholar]
  46. ParkH.J. ShimH.S. AnK. StarkweatherA. KimK.S. ShimI. ShimI. IL-4 inhibits IL-1β-induced depressive-like behavior and central neurotransmitter alterations.Mediators Inflamm.20152015194141310.1155/2015/941413 26417153
    [Google Scholar]
  47. YirmiyaR. RimmermanN. ReshefR. Depression as a microglial disease.Trends Neurosci.2015381063765810.1016/j.tins.2015.08.001 26442697
    [Google Scholar]
  48. MechawarN. SavitzJ. Neuropathology of mood disorders: Do we see the stigmata of inflammation?Transl. Psychiatry2016611e94610.1038/tp.2016.212 27824355
    [Google Scholar]
  49. WardenA. TruittJ. MerrimanM. Localization of PPAR isotypes in the adult mouse and human brain.Sci. Rep.2016612761810.1038/srep27618 27283430
    [Google Scholar]
  50. SongL. WangH. WangY.J. Hippocampal PPARα is a novel therapeutic target for depression and mediates the antidepressant actions of fluoxetine in mice.Br. J. Pharmacol.2018175142968298710.1111/bph.14346 29722018
    [Google Scholar]
  51. SaydA. AntónM. AlénF. Systemic administration of oleoylethanolamide protects from neuroinflammation and anhedonia induced by LPS in rats.Int. J. Neuropsychopharmacol.2015186pyu11110.1093/ijnp/pyu111 25548106
    [Google Scholar]
  52. YangR. WangP. ChenZ. WY-14643, a selective agonist of peroxisome proliferator-activated receptor-α, ameliorates lipopolysaccharide-induced depressive-like behaviors by preventing neuroinflammation and oxido-nitrosative stress in mice.Pharmacol. Biochem. Behav.20171539710410.1016/j.pbb.2016.12.010 28017641
    [Google Scholar]
  53. LamR.W. KennedyS.H. McIntyreR.S. KhullarA. Cognitive dysfunction in major depressive disorder: Effects on psychosocial functioning and implications for treatment.Can. J. Psychiatry2014591264965410.1177/070674371405901206 25702365
    [Google Scholar]
  54. SemmlerA. FrischC. DebeirT. Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model.Exp. Neurol.2007204273374010.1016/j.expneurol.2007.01.003 17306796
    [Google Scholar]
  55. JiangW. ChenQ. LiP. Magnesium Isoglycyrrhizinate attenuates lipopolysaccharide-induced depressive-like behavior in mice.Biomed. Pharmacother.20178617718410.1016/j.biopha.2016.12.033 27978497
    [Google Scholar]
  56. ChoiM.J. LeeE.J. ParkJ.S. KimS.N. ParkE.M. KimH.S. Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: Critical role of PPAR-γ signaling pathway.Biochem. Pharmacol.201714412013110.1016/j.bcp.2017.07.021 28757373
    [Google Scholar]
  57. AbbasM. AlzareaS. PapkeR.L. RahmanS. The α7 nicotinic acetylcholine receptor positive allosteric modulator prevents lipopolysaccharide-induced allodynia, hyperalgesia and TNF-α in the hippocampus in mice.Pharmacol. Rep.20197161168117610.1016/j.pharep.2019.07.001 31655281
    [Google Scholar]
  58. AbbasM. RahmanS. Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice.Eur. J. Pharmacol.2016783859110.1016/j.ejphar.2016.05.003 27154173
    [Google Scholar]
  59. AlzareaS. AbbasM. RonanP.J. LutfyK. RahmanS. The effect of an α-7 nicotinic allosteric modulator PNU120596 and NMDA receptor antagonist memantine on depressive-like behavior induced by LPS in mice: the involvement of brain microglia.Brain Sci.20221211149310.3390/brainsci12111493 36358419
    [Google Scholar]
  60. TufanoM. PinnaG. Is there a future for PPARs in the treatment of neuropsychiatric disorders?Molecules2020255106210.3390/molecules25051062 32120979
    [Google Scholar]
  61. HuangM. LuS. YuL. Altered fractional amplitude of low frequency fluctuation associated with cognitive dysfunction in first-episode drug-naïve major depressive disorder patients.BMC Psychiatry20171711110.1186/s12888‑016‑1190‑1 28077120
    [Google Scholar]
  62. LocciA. PinnaG. Stimulation of peroxisome proliferator-activated receptor-α by N-palmitoylethanolamine engages allopregnanolone biosynthesis to modulate emotional behavior.Biol. Psychiatry201985121036104510.1016/j.biopsych.2019.02.006 30955840
    [Google Scholar]
  63. LiaoL. ZhangX.D. LiJ. Pioglitazone attenuates lipopolysaccharide-induced depression-like behaviors, modulates NF-κB/IL-6/STAT3, CREB/BDNF pathways and central serotonergic neurotransmission in mice.Int. Immunopharmacol.20174917818610.1016/j.intimp.2017.05.036 28595081
    [Google Scholar]
  64. FerriN. CorsiniA. SirtoriC. RuscicaM. PPAR-α agonists are still on the rise: An update on clinical and experimental findings.Expert Opin. Investig. Drugs201726559360210.1080/13543784.2017.1312339 28343425
    [Google Scholar]
  65. AdzicM. BrkicZ. MiticM. Therapeutic strategies for treatment of inflammation-related depression.Curr. Neuropharmacol.2018162176209 28847294
    [Google Scholar]
  66. AlotaibiG. KhanA. RonanP.J. LutfyK. RahmanS. Glial glutamate transporter modulation prevents development of complete freund’s adjuvant-induced hyperalgesia and allodynia in mice.Brain Sci.202313580710.3390/brainsci13050807 37239279
    [Google Scholar]
  67. WangB. LianY.J. SuW.J. HMGB1 mediates depressive behavior induced by chronic stress through activating the kynurenine pathway.Brain Behav. Immun.201872516010.1016/j.bbi.2017.11.017 29195782
    [Google Scholar]
  68. AlotaibiG. RahmanS. Effects of glial glutamate transporter activator in formalin‐induced pain behaviour in mice.Eur. J. Pain201923476578310.1002/ejp.1343 30427564
    [Google Scholar]
  69. DeanJ. KeshavanM. The neurobiology of depression: An integrated view.Asian J. Psychiatr.20172710111110.1016/j.ajp.2017.01.025 28558878
    [Google Scholar]
  70. SheehanD.V. NakagomeK. AsamiY. PappadopulosE.A. BoucherM. Restoring function in major depressive disorder: A systematic review.J. Affect. Disord.201721529931310.1016/j.jad.2017.02.029 28364701
    [Google Scholar]
  71. PeriniG. Cotta RamusinoM. SinforianiE. BerniniS. PetrachiR. CostaA. Cognitive impairment in depression: Recent advances and novel treatments.Neuropsychiatr. Dis. Treat.2019151249125810.2147/NDT.S199746 31190831
    [Google Scholar]
  72. ColwellM.J. TagomoriH. ChapmanS. Pharmacological targeting of cognitive impairment in depression: Recent developments and challenges in human clinical research.Transl. Psychiatry202212148410.1038/s41398‑022‑02249‑6 36396622
    [Google Scholar]
  73. JiangY. ChengX. ZhaoM. Gypenoside-14 reduces depression via downregulation of the nuclear factor kappa B (NF-kB) signaling pathway on the lipopolysaccharide (LPS)-induced depression model.Pharmaceuticals2023168115210.3390/ph16081152 37631068
    [Google Scholar]
  74. PriceR.B. DumanR. Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model.Mol. Psychiatry202025353054310.1038/s41380‑019‑0615‑x 31801966
    [Google Scholar]
  75. FarooqR.K. AsgharK. KanwalS. ZulqernainA. Role of inflammatory cytokines in depression: Focus on interleukin-1β.Biomed. Rep.201761152010.3892/br.2016.807 28123701
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273311527240916050749
Loading
/content/journals/cnsnddt/10.2174/0118715273311527240916050749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test