Skip to content
2000
image of Identification of Pharmacophore Responsible for the JNK3 Enzyme Inhibition using KPLS-based QSAR Analysis

Abstract

Background

The pharmacophoric approach relies on the theory of possessing ubiquitous chemical functionalities, and carrying a uniform spatial conformation that provides a route to enhanced potency on the same target receptor. JNK3, also known as c-Jun N-terminal kinase 3, is a protein kinase that plays a crucial role in various cellular processes, particularly in the central nervous system (CNS). In this study, a kernel-based partial least square (KPLS)-based Two-dimensional Quantitative structural activity relationship (2D QSAR) model to predict pharmacophores responsible for c-Jun-N-terminal kinase 3 (JNK3) inhibition.

Methods

A library of small molecule JNK3 inhibitors was created from the literature, and a predictive model was built using Canvas 2.6.

Results

The analysis revealed key structural determinants of activity. Compounds with high pIC values (>6) showed numerous favorable contributions, particularly secondary benzamide nitrogen and methylene groups. Steric effects were more influential than inductive effects, with bulkier groups like t-butyl reducing activity. Positive contributions were observed with OH, O-CH3, and -F substituents, while unfavorable effects were linked to tertiary nitrogen, methyl, and primary amino groups. Substituted sulphonamides and benzotriazole moieties enhanced activity unless modified with amino or carbonyl groups. Favorable contributions were noted for terminal heterocyclic rings like pyrimidinyl acetonitrile, whereas phenyl substitutions and certain piperazine configurations were detrimental. Hydrogen in the urea moiety and avoiding bulky substitutions were crucial for activity. These insights guide the design of potent JNK3 inhibitors.

Conclusion

The present study highlights the significant impact of substituents on molecular activity, with steric effects, particularly on the phenyl ring, playing a dominant role. Favorable contributions are linked to substitutions like hydroxyl, methoxy, and fluorine, while bulky and meta substitutions reduce activity. Functional groups like unsubstituted sulfonamide or free hydrogen in urea are crucial for activity. Insights into steric, electronic, and positional factors, combined with analysis of JNK3 inhibitors, will guide the design of more selective molecules.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249345667250216034023
2025-03-03
2025-06-21
Loading full text...

Full text loading...

References

  1. Pk N. Rajan R.K. Nanchappan V. Karuppaiah A. Chandrasekaran J. Jayaraman S. Gunasekaran V. C–Glucosyl Xanthone derivative Mangiferin downregulates the JNK3 mediated caspase activation in Almal induced neurotoxicity in differentiated SHSY-5Y neuroblastoma cells. Toxicol. Mech. Methods 2023 33 9 707 718 10.1080/15376516.2023.2237106 37455591
    [Google Scholar]
  2. Rajan R.K. Kumar R.P. Ramanathan M. Piceatannol improved cerebral blood flow and attenuated JNK3 and mitochondrial apoptotic pathway in a global ischemic model to produce neuroprotection. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 1 479 496 10.1007/s00210‑023‑02616‑0 37470802
    [Google Scholar]
  3. Rajan R.K. Ramanathan M. Piceatannol selectively inhibited the JNK3 enzyme and augmented apoptosis through inhibition of Bcl‐2/Cyt‐c/caspase‐dependent pathways in the oxygen–glucose deprived SHSY‐5Y cell lines: In silico and in vitro study. Chem. Biol. Drug Des. 2024 103 2 e14458 10.1111/cbdd.14458 38383061
    [Google Scholar]
  4. Musi C.A. Agrò G. Santarella F. Iervasi E. Borsello T. JNK3 as therapeutic target and biomarker in neurodegenerative and neurodevelopmental brain diseases. Cells 2020 9 10 2190 10.3390/cells9102190 32998477
    [Google Scholar]
  5. Busquets O. Espinosa-Jiménez T. Ettcheto M. Olloquequi J. Bulló M. Carro E. Cantero J.L. Casadesús G. Folch J. Verdaguer E. Auladell C. Camins A. JNK1 and JNK3: Divergent functions in hippocampal metabolic-cognitive function. Mol. Med. 2022 28 1 48 10.1186/s10020‑022‑00471‑y 35508978
    [Google Scholar]
  6. Wu Y Zhao Y Guan Z JNK3 inhibitors as promising pharmaceuticals with neuroprotective properties. Cell Adh Migr. 2024 18 1 1 11 10.1080/19336918.2024.2316576
    [Google Scholar]
  7. Jun J. Baek J. Yang S. Moon H. Kim H. Cho H. Hah J.M. Discovery of a potent and selective JNK3 inhibitor with neuroprotective effect against amyloid β-induced neurotoxicity in primary rat neurons. Int. J. Mol. Sci. 2021 22 20 11084 10.3390/ijms222011084 34681742
    [Google Scholar]
  8. Wu Q Wu W Jacevic V Selective inhibitors for JNK signalling: A potential targeted therapy in cancer. J Enzyme Inhib Med Chem. 2020 35 1 574 583 10.1080/14756366.2020.1720013
    [Google Scholar]
  9. Yao C. Shen Z. Shen L. Kadier K. Zhao J. Guo Y. Xu L. Cao J. Dong X. Yang B. Identification of Potential JNK3 Inhibitors: A Combined Approach Using Molecular Docking and Deep Learning-Based Virtual Screening. Pharmaceuticals 2023 16 10 1459 10.3390/ph16101459 37895928
    [Google Scholar]
  10. Duong M.T.H. Ahn H.C. Fragment-based and structural investigation for discovery of JNK3 inhibitors. Pharmaceutics 2022 14 9 1900 10.3390/pharmaceutics14091900 36145648
    [Google Scholar]
  11. Qin P. Ran Y. Liu Y. Wei C. Luan X. Niu H. Peng J. Sun J. Wu J. Recent advances of small molecule JNK3 inhibitors for Alzheimer’s disease. Bioorg. Chem. 2022 128 106090 10.1016/j.bioorg.2022.106090 35964505
    [Google Scholar]
  12. Pai A Fingerprint based two-dimensional qsar studies on pyrazolo quinazolines as Cdk2 inhibitors: A rational approach for the design of novel anticancer agents. Indian J. Pharm. Educ. Res. 2019 53 3s s299 s312 10.5530/ijper.53.3s.100
    [Google Scholar]
  13. Bastikar V Bastikar A Gupta P 2022 Quantitative structure–activity relationship-based computational approaches. Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection Academic Press 2022 191 205 10.1016/B978‑0‑323‑91172‑6.00001‑7
    [Google Scholar]
  14. Neves B.J. Braga R.C. Melo-Filho C.C. Moreira-Filho J.T. Muratov E.N. Andrade C.H. QSAR-based virtual screening: Advances and applications in drug discovery. Front. Pharmacol. 2018 9 1275 10.3389/fphar.2018.01275 30524275
    [Google Scholar]
  15. Falchi F. Bertozzi S.M. Ottonello G. Ruda G.F. Colombano G. Fiorelli C. Martucci C. Bertorelli R. Scarpelli R. Cavalli A. Bandiera T. Armirotti A. Kernel-based, partial least squares quantitative structure-retention relationship model for UPLC retention time prediction: A useful tool for metabolite identification. Anal. Chem. 2016 88 19 9510 9517 10.1021/acs.analchem.6b02075 27583774
    [Google Scholar]
  16. Deokar H. Deokar M. Buolamwini J.K. Integration of fingerprint-based similarity searching and kernel-based partial least squares analysis to predict inhibitory activity against CSK, HER2, JAK1, JAK2, and JAK3. Mol. Divers. 2023 10.1007/s11030‑022‑10596‑1 36648693
    [Google Scholar]
  17. Minh Quang N. Tran Thai H. Le Thi H. Duc Cuong N. Hien N.Q. Hoang D. Ngoc V.T.B. Ky Minh V. Van Tat P. Novel thiosemicarbazone quantum dots in the treatment of Alzheimer’s disease combining in silico models using fingerprints and physicochemical descriptors. ACS Omega 2023 8 12 11076 11099 10.1021/acsomega.2c07934 37008140
    [Google Scholar]
  18. Bai Y. Jian X. Long Y. 2006 Kernel partial least-squares regression. The 2006 IEEE International Joint Conference on Neural Network Proceedings Vancouver, BC, Canada, 16-21 July 2006, pp. 1231-1238
    [Google Scholar]
  19. Mello-Román J.D. Hernandez A. KPLS optimization approach using genetic algorithms. Procedia Comput. Sci. 2020 170 1153 1160 10.1016/j.procs.2020.03.051
    [Google Scholar]
  20. Bouakouk-Chitti Z. Feddal S. Meyar M. Kellou-Tairi S. Ligand-based studies on cis-stilbene derivatives as cyclo-oxygenase inhibitors. Med. Chem. Res. 2017 26 8 1801 1811 10.1007/s00044‑017‑1890‑1
    [Google Scholar]
  21. Swahn B.M. Huerta F. Kallin E. Malmström J. Weigelt T. Viklund J. Womack P. Xue Y. Öhberg L. Design and synthesis of 6-anilinoindazoles as selective inhibitors of c-Jun N-terminal kinase-3. Bioorg. Med. Chem. Lett. 2005 15 22 5095 5099 10.1016/j.bmcl.2005.06.083 16140012
    [Google Scholar]
  22. Swahn B.M. Xue Y. Arzel E. Kallin E. Magnus A. Plobeck N. Viklund J. Design and synthesis of 2′-anilino-4,4′-bipyridines as selective inhibitors of c-Jun N-terminal kinase-3. Bioorg. Med. Chem. Lett. 2006 16 5 1397 1401 10.1016/j.bmcl.2005.11.039 16337120
    [Google Scholar]
  23. Cao J. Gao H. Bemis G. Salituro F. Ledeboer M. Harrington E. Wilke S. Taslimi P. Pazhanisamy S. Xie X. Jacobs M. Green J. Structure-based design and parallel synthesis of N-benzyl isatin oximes as JNK3 MAP kinase inhibitors. Bioorg. Med. Chem. Lett. 2009 19 10 2891 2895 10.1016/j.bmcl.2009.03.043 19361991
    [Google Scholar]
  24. Shin Y. Chen W. Habel J. Duckett D. Ling Y.Y. Koenig M. He Y. Vojkovsky T. LoGrasso P. Kamenecka T.M. Synthesis and SAR of piperazine amides as novel c-jun N-terminal kinase (JNK) inhibitors. Bioorg. Med. Chem. Lett. 2009 19 12 3344 3347 10.1016/j.bmcl.2009.03.086 19433357
    [Google Scholar]
  25. Song X. Chen W. Lin L. Ruiz C.H. Cameron M.D. Duckett D.R. Kamenecka T.M. Synthesis and SAR of 2-Phenoxypyridines as novel c-Jun N-terminal kinase inhibitors. Bioorg. Med. Chem. Lett. 2011 21 23 7072 7075 10.1016/j.bmcl.2011.09.090 22004719
    [Google Scholar]
  26. Zheng K. Iqbal S. Hernandez P. Park H. LoGrasso P.V. Feng Y. Design and synthesis of highly potent and isoform selective JNK3 inhibitors: SAR studies on aminopyrazole derivatives. J. Med. Chem. 2014 57 23 10013 10030 10.1021/jm501256y 25393557
    [Google Scholar]
  27. He Y. Duckett D. Chen W. Ling Y.Y. Cameron M.D. Lin L. Ruiz C.H. LoGrasso P.V. Kamenecka T.M. Koenig M. Synthesis and SAR of novel isoxazoles as potent c-jun N-terminal kinase (JNK) inhibitors. Bioorg. Med. Chem. Lett. 2014 24 1 161 164 10.1016/j.bmcl.2013.11.052 24332487
    [Google Scholar]
  28. Jung H. Aman W. Hah J.M. Novel scaffold evolution through combinatorial 3D-QSAR model studies of two types of JNK3 inhibitors. Bioorg. Med. Chem. Lett. 2017 27 10 2139 2143 10.1016/j.bmcl.2017.03.063 28372912
    [Google Scholar]
  29. Rückle T. Biamonte M. Grippi-Vallotton T. Arkinstall S. Cambet Y. Camps M. Chabert C. Church D.J. Halazy S. Jiang X. Martinou I. Nichols A. Sauer W. Gotteland J.P. Design, synthesis, and biological activity of novel, potent, and selective (benzoylaminomethyl)thiophene sulfonamide inhibitors of c-Jun-N-terminal kinase. J. Med. Chem. 2004 47 27 6921 6934 10.1021/jm031112e 15615541
    [Google Scholar]
  30. Gaillard P. Jeanclaude-Etter I. Ardissone V. Arkinstall S. Cambet Y. Camps M. Chabert C. Church D. Cirillo R. Gretener D. Halazy S. Nichols A. Szyndralewiez C. Vitte P.A. Gotteland J.P. Design and synthesis of the first generation of novel potent, selective, and in vivo active (benzothiazol-2-yl)acetonitrile inhibitors of the c-Jun N-terminal kinase. J. Med. Chem. 2005 48 14 4596 4607 10.1021/jm0310986 15999997
    [Google Scholar]
  31. Zheng K. Park C.M. Iqbal S. Hernandez P. Park H. LoGrasso P.V. Feng Y. Pyridopyrimidinone derivatives as potent and selective c-Jun N-terminal kinase (JNK) inhibitors. ACS Med. Chem. Lett. 2015 6 4 413 418 10.1021/ml500474d 25893042
    [Google Scholar]
  32. Rajan R.K. Ramanathan M. Identification and neuroprotective evaluation of a potential c-Jun N-terminal kinase 3 inhibitor through structure-based virtual screening and in-vitro assay. J. Comput. Aided Mol. Des. 2020 34 6 671 682 10.1007/s10822‑020‑00297‑y 32040807
    [Google Scholar]
  33. Duan J. Dixon S.L. Lowrie J.F. Sherman W. Analysis and comparison of 2D fingerprints: Insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model. 2010 29 2 157 170 10.1016/j.jmgm.2010.05.008 20579912
    [Google Scholar]
  34. Hoffelner B.S. Andreev S. Plank N. Koch P. Photocaging of pyridinylimidazole-based covalent JNK3 inhibitors affords spatiotemporal control of the binding affinity in live cells. Pharmaceuticals 2023 16 2 264 10.3390/ph16020264 37259409
    [Google Scholar]
  35. Kulkarni S.A. Madhavan T. Hologram quantitative structure activity relationship analysis of JNK antagonists. J. Chosun Nat. Sci. 2015 8 2 81 88 10.13160/ricns.2015.8.2.81
    [Google Scholar]
  36. Zhang T. Inesta-Vaquera F. Niepel M. Zhang J. Ficarro S.B. Machleidt T. Xie T. Marto J.A. Kim N. Sim T. Laughlin J.D. Park H. LoGrasso P.V. Patricelli M. Nomanbhoy T.K. Sorger P.K. Alessi D.R. Gray N.S. Discovery of potent and selective covalent inhibitors of JNK. Chem. Biol. 2012 19 1 140 154 10.1016/j.chembiol.2011.11.010 22284361
    [Google Scholar]
  37. Abu Rabah R.R. Sebastian A. Vunnam S. Sultan S. Tarazi H. Anbar H.S. Shehata M.K. Zaraei S.O. Elgendy S.M. Al Shamma S.A. Omar H.A. Al-Tel T.H. El-Gamal M.I. Design, synthesis, and biological evaluation of a new series of pyrazole derivatives: Discovery of potent and selective JNK3 kinase inhibitors. Bioorg. Med. Chem. 2022 69 116894 10.1016/j.bmc.2022.116894 35764033
    [Google Scholar]
  38. Vaas S. Zimmermann M.O. Schollmeyer D. Stahlecker J. Engelhardt M.U. Rheinganz J. Drotleff B. Olfert M. Lämmerhofer M. Kramer M. Stehle T. Boeckler F.M. Principles and applications of CF 2 X moieties as unconventional halogen bond donors in medicinal chemistry, chemical biology, and drug discovery. J. Med. Chem. 2023 66 15 10202 10225 10.1021/acs.jmedchem.3c00634 37487500
    [Google Scholar]
  39. Tandon N. Luxami V. Kant D. Tandon R. Paul K. Current progress, challenges and future prospects of indazoles as protein kinase inhibitors for the treatment of cancer. RSC Advances 2021 11 41 25228 25257 10.1039/D1RA03979B 35478899
    [Google Scholar]
  40. El-Gamal M.I. Zaraei S.O. Madkour M.M. Anbar H.S. Evaluation of substituted pyrazole-based kinase inhibitors in one decade (2011–2020): Current status and future prospects. Molecules 2022 27 1 330 10.3390/molecules27010330 35011562
    [Google Scholar]
  41. Duong M.T.H. Lee J.H. Ahn H.C. C-Jun N-terminal kinase inhibitors: Structural insight into kinase-inhibitor complexes. Comput. Struct. Biotechnol. J. 2020 18 1440 1457 10.1016/j.csbj.2020.06.013 32637042
    [Google Scholar]
  42. Carboni S. Hiver A. Szyndralewiez C. Gaillard P. Gotteland J.P. Vitte P.A. AS601245 (1,3-benzothiazol-2-yl (2-[[2-(3-pyridinyl) ethyl] amino]-4 pyrimidinyl) acetonitrile): A c-Jun NH2-terminal protein kinase inhibitor with neuroprotective properties. J. Pharmacol. Exp. Ther. 2004 310 1 25 32 10.1124/jpet.103.064246 14988419
    [Google Scholar]
  43. Kamenecka T. Jiang R. Song X. Duckett D. Chen W. Ling Y.Y. Habel J. Laughlin J.D. Chambers J. Figuera-Losada M. Cameron M.D. Lin L. Ruiz C.H. LoGrasso P.V. Synthesis, biological evaluation, X-ray structure, and pharmacokinetics of aminopyrimidine c-jun-N-terminal kinase (JNK) inhibitors. J. Med. Chem. 2010 53 1 419 431 10.1021/jm901351f 19947601
    [Google Scholar]
  44. Noël R. Shin Y. Song X. He Y. Koenig M. Chen W. Ling Y.Y. Lin L. Ruiz C.H. LoGrasso P. Cameron M.D. Duckett D.R. Kamenecka T.M. Synthesis and SAR of 4-(pyrazol-3-yl)-pyridines as novel c-jun N-terminal kinase inhibitors. Bioorg. Med. Chem. Lett. 2011 21 9 2732 2735 10.1016/j.bmcl.2010.11.104 21185177
    [Google Scholar]
  45. Hom R.K. Bowers S. Sealy J.M. Truong A.P. Probst G.D. Neitzel M.L. Neitz R.J. Fang L. Brogley L. Wu J. Konradi A.W. Sham H.L. Tóth G. Pan H. Yao N. Artis D.R. Quinn K. Sauer J.M. Powell K. Ren Z. Bard F. Yednock T.A. Griswold-Prenner I. Design and synthesis of disubstituted thiophene and thiazole based inhibitors of JNK. Bioorg. Med. Chem. Lett. 2010 20 24 7303 7307 10.1016/j.bmcl.2010.10.066 21071223
    [Google Scholar]
  46. Ansideri F. Macedo J.T. Eitel M. El-Gokha A. Zinad D.S. Scarpellini C. Kudolo M. Schollmeyer D. Boeckler F.M. Blaum B.S. Laufer S.A. Koch P. Structural optimization of a pyridinylimidazole scaffold: Shifting the selectivity from p38α mitogen-activated protein kinase to c-Jun N-terminal kinase 3. ACS Omega 2018 3 7 7809 7831 10.1021/acsomega.8b00668 30087925
    [Google Scholar]
  47. Crawford T.D. Ndubaku C.O. Chen H. Boggs J.W. Bravo B.J. DeLaTorre K. Giannetti A.M. Gould S.E. Harris S.F. Magnuson S.R. McNamara E. Murray L.J. Nonomiya J. Sambrone A. Schmidt S. Smyczek T. Stanley M. Vitorino P. Wang L. West K. Wu P. Ye W. Discovery of selective 4-Amino-pyridopyrimidine inhibitors of MAP4K4 using fragment-based lead identification and optimization. J. Med. Chem. 2014 57 8 3484 3493 10.1021/jm500155b 24673130
    [Google Scholar]
  48. Tantawy E.S. Nafie M.S. Morsy H.A. El-Sayed H.A. Moustafa A.H. Mohammed S.M. Synthesis of novel bioactive pyrido[2,3- d ]pyrimidine derivatives with potent cytotoxicity through apoptosis as PIM-1 kinase inhibitors. RSC Advances 2024 14 16 11098 11111 10.1039/D4RA00902A 38586446
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249345667250216034023
Loading
/content/journals/cnsamc/10.2174/0118715249345667250216034023
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: canvas 2.6 ; KPLS ; QSAR ; JNK3 ; pharmacophore ; IC50
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test