Skip to content
2000
image of To Explore Nasal-Brain Lymphatic System for Brain-Targeted Drug Delivery and to Treat Neurodegenerative Diseases

Abstract

Brain-related Neurodegenerative Disorders (NDD) are the leading cause of low life expectancy globally. Brain-targeted drug delivery is required for treating most the NDD via bypassing the blood-brain barrier, and hepatic first-pass metabolism. The nasal-brain drug delivery route has the advantage of locally enhancing drug delivery to the brain, mainly through the olfactory route rather than systemic circulation. To overcome the limitations of nasal-brain drug delivery, a nanocarrier approach and mucoadhesive polymers are needed. Notwithstanding these constraints, various nanotechnology techniques have been created, including polymeric micelles, liposomes, polymeric nanoparticles, solid lipid nanoparticles, & nano-emulsions. This review aims to explore the intranasal pathway for drug delivery through the nasal-brain lymphatic systems, considering brain anatomy and physiology along with a drug formulation design approach.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249329586240924105624
2024-10-15
2024-11-22
Loading full text...

Full text loading...

References

  1. Prince M. Comas-Herrera A. Knapp M. Guerchet M. Karagiannidou M. World Alzheimer Report 2016. Improving healthcare for people living with dementia: Coverage, Quality and costs now and in the future. Alzheimer’s Disease International 2016
    [Google Scholar]
  2. Agrawal M. Saraf S. Saraf S. Antimisiaris S.G. Chougule M.B. Shoyele S.A. Alexander A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release 2018 281 139 177 10.1016/j.jconrel.2018.05.011 29772289
    [Google Scholar]
  3. James S.L. Abate D. Abate K.H. Abay S.M. Abbafati C. Abbasi N. Abbastabar H. Abd-Allah F. Abdela J. Abdelalim A. Abdollahpour I. Abdulkader R.S. Abebe Z. Abera S.F. Abil O.Z. Abraha H.N. Abu-Raddad L.J. Abu-Rmeileh N.M.E. Accrombessi M.M.K. Acharya D. Acharya P. Ackerman I.N. Adamu A.A. Adebayo O.M. Adekanmbi V. Adetokunboh O.O. Adib M.G. Adsuar J.C. Afanvi K.A. Afarideh M. Afshin A. Agarwal G. Agesa K.M. Aggarwal R. Aghayan S.A. Agrawal S. Ahmadi A. Ahmadi M. Ahmadieh H. Ahmed M.B. Aichour A.N. Aichour I. Aichour M.T.E. Akinyemiju T. Akseer N. Al-Aly Z. Al-Eyadhy A. Al-Mekhlafi H.M. Al-Raddadi R.M. Alahdab F. Alam K. Alam T. Alashi A. Alavian S.M. Alene K.A. Alijanzadeh M. Alizadeh-Navaei R. Aljunid S.M. Alkerwi A. Alla F. Allebeck P. Alouani M.M.L. Altirkawi K. Alvis-Guzman N. Amare A.T. Aminde L.N. Ammar W. Amoako Y.A. Anber N.H. Andrei C.L. Androudi S. Animut M.D. Anjomshoa M. Ansha M.G. Antonio C.A.T. Anwari P. Arabloo J. Arauz A. Aremu O. Ariani F. Armoon B. Ärnlöv J. Arora A. Artaman A. Aryal K.K. Asayesh H. Asghar R.J. Ataro Z. Atre S.R. Ausloos M. Avila-Burgos L. Avokpaho E.F.G.A. Awasthi A. Ayala Quintanilla B.P. Ayer R. Azzopardi P.S. Babazadeh A. Badali H. Badawi A. Bali A.G. Ballesteros K.E. Ballew S.H. Banach M. Banoub J.A.M. Banstola A. Barac A. Barboza M.A. Barker-Collo S.L. Bärnighausen T.W. Barrero L.H. Baune B.T. Bazargan-Hejazi S. Bedi N. Beghi E. Behzadifar M. Behzadifar M. Béjot Y. Belachew A.B. Belay Y.A. Bell M.L. Bello A.K. Bensenor I.M. Bernabe E. Bernstein R.S. Beuran M. Beyranvand T. Bhala N. Bhattarai S. Bhaumik S. Bhutta Z.A. Biadgo B. Bijani A. Bikbov B. Bilano V. Bililign N. Bin Sayeed M.S. Bisanzio D. Blacker B.F. Blyth F.M. Bou-Orm I.R. Boufous S. Bourne R. Brady O.J. Brainin M. Brant L.C. Brazinova A. Breitborde N.J.K. Brenner H. Briant P.S. Briggs A.M. Briko A.N. Britton G. Brugha T. Buchbinder R. Busse R. Butt Z.A. Cahuana-Hurtado L. Cano J. Cárdenas R. Carrero J.J. Carter A. Carvalho F. Castañeda-Orjuela C.A. Castillo Rivas J. Castro F. Catalá-López F. Cercy K.M. Cerin E. Chaiah Y. Chang A.R. Chang H-Y. Chang J-C. Charlson F.J. Chattopadhyay A. Chattu V.K. Chaturvedi P. Chiang P.P-C. Chin K.L. Chitheer A. Choi J-Y.J. Chowdhury R. Christensen H. Christopher D.J. Cicuttini F.M. Ciobanu L.G. Cirillo M. Claro R.M. Collado-Mateo D. Cooper C. Coresh J. Cortesi P.A. Cortinovis M. Costa M. Cousin E. Criqui M.H. Cromwell E.A. Cross M. Crump J.A. Dadi A.F. Dandona L. Dandona R. Dargan P.I. Daryani A. Das Gupta R. Das Neves J. Dasa T.T. Davey G. Davis A.C. Davitoiu D.V. De Courten B. De La Hoz F.P. De Leo D. De Neve J-W. Degefa M.G. Degenhardt L. Deiparine S. Dellavalle R.P. Demoz G.T. Deribe K. Dervenis N. Des Jarlais D.C. Dessie G.A. Dey S. Dharmaratne S.D. Dinberu M.T. Dirac M.A. Djalalinia S. Doan L. Dokova K. Doku D.T. Dorsey E.R. Doyle K.E. Driscoll T.R. Dubey M. Dubljanin E. Duken E.E. Duncan B.B. Duraes A.R. Ebrahimi H. Ebrahimpour S. Echko M.M. Edvardsson D. Effiong A. Ehrlich J.R. El Bcheraoui C. El Sayed Zaki M. El-Khatib Z. Elkout H. Elyazar I.R.F. Enayati A. Endries A.Y. Er B. Erskine H.E. Eshrati B. Eskandarieh S. Esteghamati A. Esteghamati S. Fakhim H. Fallah Omrani V. Faramarzi M. Fareed M. Farhadi F. Farid T.A. Farinha C.S.E. Farioli A. Faro A. Farvid M.S. Farzadfar F. Feigin V.L. Fentahun N. Fereshtehnejad S-M. Fernandes E. Fernandes J.C. Ferrari A.J. Feyissa G.T. Filip I. Fischer F. Fitzmaurice C. Foigt N.A. Foreman K.J. Fox J. Frank T.D. Fukumoto T. Fullman N. Fürst T. Furtado J.M. Futran N.D. Gall S. Ganji M. Gankpe F.G. Garcia-Basteiro A.L. Gardner W.M. Gebre A.K. Gebremedhin A.T. Gebremichael T.G. Gelano T.F. Geleijnse J.M. Genova-Maleras R. Geramo Y.C.D. Gething P.W. Gezae K.E. Ghadiri K. Ghasemi Falavarjani K. Ghasemi-Kasman M. Ghimire M. Ghosh R. Ghoshal A.G. Giampaoli S. Gill P.S. Gill T.K. Ginawi I.A. Giussani G. Gnedovskaya E.V. Goldberg E.M. Goli S. Gómez-Dantés H. Gona P.N. Gopalani S.V. Gorman T.M. Goulart A.C. Goulart B.N.G. Grada A. Grams M.E. Grosso G. Gugnani H.C. Guo Y. Gupta P.C. Gupta R. Gupta R. Gupta T. Gyawali B. Haagsma J.A. Hachinski V. Hafezi-Nejad N. Haghparast Bidgoli H. Hagos T.B. Hailu G.B. Haj-Mirzaian A. Haj-Mirzaian A. Hamadeh R.R. Hamidi S. Handal A.J. Hankey G.J. Hao Y. Harb H.L. Harikrishnan S. Haro J.M. Hasan M. Hassankhani H. Hassen H.Y. Havmoeller R. Hawley C.N. Hay R.J. Hay S.I. Hedayatizadeh-Omran A. Heibati B. Hendrie D. Henok A. Herteliu C. Heydarpour S. Hibstu D.T. Hoang H.T. Hoek H.W. Hoffman H.J. Hole M.K. Homaie Rad E. Hoogar P. Hosgood H.D. Hosseini S.M. Hosseinzadeh M. Hostiuc M. Hostiuc S. Hotez P.J. Hoy D.G. Hsairi M. Htet A.S. Hu G. Huang J.J. Huynh C.K. Iburg K.M. Ikeda C.T. Ileanu B. Ilesanmi O.S. Iqbal U. Irvani S.S.N. Irvine C.M.S. Islam S.M.S. Islami F. Jacobsen K.H. Jahangiry L. Jahanmehr N. Jain S.K. Jakovljevic M. Javanbakht M. Jayatilleke A.U. Jeemon P. Jha R.P. Jha V. Ji J.S. Johnson C.O. Jonas J.B. Jozwiak J.J. Jungari S.B. Jürisson M. Kabir Z. Kadel R. Kahsay A. Kalani R. Kanchan T. Karami M. Karami Matin B. Karch A. Karema C. Karimi N. Karimi S.M. Kasaeian A. Kassa D.H. Kassa G.M. Kassa T.D. Kassebaum N.J. Katikireddi S.V. Kawakami N. Karyani A.K. Keighobadi M.M. Keiyoro P.N. Kemmer L. Kemp G.R. Kengne A.P. Keren A. Khader Y.S. Khafaei B. Khafaie M.A. Khajavi A. Khalil I.A. Khan E.A. Khan M.S. Khan M.A. Khang Y-H. Khazaei M. Khoja A.T. Khosravi A. Khosravi M.H. Kiadaliri A.A. Kiirithio D.N. Kim C-I. Kim D. Kim P. Kim Y-E. Kim Y.J. Kimokoti R.W. Kinfu Y. Kisa A. Kissimova-Skarbek K. Kivimäki M. Knudsen A.K.S. Kocarnik J.M. Kochhar S. Kokubo Y. Kolola T. Kopec J.A. Kosen S. Kotsakis G.A. Koul P.A. Koyanagi A. Kravchenko M.A. Krishan K. Krohn K.J. Kuate Defo B. Kucuk Bicer B. Kumar G.A. Kumar M. Kyu H.H. Lad D.P. Lad S.D. Lafranconi A. Lalloo R. Lallukka T. Lami F.H. Lansingh V.C. Latifi A. Lau K.M-M. Lazarus J.V. Leasher J.L. Ledesma J.R. Lee P.H. Leigh J. Leung J. Levi M. Lewycka S. Li S. Li Y. Liao Y. Liben M.L. Lim L-L. Lim S.S. Liu S. Lodha R. Looker K.J. Lopez A.D. Lorkowski S. Lotufo P.A. Low N. Lozano R. Lucas T.C.D. Lucchesi L.R. Lunevicius R. Lyons R.A. Ma S. Macarayan E.R.K. Mackay M.T. Madotto F. Magdy Abd El Razek H. Magdy Abd El Razek M. Maghavani D.P. Mahotra N.B. Mai H.T. Majdan M. Majdzadeh R. Majeed A. Malekzadeh R. Malta D.C. Mamun A.A. Manda A-L. Manguerra H. Manhertz T. Mansournia M.A. Mantovani L.G. Mapoma C.C. Maravilla J.C. Marcenes W. Marks A. Martins-Melo F.R. Martopullo I. März W. Marzan M.B. Mashamba-Thompson T.P. Massenburg B.B. Mathur M.R. Matsushita K. Maulik P.K. Mazidi M. McAlinden C. McGrath J.J. McKee M. Mehndiratta M.M. Mehrotra R. Mehta K.M. Mehta V. Mejia-Rodriguez F. Mekonen T. Melese A. Melku M. Meltzer M. Memiah P.T.N. Memish Z.A. Mendoza W. Mengistu D.T. Mengistu G. Mensah G.A. Mereta S.T. Meretoja A. Meretoja T.J. Mestrovic T. Mezerji N.M.G. Miazgowski B. Miazgowski T. Millear A.I. Miller T.R. Miltz B. Mini G.K. Mirarefin M. Mirrakhimov E.M. Misganaw A.T. Mitchell P.B. Mitiku H. Moazen B. Mohajer B. Mohammad K.A. Mohammadifard N. Mohammadnia-Afrouzi M. Mohammed M.A. Mohammed S. Mohebi F. Moitra M. Mokdad A.H. Molokhia M. Monasta L. Moodley Y. Moosazadeh M. Moradi G. Moradi-Lakeh M. Moradinazar M. Moraga P. Morawska L. Moreno Velásquez I. Morgado-Da-Costa J. Morrison S.D. Moschos M.M. Mountjoy-Venning W.C. Mousavi S.M. Mruts K.B. Muche A.A. Muchie K.F. Mueller U.O. Muhammed O.S. Mukhopadhyay S. Muller K. Mumford J.E. Murhekar M. Musa J. Musa K.I. Mustafa G. Nabhan A.F. Nagata C. Naghavi M. Naheed A. Nahvijou A. Naik G. Naik N. Najafi F. Naldi L. Nam H.S. Nangia V. Nansseu J.R. Nascimento B.R. Natarajan G. Neamati N. Negoi I. Negoi R.I. Neupane S. Newton C.R.J. Ngunjiri J.W. Nguyen A.Q. Nguyen H.T. Nguyen H.L.T. Nguyen H.T. Nguyen L.H. Nguyen M. Nguyen N.B. Nguyen S.H. Nichols E. Ningrum D.N.A. Nixon M.R. Nolutshungu N. Nomura S. Norheim O.F. Noroozi M. Norrving B. Noubiap J.J. Nouri H.R. Nourollahpour Shiadeh M. Nowroozi M.R. Nsoesie E.O. Nyasulu P.S. Odell C.M. Ofori-Asenso R. Ogbo F.A. Oh I-H. Oladimeji O. Olagunju A.T. Olagunju T.O. Olivares P.R. Olsen H.E. Olusanya B.O. Ong K.L. Ong S.K. Oren E. Ortiz A. Ota E. Otstavnov S.S. Øverland S. Owolabi M.O. P A M. Pacella R. Pakpour A.H. Pana A. Panda-Jonas S. Parisi A. Park E-K. Parry C.D.H. Patel S. Pati S. Patil S.T. Patle A. Patton G.C. Paturi V.R. Paulson K.R. Pearce N. Pereira D.M. Perico N. Pesudovs K. Pham H.Q. Phillips M.R. Pigott D.M. Pillay J.D. Piradov M.A. Pirsaheb M. Pishgar F. Plana-Ripoll O. Plass D. Polinder S. Popova S. Postma M.J. Pourshams A. Poustchi H. Prabhakaran D. Prakash S. Prakash V. Purcell C.A. Purwar M.B. Qorbani M. Quistberg D.A. Radfar A. Rafay A. Rafiei A. Rahim F. Rahimi K. Rahimi-Movaghar A. Rahimi-Movaghar V. Rahman M. Rahman M.H. Rahman M.A. Rahman S.U. Rai R.K. Rajati F. Ram U. Ranjan P. Ranta A. Rao P.C. Rawaf D.L. Rawaf S. Reddy K.S. Reiner R.C. Reinig N. Reitsma M.B. Remuzzi G. Renzaho A.M.N. Resnikoff S. Rezaei S. Rezai M.S. Ribeiro A.L.P. Roberts N.L.S. Robinson S.R. Roever L. Ronfani L. Roshandel G. Rostami A. Roth G.A. Roy A. Rubagotti E. Sachdev P.S. Sadat N. Saddik B. Sadeghi E. Saeedi Moghaddam S. Safari H. Safari Y. Safari-Faramani R. Safdarian M. Safi S. Safiri S. Sagar R. Sahebkar A. Sahraian M.A. Sajadi H.S. Salam N. Salama J.S. Salamati P. Saleem K. Saleem Z. Salimi Y. Salomon J.A. Salvi S.S. Salz I. Samy A.M. Sanabria J. Sang Y. Santomauro D.F. Santos I.S. Santos J.V. Santric Milicevic M.M. Sao Jose B.P. Sardana M. Sarker A.R. Sarrafzadegan N. Sartorius B. Sarvi S. Sathian B. Satpathy M. Sawant A.R. Sawhney M. Saxena S. Saylan M. Schaeffner E. Schmidt M.I. Schneider I.J.C. Schöttker B. Schwebel D.C. Schwendicke F. Scott J.G. Sekerija M. Sepanlou S.G. Serván-Mori E. Seyedmousavi S. Shabaninejad H. Shafieesabet A. Shahbazi M. Shaheen A.A. Shaikh M.A. Shams-Beyranvand M. Shamsi M. Shamsizadeh M. Sharafi H. Sharafi K. Sharif M. Sharif-Alhoseini M. Sharma M. Sharma R. She J. Sheikh A. Shi P. Shibuya K. Shigematsu M. Shiri R. Shirkoohi R. Shishani K. Shiue I. Shokraneh F. Shoman H. Shrime M.G. Si S. Siabani S. Siddiqi T.J. Sigfusdottir I.D. Sigurvinsdottir R. Silva J.P. Silveira D.G.A. Singam N.S.V. Singh J.A. Singh N.P. Singh V. Sinha D.N. Skiadaresi E. Slepak E.L.N. Sliwa K. Smith D.L. Smith M. Soares Filho A.M. Sobaih B.H. Sobhani S. Sobngwi E. Soneji S.S. Soofi M. Soosaraei M. Sorensen R.J.D. Soriano J.B. Soyiri I.N. Sposato L.A. Sreeramareddy C.T. Srinivasan V. Stanaway J.D. Stein D.J. Steiner C. Steiner T.J. Stokes M.A. Stovner L.J. Subart M.L. Sudaryanto A. Sufiyan M.B. Sunguya B.F. Sur P.J. Sutradhar I. Sykes B.L. Sylte D.O. Tabarés-Seisdedos R. Tadakamadla S.K. Tadesse B.T. Tandon N. Tassew S.G. Tavakkoli M. Taveira N. Taylor H.R. Tehrani-Banihashemi A. Tekalign T.G. Tekelemedhin S.W. Tekle M.G. Temesgen H. Temsah M-H. Temsah O. Terkawi A.S. Teweldemedhin M. Thankappan K.R. Thomas N. Tilahun B. To Q.G. Tonelli M. Topor-Madry R. Topouzis F. Torre A.E. Tortajada-Girbés M. Touvier M. Tovani-Palone M.R. Towbin J.A. Tran B.X. Tran K.B. Troeger C.E. Truelsen T.C. Tsilimbaris M.K. Tsoi D. Tudor Car L. Tuzcu E.M. Ukwaja K.N. Ullah I. Undurraga E.A. Unutzer J. Updike R.L. Usman M.S. Uthman O.A. Vaduganathan M. Vaezi A. Valdez P.R. Varughese S. Vasankari T.J. Venketasubramanian N. Villafaina S. Violante F.S. Vladimirov S.K. Vlassov V. Vollset S.E. Vosoughi K. Vujcic I.S. Wagnew F.S. Waheed Y. Waller S.G. Wang Y. Wang Y-P. Weiderpass E. Weintraub R.G. Weiss D.J. Weldegebreal F. Weldegwergs K.G. Werdecker A. West T.E. Whiteford H.A. Widecka J. Wijeratne T. Wilner L.B. Wilson S. Winkler A.S. Wiyeh A.B. Wiysonge C.S. Wolfe C.D.A. Woolf A.D. Wu S. Wu Y-C. Wyper G.M.A. Xavier D. Xu G. Yadgir S. Yadollahpour A. Yahyazadeh Jabbari S.H. Yamada T. Yan L.L. Yano Y. Yaseri M. Yasin Y.J. Yeshaneh A. Yimer E.M. Yip P. Yisma E. Yonemoto N. Yoon S-J. Yotebieng M. Younis M.Z. Yousefifard M. Yu C. Zadnik V. Zaidi Z. Zaman S.B. Zamani M. Zare Z. Zeleke A.J. Zenebe Z.M. Zhang K. Zhao Z. Zhou M. Zodpey S. Zucker I. Vos T. Murray C.J.L. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018 392 10159 1789 1858 10.1016/S0140‑6736(18)32279‑7 30496104
    [Google Scholar]
  4. Feigin V.L. Nichols E. Alam T. Bannick M.S. Beghi E. Blake N. Culpepper W.J. Dorsey E.R. Elbaz A. Ellenbogen R.G. Fisher J.L. Fitzmaurice C. Giussani G. Glennie L. James S.L. Johnson C.O. Kassebaum N.J. Logroscino G. Marin B. Mountjoy-Venning W.C. Nguyen M. Ofori-Asenso R. Patel A.P. Piccininni M. Roth G.A. Steiner T.J. Stovner L.J. Szoeke C.E.I. Theadom A. Vollset S.E. Wallin M.T. Wright C. Zunt J.R. Abbasi N. Abd-Allah F. Abdelalim A. Abdollahpour I. Aboyans V. Abraha H.N. Acharya D. Adamu A.A. Adebayo O.M. Adeoye A.M. Adsuar J.C. Afarideh M. Agrawal S. Ahmadi A. Ahmed M.B. Aichour A.N. Aichour I. Aichour M.T.E. Akinyemi R.O. Akseer N. Al-Eyadhy A. Al-Shahi Salman R. Alahdab F. Alene K.A. Aljunid S.M. Altirkawi K. Alvis-Guzman N. Anber N.H. Antonio C.A.T. Arabloo J. Aremu O. Ärnlöv J. Asayesh H. Asghar R.J. Atalay H.T. Awasthi A. Ayala Quintanilla B.P. Ayuk T.B. Badawi A. Banach M. Banoub J.A.M. Barboza M.A. Barker-Collo S.L. Bärnighausen T.W. Baune B.T. Bedi N. Behzadifar M. Behzadifar M. Béjot Y. Bekele B.B. Belachew A.B. Bennett D.A. Bensenor I.M. Berhane A. Beuran M. Bhattacharyya K. Bhutta Z.A. Biadgo B. Bijani A. Bililign N. Bin Sayeed M.S. Blazes C.K. Brayne C. Butt Z.A. Campos-Nonato I.R. Cantu-Brito C. Car M. Cárdenas R. Carrero J.J. Carvalho F. Castañeda-Orjuela C.A. Castro F. Catalá-López F. Cerin E. Chaiah Y. Chang J-C. Chatziralli I. Chiang P.P-C. Christensen H. Christopher D.J. Cooper C. Cortesi P.A. Costa V.M. Criqui M.H. Crowe C.S. Damasceno A.A.M. Daryani A. De la Cruz-Góngora V. De la Hoz F.P. De Leo D. Demoz G.T. Deribe K. Dharmaratne S.D. Diaz D. Dinberu M.T. Djalalinia S. Doku D.T. Dubey M. Dubljanin E. Duken E.E. Edvardsson D. El-Khatib Z. Endres M. Endries A.Y. Eskandarieh S. Esteghamati A. Esteghamati S. Farhadi F. Faro A. Farzadfar F. Farzaei M.H. Fatima B. Fereshtehnejad S-M. Fernandes E. Feyissa G.T. Filip I. Fischer F. Fukumoto T. Ganji M. Gankpe F.G. Garcia-Gordillo M.A. Gebre A.K. Gebremichael T.G. Gelaw B.K. Geleijnse J.M. Geremew D. Gezae K.E. Ghasemi-Kasman M. Gidey M.Y. Gill P.S. Gill T.K. Girma E.T. Gnedovskaya E.V. Goulart A.C. Grada A. Grosso G. Guo Y. Gupta R. Gupta R. Haagsma J.A. Hagos T.B. Haj-Mirzaian A. Haj-Mirzaian A. Hamadeh R.R. Hamidi S. Hankey G.J. Hao Y. Haro J.M. Hassankhani H. Hassen H.Y. Havmoeller R. Hay S.I. Hegazy M.I. Heidari B. Henok A. Heydarpour F. Hoang C.L. Hole M.K. Homaie Rad E. Hosseini S.M. Hu G. Igumbor E.U. Ilesanmi O.S. Irvani S.S.N. Islam S.M.S. Jakovljevic M. Javanbakht M. Jha R.P. Jobanputra Y.B. Jonas J.B. Jozwiak J.J. Jürisson M. Kahsay A. Kalani R. Kalkonde Y. Kamil T.A. Kanchan T. Karami M. Karch A. Karimi N. Kasaeian A. Kassa T.D. Kassa Z.Y. Kaul A. Kefale A.T. Keiyoro P.N. Khader Y.S. Khafaie M.A. Khalil I.A. Khan E.A. Khang Y-H. Khazaie H. Kiadaliri A.A. Kiirithio D.N. Kim A.S. Kim D. Kim Y-E. Kim Y.J. Kisa A. Kokubo Y. Koyanagi A. Krishnamurthi R.V. Kuate Defo B. Kucuk Bicer B. Kumar M. Lacey B. Lafranconi A. Lansingh V.C. Latifi A. Leshargie C.T. Li S. Liao Y. Linn S. Lo W.D. Lopez J.C.F. Lorkowski S. Lotufo P.A. Lucas R.M. Lunevicius R. Mackay M.T. Mahotra N.B. Majdan M. Majdzadeh R. Majeed A. Malekzadeh R. Malta D.C. Manafi N. Mansournia M.A. Mantovani L.G. März W. Mashamba-Thompson T.P. Massenburg B.B. Mate K.K.V. McAlinden C. McGrath J.J. Mehta V. Meier T. Meles H.G. Melese A. Memiah P.T.N. Memish Z.A. Mendoza W. Mengistu D.T. Mengistu G. Meretoja A. Meretoja T.J. Mestrovic T. Miazgowski B. Miazgowski T. Miller T.R. Mini G.K. Mirrakhimov E.M. Moazen B. Mohajer B. Mohammad Gholi Mezerji N. Mohammadi M. Mohammadi-Khanaposhtani M. Mohammadibakhsh R. Mohammadnia-Afrouzi M. Mohammed S. Mohebi F. Mokdad A.H. Monasta L. Mondello S. Moodley Y. Moosazadeh M. Moradi G. Moradi-Lakeh M. Moradinazar M. Moraga P. Moreno Velásquez I. Morrison S.D. Mousavi S.M. Muhammed O.S. Muruet W. Musa K.I. Mustafa G. Naderi M. Nagel G. Naheed A. Naik G. Najafi F. Nangia V. Negoi I. Negoi R.I. Newton C.R.J. Ngunjiri J.W. Nguyen C.T. Nguyen L.H. Ningrum D.N.A. Nirayo Y.L. Nixon M.R. Norrving B. Noubiap J.J. Nourollahpour Shiadeh M. Nyasulu P.S. Ogah O.S. Oh I-H. Olagunju A.T. Olagunju T.O. Olivares P.R. Onwujekwe O.E. Oren E. Owolabi M.O. Pa M. Pakpour A.H. Pan W-H. Panda-Jonas S. Pandian J.D. Patel S.K. Pereira D.M. Petzold M. Pillay J.D. Piradov M.A. Polanczyk G.V. Polinder S. Postma M.J. Poulton R. Poustchi H. Prakash S. Prakash V. Qorbani M. Radfar A. Rafay A. Rafiei A. Rahim F. Rahimi-Movaghar V. Rahman M. Rahman M.H.U. Rahman M.A. Rajati F. Ram U. Ranta A. Rawaf D.L. Rawaf S. Reinig N. Reis C. Renzaho A.M.N. Resnikoff S. Rezaeian S. Rezai M.S. Rios González C.M. Roberts N.L.S. Roever L. Ronfani L. Roro E.M. Roshandel G. Rostami A. Sabbagh P. Sacco R.L. Sachdev P.S. Saddik B. Safari H. Safari-Faramani R. Safi S. Safiri S. Sagar R. Sahathevan R. Sahebkar A. Sahraian M.A. Salamati P. Salehi Zahabi S. Salimi Y. Samy A.M. Sanabria J. Santos I.S. Santric Milicevic M.M. Sarrafzadegan N. Sartorius B. Sarvi S. Sathian B. Satpathy M. Sawant A.R. Sawhney M. Schneider I.J.C. Schöttker B. Schwebel D.C. Seedat S. Sepanlou S.G. Shabaninejad H. Shafieesabet A. Shaikh M.A. Shakir R.A. Shams-Beyranvand M. Shamsizadeh M. Sharif M. Sharif-Alhoseini M. She J. Sheikh A. Sheth K.N. Shigematsu M. Shiri R. Shirkoohi R. Shiue I. Siabani S. Siddiqi T.J. Sigfusdottir I.D. Sigurvinsdottir R. Silberberg D.H. Silva J.P. Silveira D.G.A. Singh J.A. Sinha D.N. Skiadaresi E. Smith M. Sobaih B.H. Sobhani S. Soofi M. Soyiri I.N. Sposato L.A. Stein D.J. Stein M.B. Stokes M.A. Sufiyan M.B. Sykes B.L. Sylaja P.N. Tabarés-Seisdedos R. Te Ao B.J. Tehrani-Banihashemi A. Temsah M-H. Temsah O. Thakur J.S. Thrift A.G. Topor-Madry R. Tortajada-Girbés M. Tovani-Palone M.R. Tran B.X. Tran K.B. Truelsen T.C. Tsadik A.G. Tudor Car L. Ukwaja K.N. Ullah I. Usman M.S. Uthman O.A. Valdez P.R. Vasankari T.J. Vasanthan R. Veisani Y. Venketasubramanian N. Violante F.S. Vlassov V. Vosoughi K. Vu G.T. Vujcic I.S. Wagnew F.S. Waheed Y. Wang Y-P. Weiderpass E. Weiss J. Whiteford H.A. Wijeratne T. Winkler A.S. Wiysonge C.S. Wolfe C.D.A. Xu G. Yadollahpour A. Yamada T. Yano Y. Yaseri M. Yatsuya H. Yimer E.M. Yip P. Yisma E. Yonemoto N. Yousefifard M. Yu C. Zaidi Z. Zaman S.B. Zamani M. Zandian H. Zare Z. Zhang Y. Zodpey S. Naghavi M. Murray C.J.L. Vos T. GBD 2016 Neurology Collaborators Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 18 5 459 480 10.1016/S1474‑4422(18)30499‑X 30879893
    [Google Scholar]
  5. Wanneveich M. Moisan F. Jacqmin-Gadda H. Elbaz A. Joly P. Projections of prevalence, lifetime risk, and life expectancy of Parkinson’s disease (2010‐2030) in France. Mov. Disord. 2018 33 9 1449 1455 10.1002/mds.27447 30145805
    [Google Scholar]
  6. Blank L.J. Jette N. Epilepsy research in 2022: Clinical advances. Lancet Neurol. 2023 22 1 15 17 10.1016/S1474‑4422(22)00486‑0 36517157
    [Google Scholar]
  7. Ostrom Q.T. Gittleman H. de Blank P.M. Finlay J.L. Gurney J.G. McKean-Cowdin R. Stearns D.S. Wolff J.E. Liu M. Wolinsky Y. Kruchko C. Barnholtz-Sloan J.S. American brain tumor association adolescent and young adult primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncol. 2016 18 Suppl 1 Suppl. 1 i1 i50 10.1093/neuonc/nov297 26705298
    [Google Scholar]
  8. Kratzer T.B. Siegel R.L. Miller K.D. Sung H. Islami F. Jemal A. Progress against cancer mortality 50 years after passage of the National Cancer Act. JAMA Oncol. 2022 8 1 156 159 10.1001/jamaoncol.2021.5668 34762103
    [Google Scholar]
  9. Ding S. Khan A.I. Cai X. Song Y. Lyu Z. Du D. Dutta P. Lin Y. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today 2020 37 112 125 10.1016/j.mattod.2020.02.001 33093794
    [Google Scholar]
  10. Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm. Sin. B 2016 6 4 268 286 10.1016/j.apsb.2016.05.013 27471668
    [Google Scholar]
  11. Selvaraj K. Gowthamarajan K. Karri V.V.S.R. Nose to brain transport pathways an overview: potential of nanostructured lipid carriers in nose to brain targeting. Artif. Cells Nanomed. Biotechnol. 2018 46 8 2088 2095 29282995
    [Google Scholar]
  12. Kamble M.S. Bhalerao K.K. Bhosale A.V. Chaudhari P.D. A review on nose-to-brain drug delivery. Int J Pharm Chem Sci. 2013 2 1 516 525
    [Google Scholar]
  13. Gupta S. Dhanda S. Sandhir R. Anatomy and physiology of blood-brain barrier. Brain targeted drug delivery system. Elsevier 2019 7 31 10.1016/B978‑0‑12‑814001‑7.00002‑0
    [Google Scholar]
  14. Crowe T.P. Greenlee M.H.W. Kanthasamy A.G. Hsu W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018 195 44 52 10.1016/j.lfs.2017.12.025 29277310
    [Google Scholar]
  15. Kashyap K. Shukla R. Drug delivery and targeting to the brain through nasal route: Mechanisms, applications and challenges. Curr. Drug Deliv. 2019 16 10 887 901 10.2174/1567201816666191029122740 31660815
    [Google Scholar]
  16. Liu Q. Yang Y. Fan X. Microvascular pericytes in brain-associated vascular disease. Biomed. Pharmacother. 2020 121 109633 10.1016/j.biopha.2019.109633 31743876
    [Google Scholar]
  17. Michinaga S. Koyama Y. Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage. Int. J. Mol. Sci. 2019 20 3 571 10.3390/ijms20030571 30699952
    [Google Scholar]
  18. Daneman R. Prat A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015 7 1 a020412 10.1101/cshperspect.a020412 25561720
    [Google Scholar]
  19. Martins P.P. Smyth H.D.C. Cui Z. Strategies to facilitate or block nose-to-brain drug delivery. Int. J. Pharm. 2019 570 118635 10.1016/j.ijpharm.2019.118635 31445062
    [Google Scholar]
  20. Bonferoni M.C. Rossi S. Sandri G. Ferrari F. Gavini E. Rassu G. Giunchedi P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics 2019 11 2 84 10.3390/pharmaceutics11020084 30781585
    [Google Scholar]
  21. Kumar R. Thakur A. Singh P.K. Biswal S.S. Kumar N. Jha C.B. Singh G. Kaur C. Wadhwa S. Drug delivery through nose: A noninvasive technique for brain targeting. J. Rep. Pharm. Sci. 2020 9 1 168 175 10.4103/jrptps.JRPTPS_59_19
    [Google Scholar]
  22. Nagpal K. Singh S.K. Mishra D.N. Drug targeting to brain: A systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opin. Drug Deliv. 2013 10 7 927 955 10.1517/17425247.2013.762354 23330786
    [Google Scholar]
  23. Thorne R.G. Pronk G.J. Padmanabhan V. Frey W.H. II Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004 127 2 481 496 10.1016/j.neuroscience.2004.05.029 15262337
    [Google Scholar]
  24. Garcia-Garcia E. Andrieux K. Gil S. Couvreur P. Colloidal carriers and blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int. J. Pharm. 2005 298 2 274 292 10.1016/j.ijpharm.2005.03.031 15896933
    [Google Scholar]
  25. van Tellingen O. Yetkin-Arik B. de Gooijer M.C. Wesseling P. Wurdinger T. de Vries H.E. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat. 2015 19 1 12 10.1016/j.drup.2015.02.002 25791797
    [Google Scholar]
  26. Schaefer M.L. Böttger B. Silver W.L. Finger T.E. Trigeminal collaterals in the nasal epithelium and olfactory bulb: A potential route for direct modulation of olfactory information by trigeminal stimuli. J. Comp. Neurol. 2002 444 3 221 226 10.1002/cne.10143 11840476
    [Google Scholar]
  27. Lochhead J.J. Thorne R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012 64 7 614 628 10.1016/j.addr.2011.11.002 22119441
    [Google Scholar]
  28. Dubois J. Thomas-Chaussé F. Soulez G. Common (cystic) lymphatic malformations: Current knowledge and management. Tech. Vasc. Interv. Radiol. 2019 22 4 100631 10.1016/j.tvir.2019.100631 31864533
    [Google Scholar]
  29. De Martini L.B. Sulmona C. Brambilla L. Rossi D. Cell-penetrating peptides as valuable tools for nose-to-brain delivery of biological drugs. Cells 2023 12 12 1643 10.3390/cells12121643 37371113
    [Google Scholar]
  30. Hladky S.B. Barrand M.A. Mechanisms of fluid movement into, through and out of the brain: Evaluation of the evidence. Fluids Barriers CNS 2014 11 1 26 10.1186/2045‑8118‑11‑26 25678956
    [Google Scholar]
  31. Albayram M.S. Smith G. Tufan F. Tuna I.S. Bostancıklıoğlu M. Zile M. Albayram O. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat. Commun. 2022 13 1 203 10.1038/s41467‑021‑27887‑0 35017525
    [Google Scholar]
  32. Pardeshi C.V. Belgamwar V.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: An excellent platform for brain targeting. Expert Opin. Drug Deliv. 2013 10 7 957 972 10.1517/17425247.2013.790887 23586809
    [Google Scholar]
  33. Sun B.L. Wang L. Yang T. Sun J. Mao L. Yang M. Yuan H. Colvin R.A. Yang X. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog. Neurobiol. 2018 163-164 118 143 10.1016/j.pneurobio.2017.08.007 28903061
    [Google Scholar]
  34. Thiebaud N. Menetrier F. Belloir C. Minn A.L. Neiers F. Artur Y. Le Bon A.M. Heydel J.M. Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium. Neurosci. Lett. 2011 505 2 180 185 10.1016/j.neulet.2011.10.018 22015764
    [Google Scholar]
  35. Hsu S.J. Zhang C. Jeong J. Lee S. McConnell M. Utsumi T. Iwakiri Y. Enhanced meningeal lymphatic drainage ameliorates neuroinflammation and hepatic encephalopathy in cirrhotic rats. Gastroenterology 2021 160 4 1315 1329.e13 10.1053/j.gastro.2020.11.036 33227282
    [Google Scholar]
  36. Reinholz J. Landfester K. Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Deliv. 2018 25 1 1694 1705 10.1080/10717544.2018.1501119 30394120
    [Google Scholar]
  37. Homayun B. Lin X. Choi H.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019 11 3 129 10.3390/pharmaceutics11030129 30893852
    [Google Scholar]
  38. Üstündağ Okur N. Yozgatlı V. Okur M.E. Yoltaş A. Siafaka P.I. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J. Drug Deliv. Sci. Technol. 2019 49 323 333 10.1016/j.jddst.2018.12.005
    [Google Scholar]
  39. Choudhury H. Gorain B. Kesharwani P. Physiology of the biological barriers. Theory and Applications of Nonparenteral Nanomedicines. Elsevier 2021 79 95 10.1016/B978‑0‑12‑820466‑5.00004‑1
    [Google Scholar]
  40. Arshad A. Arshad S. Alamgeer Mahmood A. Hussain Asim M. Ijaz M. Muhammad Irfan H. Rubab M. Ali S. Raza Hashmi A. Zeta potential changing self-nanoemulsifying drug delivery systems: A newfangled approach for enhancing oral bioavailability of poorly soluble drugs. Int. J. Pharm. 2024 655 123998 10.1016/j.ijpharm.2024.123998 38490401
    [Google Scholar]
  41. Li T. Vandesquille M. Koukouli F. Dudeffant C. Youssef I. Lenormand P. Ganneau C. Maskos U. Czech C. Grueninger F. Duyckaerts C. Dhenain M. Bay S. Delatour B. Lafaye P. Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets. J. Control. Release 2016 243 1 10 10.1016/j.jconrel.2016.09.019 27671875
    [Google Scholar]
  42. Chenghua G.U. Ayal B.Z. Methods and compositions relating to modulation of the permeability of the blood brain barrier. Patent US20160120893A1, 2014
  43. Pardridge W.M. Blood–brain barrier endogenous transporters as therapeutic targets: A new model for small molecule CNS drug discovery. Expert Opin. Ther. Targets 2015 19 8 1059 1072 10.1517/14728222.2015.1042364 25936389
    [Google Scholar]
  44. Choi M. Ku T. Chong K. Yoon J. Choi C. Minimally invasive molecular delivery into the brain using optical modulation of vascular permeability. Proc. Natl. Acad. Sci. USA 2011 108 22 9256 9261 10.1073/pnas.1018790108 21576460
    [Google Scholar]
  45. Yu X.C. Yang J.J. Jin B.H. Xu H.L. Zhang H.Y. Xiao J. Lu C.T. Zhao Y.Z. Yang W. A strategy for bypassing the blood-brain barrier: Facial intradermal brain-targeted delivery via the trigeminal nerve. J. Control. Release 2017 258 22 33 10.1016/j.jconrel.2017.05.001 28476614
    [Google Scholar]
  46. Hersh D.S. Wadajkar A.S. Roberts N. Perez J.G. Connolly N.P. Frenkel V. Winkles J.A. Woodworth G.F. Kim A.J. Evolving drug delivery strategies to overcome the blood brain barrier. Curr. Pharm. Des. 2016 22 9 1177 1193 10.2174/1381612822666151221150733 26685681
    [Google Scholar]
  47. Agrawal M. Ajazuddin Tripathi D.K. Saraf S. Saraf S. Antimisiaris S.G. Mourtas S. Hammarlund-Udenaes M. Alexander A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release 2017 260 61 77 10.1016/j.jconrel.2017.05.019 28549949
    [Google Scholar]
  48. Poustforoosh A. Farmarz S. Nematollahi M.H. Hashemipour H. Pardakhty A. Construction of Bio-conjugated nano-vesicles using non-ionic surfactants for targeted drug delivery: A computational supported experimental study. J. Mol. Liq. 2022 367 120588 10.1016/j.molliq.2022.120588
    [Google Scholar]
  49. Rabanel J.M. Faivre J. Paka G.D. Ramassamy C. Hildgen P. Banquy X. Effect of polymer architecture on curcumin encapsulation and release from PEGylated polymer nanoparticles: Toward a drug delivery nano-platform to the CNS. Eur. J. Pharm. Biopharm. 2015 96 409 420 10.1016/j.ejpb.2015.09.004 26409200
    [Google Scholar]
  50. Liu W. Ye A. Liu W. Liu C. Han J. Singh H. Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chem. 2015 175 16 24 10.1016/j.foodchem.2014.11.108 25577045
    [Google Scholar]
  51. Barbara R. Belletti D. Pederzoli F. Masoni M. Keller J. Ballestrazzi A. Vandelli M.A. Tosi G. Grabrucker A.M. Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates. Int. J. Pharm. 2017 526 1-2 413 424 10.1016/j.ijpharm.2017.05.015 28495580
    [Google Scholar]
  52. v A. Cutinho L.I. Mourya P. Maxwell A. Thomas G. Rajput B.S. Approaches for encephalic drug delivery using nanomaterials: The current status. Brain Res. Bull. 2020 155 184 190 10.1016/j.brainresbull.2019.11.017 31790722
    [Google Scholar]
  53. Kong S.D. Lee J. Ramachandran S. Eliceiri B.P. Shubayev V.I. Lal R. Jin S. Magnetic targeting of nanoparticles across the intact blood–brain barrier. J. Control. Release 2012 164 1 49 57 10.1016/j.jconrel.2012.09.021 23063548
    [Google Scholar]
  54. Wen M.M. El-Salamouni N.S. El-Refaie W.M. Hazzah H.A. Ali M.M. Tosi G. Farid R.M. Blanco-Prieto M.J. Billa N. Hanafy A.S. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J. Control. Release 2017 245 95 107 10.1016/j.jconrel.2016.11.025 27889394
    [Google Scholar]
  55. Shah B. Khunt D. Bhatt H. Misra M. Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur. J. Pharm. Sci. 2015 78 54 66 10.1016/j.ejps.2015.07.002 26143262
    [Google Scholar]
  56. Tan X. Kim G. Lee D. Oh J. Kim M. Piao C. Lee J. Lee M.S. Jeong J.H. Lee M. A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model. Biomater. Sci. 2018 6 2 407 417 10.1039/C7BM01088E 29340361
    [Google Scholar]
  57. Akel H. Ismail R. Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur. J. Pharm. Biopharm. 2020 148 38 53 10.1016/j.ejpb.2019.12.014 31926222
    [Google Scholar]
  58. Ong W.Y. Shalini S.M. Costantino L. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr. Med. Chem. 2014 21 37 4247 4256 10.2174/0929867321666140716103130 25039773
    [Google Scholar]
  59. Rajizadeh M.A. Motamedy S. Mir Y. Akhgarandouz F. Nematollahi M.H. Nezhadi A. A comprehensive and updated review on the applications of vesicular drug delivery systems in treatment of brain disorders: A shelter against storms. J. Drug Deliv. Sci. Technol. 2023 89 105011 10.1016/j.jddst.2023.105011
    [Google Scholar]
  60. Battaglia L. Panciani P.P. Muntoni E. Capucchio M.T. Biasibetti E. De Bonis P. Mioletti S. Fontanella M. Swaminathan S. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery. Expert Opin. Drug Deliv. 2018 15 4 369 378 10.1080/17425247.2018.1429401 29338427
    [Google Scholar]
  61. Santos-Morales O. Díaz-Machado A. Jiménez-Rodríguez D. Pomares-Iturralde Y. Festary-Casanovas T. González-Delgado C.A. Pérez-Rodríguez S. Alfonso-Muñoz E. Viada-González C. Piedra-Sierra P. García-García I. Amaro-González D. García-Rodríguez J.C. Sosa-Testé I. Lagarto-Parra A. Barrero-Viera L. David-Baldo M. Tamayo-Rodríguez M. Rivero-Vázquez I. González-Gamiz G. Martín-Trujillo A. Rodríguez-Fernández Y. Ledo-de la Luz A.A. Álvarez-Delgado M. Howland-Álvarez I. Cruz-Gómez Y. NeuroEPO Study Group Nasal administration of the neuroprotective candidate NeuroEPO to healthy volunteers: A randomized, parallel, open-label safety study. BMC Neurol. 2017 17 1 129 10.1186/s12883‑017‑0908‑0 28676085
    [Google Scholar]
  62. Shrewsbury SB Swardstrom M Satterly KH Campbell J Tugiono N Gillies JD Placebo/active controlled, safety, pharmaco-kinetic/dynamic study of INP105 (POD® olanzapine) in healthy adults. West J Emerg Med Integr Emerg Care with Popul Heal 2019 20 2
    [Google Scholar]
  63. Tepper S.J. Johnstone M.R. Breath-powered sumatriptan dry nasal powder: An intranasal medication delivery system for acute treatment of migraine. Med Devices 2018 11 147 156
    [Google Scholar]
  64. Iarkov A. Barreto G.E. Grizzell J.A. Echeverria V. Strategies for the treatment of Parkinson’s disease: Beyond dopamine. Front. Aging Neurosci. 2020 12 4 10.3389/fnagi.2020.00004 32076403
    [Google Scholar]
  65. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  66. Islam S.U. Shehzad A. Ahmed M.B. Lee Y.S. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules 2020 25 8 1929 10.3390/molecules25081929 32326318
    [Google Scholar]
  67. Tang S. Wang A. Yan X. Chu L. Yang X. Song Y. Sun K. Yu X. Liu R. Wu Z. Xue P. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv. 2019 26 1 700 707 10.1080/10717544.2019.1636420 31290705
    [Google Scholar]
  68. Novak P. Pimentel Maldonado D.A. Novak V. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: A double-blinded placebo-controlled pilot study. PLoS One 2019 14 4 e0214364 10.1371/journal.pone.0214364 31022213
    [Google Scholar]
  69. Wang Z. Xiong G. Tsang W.C. Schätzlein A.G. Uchegbu I.F. Nose-to-brain delivery. J. Pharmacol. Exp. Ther. 2019 370 3 593 601 10.1124/jpet.119.258152 31126978
    [Google Scholar]
  70. Saraf S. Alexander A. Nose-to-brain drug delivery approach: A key to easily accessing the brain for the treatment of Alzheimer’s disease. Neural Regen. Res. 2018 13 12 2102 2104 10.4103/1673‑5374.241458 30323136
    [Google Scholar]
  71. Musumeci T. Bonaccorso A. Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: An overview. Pharmaceutics 2019 11 3 118 10.3390/pharmaceutics11030118 30871237
    [Google Scholar]
  72. Gadhave D.G. Kokare C.R. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: Optimization and in vivo studies. Drug Dev. Ind. Pharm. 2019 45 5 839 851 10.1080/03639045.2019.1576724 30702966
    [Google Scholar]
  73. Rassy D. Bárcena B. Pérez-Osorio I.N. Espinosa A. Peón A.N. Terrazas L.I. Meneses G. Besedovsky H.O. Fragoso G. Sciutto E. Intranasal methylprednisolone effectively reduces neuroinflammation in mice with experimental autoimmune encephalitis. J. Neuropathol. Exp. Neurol. 2020 79 2 226 237 10.1093/jnen/nlz128 31886871
    [Google Scholar]
  74. Khan R.S. Dine K. Bauman B. Lorentsen M. Lin L. Brown H. Hanson L.R. Svitak A.L. Wessel H. Brown L. Shindler K.S. Intranasal delivery of a novel amnion cell secretome prevents neuronal damage and preserves function in a mouse multiple sclerosis model. Sci. Rep. 2017 7 1 41768 10.1038/srep41768 28139754
    [Google Scholar]
  75. Chen C. Zhang M. Wu Y. Zhou C. Liu R. Intranasal delivering method in the treatment of ischemic stroke. Therapeutic Intranasal Delivery for Stroke and Neurological Disorders. Springer Cham 2019 75 89 10.1007/978‑3‑030‑16715‑8_7
    [Google Scholar]
  76. Sood S. Jain K. Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf. B Biointerfaces 2014 113 330 337 10.1016/j.colsurfb.2013.09.030 24121076
    [Google Scholar]
  77. Zhang C. Chen J. Feng C. Shao X. Liu Q. Zhang Q. Pang Z. Jiang X. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int. J. Pharm. 2014 461 1-2 192 202 10.1016/j.ijpharm.2013.11.049 24300213
    [Google Scholar]
  78. Djupesland P.G. Nasal drug delivery devices: Characteristics and performance in a clinical perspective—a review. Drug Deliv. Transl. Res. 2013 3 1 42 62 10.1007/s13346‑012‑0108‑9 23316447
    [Google Scholar]
  79. Reger M.A. Watson G.S. Green P.S. Baker L.D. Cholerton B. Fishel M.A. Plymate S.R. Cherrier M.M. Schellenberg G.D. Frey W.H. II Craft S. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-β in memory-impaired older adults. J. Alzheimers Dis. 2008 13 3 323 331 10.3233/JAD‑2008‑13309 18430999
    [Google Scholar]
  80. Hoekman J.D. Ho R.J.Y. Effects of localized hydrophilic mannitol and hydrophobic nelfinavir administration targeted to olfactory epithelium on brain distribution. AAPS PharmSciTech 2011 12 2 534 543 10.1208/s12249‑011‑9614‑1 21519984
    [Google Scholar]
  81. Majgainya S. Soni S. Bhat P. Novel approach for nose-to-brain drug delivery bypassing blood brain barrier by pressurized olfactory delivery device. J. Appl. Pharm. 2015 7 3 148 163 10.21065/19204159.7.3.125
    [Google Scholar]
  82. Hallschmid M. Benedict C. Schultes B. Perras B. Fehm H.L. Kern W. Born J. Towards the therapeutic use of intranasal neuropeptide administration in metabolic and cognitive disorders. Regul. Pept. 2008 149 1-3 79 83 10.1016/j.regpep.2007.06.012 18442862
    [Google Scholar]
  83. Benedict C. Hallschmid M. Schultes B. Born J. Kern W. Intranasal insulin to improve memory function in humans. Neuroendocrinology 2007 86 2 136 142 10.1159/000106378 17643054
    [Google Scholar]
  84. Schilling T.M. Ferreira de Sá D.S. Westerhausen R. Strelzyk F. Larra M.F. Hallschmid M. Savaskan E. Oitzl M.S. Busch H.P. Naumann E. Schächinger H. Intranasal insulin increases regional cerebral blood flow in the insular cortex in men independently of cortisol manipulation. Hum. Brain Mapp. 2014 35 5 1944 1956 10.1002/hbm.22304 23907764
    [Google Scholar]
  85. Xiao C. Dash S. Stahel P. Lewis G.F. Effects of intranasal insulin on triglyceride-rich lipoprotein particle production in healthy men. Arterioscler. Thromb. Vasc. Biol. 2017 37 9 1776 1781 10.1161/ATVBAHA.117.309705 28751575
    [Google Scholar]
  86. Dash S. Xiao C. Morgantini C. Koulajian K. Lewis G.F. Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations. Diabetes 2015 64 3 766 774 10.2337/db14‑0685 25288674
    [Google Scholar]
  87. Stockhorst U. de Fries D. Steingrueber H.J. Scherbaum W.A. Unconditioned and conditioned effects of intranasally administered insulin vs placebo in healthy men: A randomised controlled trial. Diabetologia 2011 54 6 1502 1506 10.1007/s00125‑011‑2111‑y 21461638
    [Google Scholar]
  88. Djupesland P.G. Skretting A. Winderen M. Holand T. Bi-directional nasal delivery of aerosols can prevent lung deposition. J. Aerosol Med. 2004 17 3 249 259 10.1089/jam.2004.17.249 15625817
    [Google Scholar]
  89. Djupesland P.G. Skretting A. Winderen M. Holand T. Breath actuated device improves delivery to target sites beyond the nasal valve. Laryngoscope 2006 116 3 466 472 10.1097/01.MLG.0000199741.08517.99 16540911
    [Google Scholar]
  90. Dale O. Nilsen T. Loftsson T. Tønnesen H.H. Klepstad P. Kaasa S. Holand T. Djupesland P.G. Intranasal midazolam: A comparison of two delivery devices in human volunteers. J. Pharm. Pharmacol. 2010 58 10 1311 1318 10.1211/jpp.58.10.0003 17034653
    [Google Scholar]
  91. Djupesland P.G. Dočekal P. Group C.M.I. Czech Migraine Investigators Group Intranasal sumatriptan powder delivered by a novel breath-actuated bi-directional device for the acute treatment of migraine: A randomised, placebo-controlled study. Cephalalgia 2010 30 8 933 942 10.1177/0333102409359314 20656704
    [Google Scholar]
  92. Yadav S. Gattacceca F. Panicucci R. Amiji M.M. Comparative biodistribution and pharmacokinetic analysis of cyclosporine-A in the brain upon intranasal or intravenous administration in an oil-in-water nanoemulsion formulation. Mol. Pharm. 2015 12 5 1523 1533 10.1021/mp5008376 25785492
    [Google Scholar]
  93. Hanafy A.S. Farid R.M. Helmy M.W. ElGamal S.S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: future potential contribution in Alzheimer’s disease management. Drug Deliv. 2016 23 8 3111 3122 10.3109/10717544.2016.1153748 26942549
    [Google Scholar]
  94. Pathak R. Prasad Dash R. Misra M. Nivsarkar M. Role of mucoadhesive polymers in enhancing delivery of nimodipine microemulsion to brain via intranasal route. Acta Pharm. Sin. B 2014 4 2 151 160 10.1016/j.apsb.2014.02.002 26579378
    [Google Scholar]
  95. Elnaggar Y.S.R. Etman S.M. Abdelmonsif D.A. Abdallah O.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. J. Pharm. Sci. 2015 104 10 3544 3556 10.1002/jps.24557
    [Google Scholar]
  96. Nasr M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv. 2016 23 4 1444 1452 10.3109/10717544.2015.1092619 26401600
    [Google Scholar]
  97. Haider M.F. Khan S. Gaba B. Alam T. Baboota S. Ali J. Ali A. Optimization of rivastigmine nanoemulsion for enhanced brain delivery: In-vivo and toxicity evaluation. J. Mol. Liq. 2018 255 384 396 10.1016/j.molliq.2018.01.123
    [Google Scholar]
  98. Jiang Y. Liu C. Zhai W. Zhuang N. Han T. Ding Z. The optimization design of lactoferrin loaded HupA nanoemulsion for targeted drug transport via intranasal route. Int. J. Nanomedicine 2019 14 9217 9234 10.2147/IJN.S214657 31819426
    [Google Scholar]
  99. Iqbal R. Ahmed S. Jain G.K. Vohora D. Design and development of letrozole nanoemulsion: A comparative evaluation of brain targeted nanoemulsion with free letrozole against status epilepticus and neurodegeneration in mice. Int. J. Pharm. 2019 565 20 32 10.1016/j.ijpharm.2019.04.076 31051232
    [Google Scholar]
  100. Rinaldi F. Seguella L. Gigli S. Hanieh P.N. Del Favero E. Cantù L. Pesce M. Sarnelli G. Marianecci C. Esposito G. Carafa M. inPentasomes: An innovative nose-to-brain pentamidine delivery blunts MPTP parkinsonism in mice. J. Control. Release 2019 294 17 26 10.1016/j.jconrel.2018.12.007 30529726
    [Google Scholar]
  101. Salem H.F. Kharshoum R.M. Abou-Taleb H.A. Naguib D.M. Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: In vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination. J. Drug Target. 2019 27 10 1127 1134 10.1080/1061186X.2019.1608553 31094230
    [Google Scholar]
  102. Frey I.I.W.H. Method for administering insulin to the brain. Patent US6313093B1, 2001
  103. Frey I.I.W.H. Method for administering neurologic agents to the brain. Patent US5624898A, 2001
  104. Dhuria S.V. Hanson L.R. Frey W.H. II Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci. 2010 99 4 1654 1673 10.1002/jps.21924 19877171
    [Google Scholar]
  105. Madav Y. Wairkar S. Strategies for enhanced direct nose-to-brain drug delivery. Direct Nose-to-Brain Drug Delivery. Elsevier 2021 169 184 10.1016/B978‑0‑12‑822522‑6.00014‑X
    [Google Scholar]
  106. Frey I.I.W.H. Thorne R.G. Method for administering agents to the central nervous system. Patent WO/2000/033814, 2007
  107. Frey W. Method for administering brain-derived neurotrophic factor to the brain. Patent, 2003
  108. Vyas T. Shahiwala A. Marathe S. Misra A. Intranasal drug delivery for brain targeting. Curr. Drug Deliv. 2005 2 2 165 175 10.2174/1567201053586047 16305417
    [Google Scholar]
  109. Levin B. Directed intranasal administration of pharmaceutical agents. Patent, 2005
  110. Wairkar S. Tambe V.S. Lipid-based nanocarriers via nose-to-brain pathway for alzheimer’s and parkinson’s disease. Curr. Nanosci. 2023 19 3 322 337 10.2174/1573413718666220627140824
    [Google Scholar]
  111. Misra A. Jogani V. Jinturkar K. Vyas T. Recent patents review on intranasal administration for CNS drug delivery. Recent Pat. Drug Deliv. Formul. 2008 2 1 25 40 10.2174/187221108783331429 19075895
    [Google Scholar]
  112. Choi Y.M. Kim K. Transnasal microemulsions containing diazepam. Patent WO2004110403A1, 2005
  113. Moscatelli D Capasso Palmiero U Biffi A Peviani M Milazzo R Capotondo A. Compositions and methods for treating diseases and disorders of the central nervous system. Patent AU2017342555A1, 2017
  114. Wermeling D.P. Intranasal delivery of antiepileptic medications for treatment of seizures. Neurotherapeutics 2009 6 2 352 358 10.1016/j.nurt.2009.01.002 19332330
    [Google Scholar]
  115. Wermeling D.P.H. Miller J.L. Archer S.M. Manaligod J.M. Rudy A.C. Bioavailability and pharmacokinetics of lorazepam after intranasal, intravenous, and intramuscular administration. J. Clin. Pharmacol. 2001 41 11 1225 1231 10.1177/00912700122012779 11697755
    [Google Scholar]
  116. Warnken Z.N. Smyth H.D.C. Watts A.B. Weitman S. Kuhn J.G. Williams R.O. III Formulation and device design to increase nose to brain drug delivery. J. Drug Deliv. Sci. Technol. 2016 35 213 222 10.1016/j.jddst.2016.05.003
    [Google Scholar]
  117. Chatterjee B. Gorain B. Mohananaidu K. Sengupta P. Mandal U.K. Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int. J. Pharm. 2019 565 258 268 10.1016/j.ijpharm.2019.05.032 31095983
    [Google Scholar]
  118. Lee S.K. Chung K.H. Ullah I. Kumar P. Lee S. Nose-to-brain drug delivery device. Patent US11097073B2, 2021
  119. Bahadur S. Pardhi D.M. Rautio J. Rosenholm J.M. Pathak K. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for CNS disorders. Pharmaceutics 2020 12 12 1230 10.3390/pharmaceutics12121230 33352959
    [Google Scholar]
  120. Pandey V. Gadeval A. Asati S. Jain P. Jain N. Roy R.K. Formulation strategies for nose-to-brain delivery of therapeutic molecules. Drug delivery systems. Elsevier 2020 291 332 10.1016/B978‑0‑12‑814487‑9.00007‑7
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249329586240924105624
Loading
/content/journals/cnsamc/10.2174/0118715249329586240924105624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test