Skip to content
2000
image of A Brief Review on Caenorhabditis elegans Role in Modelling Neurodegenerative Disease

Abstract

A small, translucent nematode known as Caenorhabditis elegans, or C. elegans, is frequently utilized as a model organism in biomedical studies. These worms, which are around 1 mm long and feed on bacteria, are usually found in soil. For accessible and effective research on genetics, developmental biology, neuroscience, cell biology, and aging, C. elegans provide an ideal model. Its simplicity, which includes a translucent body and a nervous system with only 302 neurons, makes it possible to see cellular and developmental processes in great detail. Because of its special benefits, the worm Caenorhabditis elegans allows for a thorough characterization of the cellular and molecular processes causing age-related neurodegenerative diseases.

This is a general review of the life cycle, experimental methodologies, and the use of to model brain diseases, including those related to molecular and genetic factors that cause neurodegenerative diseases. Additionally, we go over how is a perfect model organism for studying neurons in instances of prevalent age-related neurodegenerative illnesses due to a combination of its biological traits and new analytical techniques.

The literature review process was carried out step-by-step using online search databases such as Web of Science, PubMED, Embase, Google Scholar, Medline, and Google Patents. In the first searches, keywords like , disease modelling, and neuroprotective activity were employed.

Because of 's physiological transparency, it is possible to track the development of neurodegeneration in aging organisms by using co-expressed fluorescent proteins. Importantly, a fully characterized connectome provides a unique ability to precisely connect cellular death with behavioural instability or phenotypic diversity in vivo, thus permitting a deep knowledge of the detrimental effect of neurodegeneration on wellbeing.

In addition, pharmacological therapies and both forward and reverse gene screening speed up the discovery of modifiers that change neurodegeneration. These chemical-genetic investigations work together to determine important threshold states that either increase or decrease cellular stress in order to unravel related pathways.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249340567241004043542
2024-10-16
2024-11-22
Loading full text...

Full text loading...

References

  1. Konstantinidis G. Tavernarakis N. Molecular Basis of Neuronal Autophagy in Ageing: Insights from Caenorhabditis elegans. Cells 2021 10 3 694 10.3390/cells10030694 33800981
    [Google Scholar]
  2. Forslund K. Schreiber F. Thanintorn N. Sonnhammer E.L.L. OrthoDisease: Tracking disease gene orthologs across 100 species. Brief. Bioinform. 2011 12 5 463 473 10.1093/bib/bbr024 21565935
    [Google Scholar]
  3. Kim Y. Park Y. Hwang J. Kwack K. Comparative genomic analysis of the human and nematode Caenorhabditis elegans uncovers potential reproductive genes and disease associations in humans. Physiol. Genomics 2018 50 11 1002 1014 10.1152/physiolgenomics.00063.2018 30240344
    [Google Scholar]
  4. Markaki M. Tavernarakis N. Caenorhabditis elegans as a model system for human diseases. Curr. Opin. Biotechnol. 2020 63 118 125 10.1016/j.copbio.2019.12.011 31951916
    [Google Scholar]
  5. Kipreos E.T. van den Heuvel S. Developmental control of the cell cycle: Insights from Caenorhabditis elegans. Genetics 2019 211 3 797 829 10.1534/genetics.118.301643 30846544
    [Google Scholar]
  6. Marsh E.K. May R.C. Caenorhabditis elegans, a model organism for investigating immunity. Appl. Environ. Microbiol. 2012 78 7 2075 2081 10.1128/AEM.07486‑11 22286994
    [Google Scholar]
  7. Wen H. Gao X. Qin J. Probing the anti-aging role of polydatin in Caenorhabditis elegans on a chip. Integr. Biol. 2014 6 1 35 43 10.1039/C3IB40191J 24305800
    [Google Scholar]
  8. Collins J.J. Evason K. Kornfeld K. Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp. Gerontol. 2006 41 10 1032 1039 10.1016/j.exger.2006.06.038 16872777
    [Google Scholar]
  9. Caldwell K.A. Willicott C.W. Caldwell G.A. Modeling neurodegeneration in Caenorhabditis elegans. Dis. Model. Mech. 2020 13 10 dmm046110 10.1242/dmm.046110 33106318
    [Google Scholar]
  10. Kormish J.D. Gaudet J. McGhee J.D. Development of the C. elegans digestive tract. Curr. Opin. Genet. Dev. 2010 20 4 346 354 10.1016/j.gde.2010.04.012 20570129
    [Google Scholar]
  11. Strange K. An overview of C. elegans biology. Methods Mol. Biol. 2006 351 1 11 16988422
    [Google Scholar]
  12. Park H.E.H. Jung Y. Lee S.J.V. Survival assays using Caenorhabditis elegans. Mol. Cells 2017 40 2 90 99 10.14348/molcells.2017.0017 28241407
    [Google Scholar]
  13. Wittkowski P. Marx-Stoelting P. Violet N. Fetz V. Schwarz F. Oelgeschläger M. Schönfelder G. Vogl S. Caenorhabditis elegans As a Promising Alternative Model for Environmental Chemical Mixture Effect Assessment—A Comparative Study. Environ. Sci. Technol. 2019 53 21 12725 12733 10.1021/acs.est.9b03266 31536708
    [Google Scholar]
  14. Lee S.Y. Kang K. Measuring the effect of chemicals on the growth and reproduction of caenorhabditis elegans. J. Vis. Exp. 2017 128 56437 29053679
    [Google Scholar]
  15. Gjorgjieva J. Biron D. Haspel G. Neurobiology of Caenorhabditis elegans Locomotion: Where Do We stand? Bioscience 2014 64 6 476 486 10.1093/biosci/biu058 26955070
    [Google Scholar]
  16. Lüersen K. Gottschling D.C. Döring F. Complex locomotion behavior changes Are induced in Caenorhabditis elegans by the lack of the regulatory leak K+ Channel TWK-7. Genetics 2016 204 2 683 701 10.1534/genetics.116.188896 27535928
    [Google Scholar]
  17. Koelle M.R. Horvitz H.R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 1996 84 1 115 125 10.1016/S0092‑8674(00)80998‑8 8548815
    [Google Scholar]
  18. Gardner M. Rosell M. Myers E.M. Measuring the effects of bacteria on C. elegans behavior using an egg retention assay. J. Vis. Exp. 2013 80 e51203 24192811
    [Google Scholar]
  19. Hobert O. Loria P. Uses of GFP in Caenorhabditis elegans. Methods Biochem. Anal. 2006 47 203 226 10.1002/0471739499.ch10 16335715
    [Google Scholar]
  20. Braeckman B.P. Smolders A. Back P. De Henau S. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans. Antioxid. Redox Signal. 2016 25 10 577 592 10.1089/ars.2016.6751 27306519
    [Google Scholar]
  21. Labuschagne C.F. Brenkman A.B. Current methods in quantifying ROS and oxidative damage in Caenorhabditis elegans and other model organism of aging. Ageing Res. Rev. 2013 12 4 918 930 10.1016/j.arr.2013.09.003 24080227
    [Google Scholar]
  22. Min H. Lee M. Cho K.S. Lim H.J. Shim Y.H. Nicotinamide supplementation improves oocyte quality and offspring development by modulating mitochondrial function in an aged Caenorhabditis elegans Model. Antioxidants 2021 10 4 519 10.3390/antiox10040519 33810497
    [Google Scholar]
  23. He Y. Miao L. Yu L. Chen Q. Qiao Y. Zhang J-F. Zhou Y. A near-infrared fluorescent probe for detection of exogenous and endogenous hydrogen peroxide in vivo. Dyes Pigments 2019 168 160 165 10.1016/j.dyepig.2019.04.055
    [Google Scholar]
  24. Dudley N.R. Labbé J.C. Goldstein B. Using RNA interference to identify genes required for RNA interference. Proc. Natl. Acad. Sci. USA 2002 99 7 4191 4196 10.1073/pnas.062605199 11904378
    [Google Scholar]
  25. Maeda I. Kohara Y. Yamamoto M. Sugimoto A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 2001 11 3 171 176 10.1016/S0960‑9822(01)00052‑5 11231151
    [Google Scholar]
  26. Kamath R. Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 2003 30 4 313 321 10.1016/S1046‑2023(03)00050‑1 12828945
    [Google Scholar]
  27. Kaletta T. Hengartner M.O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 2006 5 5 387 399 10.1038/nrd2031 16672925
    [Google Scholar]
  28. Sifri C.D. Begun J. Ausubel F.M. The worm has turned – microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol. 2005 13 3 119 127 10.1016/j.tim.2005.01.003 15737730
    [Google Scholar]
  29. Kurz C.L. Ewbank J.J. Caenorhabditis elegans: An emerging genetic model for the study of innate immunity. Nat. Rev. Genet. 2003 4 5 380 390 10.1038/nrg1067 12728280
    [Google Scholar]
  30. SenGupta T. Palikaras K. Esbensen Y.Q. Konstantinidis G. Galindo F.J.N. Achanta K. Kassahun H. Stavgiannoudaki I. Bohr V.A. Akbari M. Gaare J. Tzoulis C. Tavernarakis N. Nilsen H. Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology. Cell Rep. 2021 36 10 109668 10.1016/j.celrep.2021.109668 34496255
    [Google Scholar]
  31. Kuwahara T. Koyama A. Koyama S. Yoshina S. Ren C.H. Kato T. Mitani S. Iwatsubo T. A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in α-synuclein transgenic C. elegans. Hum. Mol. Genet. 2008 17 19 2997 3009 10.1093/hmg/ddn198 18617532
    [Google Scholar]
  32. Jinek M. Chylinski K. Fonfara I. Hauer M. Doudna J.A. Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012 337 6096 816 821 10.1126/science.1225829 22745249
    [Google Scholar]
  33. Paix A. Folkmann A. Rasoloson D. Seydoux G. High efficiency, homology-directed Genome editing in Caenorhabditis elegans using CRISPR-Cas9 Ribonucleoprotein complexes. Genetics 2015 201 1 47 54 10.1534/genetics.115.179382 26187122
    [Google Scholar]
  34. Palikaras K. SenGupta T. Nilsen H. Tavernarakis N. Assessment of dopaminergic neuron degeneration in a C. elegans model of Parkinson’s disease. STAR Protoc. 2022 3 2 101264 10.1016/j.xpro.2022.101264 35403008
    [Google Scholar]
  35. Naranjo-Galindo F.J. Ai R. Fang E.F. Nilsen H.L. SenGupta T. C. elegans as an animal model to study the intersection of DNA Repair, aging and neurodegeneration. Front. Aging 2022 3 916118 10.3389/fragi.2022.916118 35821838
    [Google Scholar]
  36. Jung H. Kim S.Y. Canbakis Cecen F.S. Cho Y. Kwon S.K. Dysfunction of mitochondrial Ca2+ regulatory machineries in brain aging and neurodegenerative diseases. Front. Cell Dev. Biol. 2020 8 599792 10.3389/fcell.2020.599792 33392190
    [Google Scholar]
  37. Lautrup S. Sinclair D.A. Mattson M.P. Fang E.F. NAD+ in Brain Aging and Neurodegenerative Disorders. Cell Metab. 2019 30 4 630 655 10.1016/j.cmet.2019.09.001 31577933
    [Google Scholar]
  38. Hartman J.H. Gonzalez-Hunt C. Hall S.M. Ryde I.T. Caldwell K.A. Caldwell G.A. Meyer J.N. Genetic defects in mitochondrial dynamics in Caenorhabditis elegans impact ultraviolet C radiation- and 6-hydroxydopamine-Induced Neurodegeneration. Int. J. Mol. Sci. 2019 20 13 3202 10.3390/ijms20133202 31261893
    [Google Scholar]
  39. Machiela E. Rudich P.D. Traa A. Anglas U. Soo S.K. Senchuk M.M. Van Raamsdonk J.M. Targeting mitochondrial network disorganization is protective in C. elegans models of huntington’s disease. Aging Dis. 2021 12 7 1753 1772 10.14336/AD.2021.0404 34631219
    [Google Scholar]
  40. Luz A.L. Lagido C. Hirschey M.D. Meyer J.N. In Vivo Determination of Mitochondrial Function Using Luciferase-Expressing Caenorhabditis elegans: Contribution of Oxidative Phosphorylation, Glycolysis, and Fatty Acid Oxidation to Toxicant-Induced Dysfunction. Curr ProtocToxicol. 2016 69:25.8 1 25
    [Google Scholar]
  41. Chen Y. Scarcelli V. Legouis R. Approaches for studying autophagy in Caenorhabditis elegans. Cells 2017 6 3 27 10.3390/cells6030027 28867808
    [Google Scholar]
  42. Hall D.H. Hartwieg E. Nguyen K.C.Q. Modern electron microscopy methods for C. elegans. Methods Cell Biol. 2012 107 93 149 10.1016/B978‑0‑12‑394620‑1.00004‑7 22226522
    [Google Scholar]
  43. Tian Y. Li Z. Hu W. Ren H. Tian E. Zhao Y. Lu Q. Huang X. Yang P. Li X. Wang X. Kovács A.L. Yu L. Zhang H. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 2010 141 6 1042 1055 10.1016/j.cell.2010.04.034 20550938
    [Google Scholar]
  44. Palmisano NJ Meléndez A Detection of autophagy in caenorhabditis elegans by western blotting analysis of LGG-1. Cold Spring Harb Protoc. 2016 2
    [Google Scholar]
  45. Al Rawi S. Louvet-Vallée S. Djeddi A. Sachse M. Culetto E. Hajjar C. Boyd L. Legouis R. Galy V. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 2011 334 6059 1144 1147 10.1126/science.1211878 22033522
    [Google Scholar]
  46. Labbadia J. Morimoto R.I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 2015 84 1 435 464 10.1146/annurev‑biochem‑060614‑033955 25784053
    [Google Scholar]
  47. Lionaki E. Gkikas I. Daskalaki I. Ioannidi M.K. Klapa M.I. Tavernarakis N. Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis. Nat. Commun. 2022 13 1 651 10.1038/s41467‑022‑28272‑1 35115503
    [Google Scholar]
  48. Imanikia S. Özbey N.P. Krueger C. Casanueva M.O. Taylor R.C. Neuronal XBP-1 Activates Intestinal Lysosomes to Improve Proteostasis in C. elegans. Curr. Biol. 2019 29 14 2322 2338.e7 10.1016/j.cub.2019.06.031 31303493
    [Google Scholar]
  49. Ruz C. Alcantud J.L. Vives Montero F. Duran R. Bandres-Ciga S. Proteotoxicity and neurodegenerative diseases. Int. J. Mol. Sci. 2020 21 16 5646 10.3390/ijms21165646 32781742
    [Google Scholar]
  50. Rieckher M. Garinis G.A. Schumacher B. Molecular pathology of rare progeroid diseases. Trends Mol. Med. 2021 27 9 907 922 10.1016/j.molmed.2021.06.011 34272172
    [Google Scholar]
  51. Vermezovic J. Stergiou L. Hengartner M.O. d’Adda di Fagagna F. Differential regulation of DNA damage response activation between somatic and germline cells in Caenorhabditis elegans. Cell Death Differ. 2012 19 11 1847 1855 10.1038/cdd.2012.69 22705849
    [Google Scholar]
  52. McKinnon P.J. DNA repair deficiency and neurological disease. Nat. Rev. Neurosci. 2009 10 2 100 112 10.1038/nrn2559 19145234
    [Google Scholar]
  53. Skjeldam H.K. Kassahun H. Fensgård Ø. SenGupta T. Babaie E. Lindvall J.M. Arczewska K. Nilsen H. Loss of Caenorhabditis elegans UNG-1 uracil-DNA glycosylase affects apoptosis in response to DNA damaging agents. DNA Repair. 2010 9 8 861 870 10.1016/j.dnarep.2010.04.009 20493785
    [Google Scholar]
  54. Morinaga H. Yonekura S.I. Nakamura N. Sugiyama H. Yonei S. Zhang-Akiyama Q.M. Purification and characterization of Caenorhabditis elegans NTH, a homolog of human endonuclease III: Essential role of N-terminal region. DNA Repair. 2009 8 7 844 851 10.1016/j.dnarep.2009.04.020 19481506
    [Google Scholar]
  55. Papaluca A. Wagner J.R. Saragovi H.U. Ramotar D. UNG-1 and APN-1 are the major enzymes to efficiently repair 5-hydroxymethyluracil DNA lesions in C. elegans. Sci. Rep. 2018 8 1 6860 10.1038/s41598‑018‑25124‑1 29717169
    [Google Scholar]
  56. Belan O. Anand R. Boulton S.J. Mechanism of mitotic recombination: Insights from C. elegans. Curr. Opin. Genet. Dev. 2021 71 10 18 10.1016/j.gde.2021.06.005 34186335
    [Google Scholar]
  57. Goldman S.M. Quinlan P.J. Ross G.W. Marras C. Meng C. Bhudhikanok G.S. Comyns K. Korell M. Chade A.R. Kasten M. Priestley B. Chou K.L. Fernandez H.H. Cambi F. Langston J.W. Tanner C.M. Solvent exposures and parkinson disease risk in twins. Ann. Neurol. 2012 71 6 776 784 10.1002/ana.22629 22083847
    [Google Scholar]
  58. Wal A. Wal P. Vig H. Samad A. Khandai M. Tyagi S. A systematic review of various In-vivo screening models as well as the mechanisms involved in parkinson’s disease screening procedures. Curr. Rev. Clin. Exp. Pharmacol. 2024 19 2 124 136 10.2174/2772432817666220707101550 35796452
    [Google Scholar]
  59. Braungart E. Gerlach M. Riederer P. Baumeister R. Hoener M.C. Caenorhabditis elegans MPP+ model of Parkinson’s disease for high-throughput drug screenings. Neurodegener. Dis. 2004 1 4-5 175 183 10.1159/000080983 16908987
    [Google Scholar]
  60. van Ham T.J. Thijssen K.L. Breitling R. Hofstra R.M.W. Plasterk R.H.A. Nollen E.A.A. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet. 2008 4 3 e1000027 10.1371/journal.pgen.1000027 18369446
    [Google Scholar]
  61. van der Goot A.T. Zhu W. Vázquez-Manrique R.P. Seinstra R.I. Dettmer K. Michels H. Farina F. Krijnen J. Melki R. Buijsman R.C. Ruiz Silva M. Thijssen K.L. Kema I.P. Neri C. Oefner P.J. Nollen E.A.A. Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation. Proc. Natl. Acad. Sci. USA 2012 109 37 14912 14917 10.1073/pnas.1203083109 22927396
    [Google Scholar]
  62. Büttner S. Habernig L. Broeskamp F. Ruli D. Vögtle F.N. Vlachos M. Macchi F. Küttner V. Carmona-Gutierrez D. Eisenberg T. Ring J. Markaki M. Taskin A.A. Benke S. Ruckenstuhl C. Braun R. Van den Haute C. Bammens T. van der Perren A. Fröhlich K.U. Winderickx J. Kroemer G. Baekelandt V. Tavernarakis N. Kovacs G.G. Dengjel J. Meisinger C. Sigrist S.J. Madeo F. Endonuclease G mediates α-synuclein cytotoxicity during Parkinson’s disease. EMBO J. 2013 32 23 3041 3054 10.1038/emboj.2013.228 24129513
    [Google Scholar]
  63. Fanning S. Haque A. Imberdis T. Baru V. Barrasa M.I. Nuber S. Termine D. Ramalingam N. Ho G.P.H. Noble T. Sandoe J. Lou Y. Landgraf D. Freyzon Y. Newby G. Soldner F. Terry-Kantor E. Kim T.E. Hofbauer H.F. Becuwe M. Jaenisch R. Pincus D. Clish C.B. Walther T.C. Farese R.V. Jr Srinivasan S. Welte M.A. Kohlwein S.D. Dettmer U. Lindquist S. Selkoe D. Lipidomic analysis of α-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for parkinson treatment. Mol. Cell 2019 73 5 1001 1014.e8 10.1016/j.molcel.2018.11.028 30527540
    [Google Scholar]
  64. Martinez B.A. Caldwell K.A. Caldwell G.A. C. elegans as a model system to accelerate discovery for Parkinson disease. Curr. Opin. Genet. Dev. 2017 44 102 109 10.1016/j.gde.2017.02.011 28242493
    [Google Scholar]
  65. Cooper J.F. Van Raamsdonk J.M. Modeling Parkinson’s disease in C. elegans. J. Parkinsons Dis. 2018 8 1 17 32 10.3233/JPD‑171258 29480229
    [Google Scholar]
  66. Bettens K. Sleegers K. Van Broeckhoven C. Genetic insights in Alzheimer’s disease. Lancet Neurol. 2013 12 1 92 104 10.1016/S1474‑4422(12)70259‑4 23237904
    [Google Scholar]
  67. Scheuner D. Eckman C. Jensen M. Song X. Citron M. Suzuki N. Bird T.D. Hardy J. Hutton M. Kukull W. Larson E. Levy-Lahad L. Viitanen M. Peskind E. Poorkaj P. Schellenberg G. Tanzi R. Wasco W. Lannfelt L. Selkoe D. Younkin S. Secreted amyloid β–protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 1996 2 8 864 870 10.1038/nm0896‑864 8705854
    [Google Scholar]
  68. McColl G. Roberts B.R. Gunn A.P. Perez K.A. Tew D.J. Masters C.L. Barnham K.J. Cherny R.A. Bush A.I. The Caenorhabditis elegans A beta 1-42 model of Alzheimer disease predominantly expresses A beta 3-42. J. Biol. Chem. 2009 284 34 22697 22702 10.1074/jbc.C109.028514 19574211
    [Google Scholar]
  69. Treusch S. Hamamichi S. Goodman J.L. Matlack K.E.S. Chung C.Y. Baru V. Shulman J.M. Parrado A. Bevis B.J. Valastyan J.S. Han H. Lindhagen-Persson M. Reiman E.M. Evans D.A. Bennett D.A. Olofsson A. DeJager P.L. Tanzi R.E. Caldwell K.A. Caldwell G.A. Lindquist S. Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science 2011 334 6060 1241 1245 10.1126/science.1213210 22033521
    [Google Scholar]
  70. Fang E.F. Hou Y. Palikaras K. Adriaanse B.A. Kerr J.S. Yang B. Lautrup S. Hasan-Olive M.M. Caponio D. Dan X. Rocktäschel P. Croteau D.L. Akbari M. Greig N.H. Fladby T. Nilsen H. Cader M.Z. Mattson M.P. Tavernarakis N. Bohr V.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019 22 3 401 412 10.1038/s41593‑018‑0332‑9 30742114
    [Google Scholar]
  71. Xie C. Zhuang X.X. Niu Z. Ai R. Lautrup S. Zheng S. Jiang Y. Han R. Gupta T.S. Cao S. Lagartos-Donate M.J. Cai C.Z. Xie L.M. Caponio D. Wang W.W. Schmauck-Medina T. Zhang J. Wang H. Lou G. Xiao X. Zheng W. Palikaras K. Yang G. Caldwell K.A. Caldwell G.A. Shen H.M. Nilsen H. Lu J.H. Fang E.F. Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat. Biomed. Eng. 2022 6 1 76 93 10.1038/s41551‑021‑00819‑5 34992270
    [Google Scholar]
  72. Tabrizi S.J. Flower M.D. Ross C.A. Wild E.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 2020 16 10 529 546 10.1038/s41582‑020‑0389‑4 32796930
    [Google Scholar]
  73. Morley J.F. Brignull H.R. Weyers J.J. Morimoto R.I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2002 99 16 10417 10422 10.1073/pnas.152161099 12122205
    [Google Scholar]
  74. Voisine C. Varma H. Walker N. Bates E.A. Stockwell B.R. Hart A.C. Identification of potential therapeutic drugs for huntington’s disease using Caenorhabditis elegans. PLoS One 2007 2 6 e504 10.1371/journal.pone.0000504 17551584
    [Google Scholar]
  75. Muñoz-Lobato F. Rodríguez-Palero M.J. Naranjo-Galindo F.J. Shephard F. Gaffney C.J. Szewczyk N.J. Hamamichi S. Caldwell K.A. Caldwell G.A. Link C.D. Miranda-Vizuete A. Protective role of DNJ-27/ERdj5 in Caenorhabditis elegans models of human neurodegenerative diseases. Antioxid. Redox Signal. 2014 20 2 217 235 10.1089/ars.2012.5051 23641861
    [Google Scholar]
  76. Kim D.K. Cho K.W. Ahn W.J. Acuña D. Jeong H. Lee H.J. Lee S.J. Cell-to-cell transmission of polyglutamine aggregates in C. elegans. Exp. Neurobiol. 2017 26 6 321 328 10.5607/en.2017.26.6.321 29302199
    [Google Scholar]
  77. Ragagnin A.M.G. Shadfar S. Vidal M. Jamali M.S. Atkin J.D. Motor neuron susceptibility in ALS/FTD. Front. Neurosci. 2019 13 532 10.3389/fnins.2019.00532 31316328
    [Google Scholar]
  78. Zarei S. Carr K. Reiley L. Diaz K. Guerra O. Altamirano P. Pagani W. Lodin D. Orozco G. Chinea A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 2015 6 1 171 10.4103/2152‑7806.169561 26629397
    [Google Scholar]
  79. Wang J. Farr G.W. Hall D.H. Li F. Furtak K. Dreier L. Horwich A.L. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet. 2009 5 1 e1000350 10.1371/journal.pgen.1000350 19165329
    [Google Scholar]
  80. Therrien M. Rouleau G.A. Dion P.A. Parker J.A. Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One 2013 8 12 e83450 10.1371/journal.pone.0083450 24349511
    [Google Scholar]
  81. Renton A.E. Majounie E. Waite A. Simón-Sánchez J. Rollinson S. Gibbs J.R. Schymick J.C. Laaksovirta H. van Swieten J.C. Myllykangas L. Kalimo H. Paetau A. Abramzon Y. Remes A.M. Kaganovich A. Scholz S.W. Duckworth J. Ding J. Harmer D.W. Hernandez D.G. Johnson J.O. Mok K. Ryten M. Trabzuni D. Guerreiro R.J. Orrell R.W. Neal J. Murray A. Pearson J. Jansen I.E. Sondervan D. Seelaar H. Blake D. Young K. Halliwell N. Callister J.B. Toulson G. Richardson A. Gerhard A. Snowden J. Mann D. Neary D. Nalls M.A. Peuralinna T. Jansson L. Isoviita V.M. Kaivorinne A.L. Hölttä-Vuori M. Ikonen E. Sulkava R. Benatar M. Wuu J. Chiò A. Restagno G. Borghero G. Sabatelli M. Heckerman D. Rogaeva E. Zinman L. Rothstein J.D. Sendtner M. Drepper C. Eichler E.E. Alkan C. Abdullaev Z. Pack S.D. Dutra A. Pak E. Hardy J. Singleton A. Williams N.M. Heutink P. Pickering-Brown S. Morris H.R. Tienari P.J. Traynor B.J. ITALSGEN Consortium A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011 72 2 257 268 10.1016/j.neuron.2011.09.010 21944779
    [Google Scholar]
  82. Rudich P. Snoznik C. Watkins S.C. Monaghan J. Pandey U.B. Lamitina S.T. Nuclear localized C9orf72-associated arginine-containing dipeptides exhibit age-dependent toxicity in C. elegans. Hum. Mol. Genet. 2017 26 24 4916 4928 10.1093/hmg/ddx372 29036691
    [Google Scholar]
  83. Mitra J. Guerrero E.N. Hegde P.M. Liachko N.F. Wang H. Vasquez V. Gao J. Pandey A. Taylor J.P. Kraemer B.C. Wu P. Boldogh I. Garruto R.M. Mitra S. Rao K.S. Hegde M.L. Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects. Proc. Natl. Acad. Sci. USA 2019 116 10 4696 4705 10.1073/pnas.1818415116 30770445
    [Google Scholar]
  84. Cao D. An autoregulation loop in fust-1 for circular RNA regulation in Caenorhabditis elegans. Genetics 2021 219 3 iyab145 10.1093/genetics/iyab145 34740247
    [Google Scholar]
  85. Markert S.M. Skoruppa M. Yu B. Mulcahy B. Zhen M. Gao S. Sendtner M. Stigloher C. Overexpression of an ALS-associated FUS mutation in C. elegans disrupts NMJ morphology and leads to defective neuromuscular transmission. Biol. Open 2020 9 12 bio.055129 10.1242/bio.055129 33148607
    [Google Scholar]
  86. Jablonski A.M. Lamitina T. Liachko N.F. Sabatella M. Lu J. Zhang L. Ostrow L.W. Gupta P. Wu C.Y. Doshi S. Mojsilovic-Petrovic J. Lans H. Wang J. Kraemer B. Kalb R.G. Loss of RAD-23 protects against models of motor neuron disease by enhancing mutant protein clearance. J. Neurosci. 2015 35 42 14286 14306 10.1523/JNEUROSCI.0642‑15.2015 26490867
    [Google Scholar]
  87. Wang X. Hao L. Saur T. Joyal K. Zhao Y. Zhai D. Li J. Pribadi M. Coppola G. Cohen B.M. Buttner E.A. Forward genetic screen in Caenorhabditis elegans Suggests F57A10.2 and acp-4 As suppressors of C9ORF72 related phenotypes. Front. Mol. Neurosci. 2016 9 113 10.3389/fnmol.2016.00113 27877110
    [Google Scholar]
  88. Wheeler J.M. McMillan P. Strovas T.J. Liachko N.F. Amlie-Wolf A. Kow R.L. Klein R.L. Szot P. Robinson L. Guthrie C. Saxton A. Kanaan N.M. Raskind M. Peskind E. Trojanowski J.Q. Lee V.M.Y. Wang L.S. Keene C.D. Bird T. Schellenberg G.D. Kraemer B. Activity of the poly(A) binding protein MSUT2 determines susceptibility to pathological tau in the mammalian brain. Sci. Transl. Med. 2019 11 523 eaao6545 10.1126/scitranslmed.aao6545 31852801
    [Google Scholar]
  89. Kraemer B.C. Burgess J.K. Chen J.H. Thomas J.H. Schellenberg G.D. Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum. Mol. Genet. 2006 15 9 1483 1496 10.1093/hmg/ddl067 16600994
    [Google Scholar]
  90. Griffin E.F. Scopel S.E. Stephen C.A. Holzhauer A.C. Vaji M.A. Tuckey R.A. Berkowitz L.A. Caldwell K.A. Caldwell G.A. ApoE-associated modulation of neuroprotection from Aβ-mediated neurodegeneration in transgenic Caenorhabditis elegans. Dis. Model. Mech. 2019 12 2 dmm.037218 10.1242/dmm.037218 30683808
    [Google Scholar]
  91. Sarasija S. Laboy J.T. Ashkavand Z. Bonner J. Tang Y. Norman K.R. Presenilin mutations deregulate mitochondrial Ca2+ homeostasis and metabolic activity causing neurodegeneration in Caenorhabditis elegans. eLife 2018 7 e33052 10.7554/eLife.33052 29989545
    [Google Scholar]
  92. Lu T. Aron L. Zullo J. Pan Y. Kim H. Chen Y. Yang T.H. Kim H.M. Drake D. Liu X.S. Bennett D.A. Colaiácovo M.P. Yankner B.A. REST and stress resistance in ageing and Alzheimer’s disease. Nature 2014 507 7493 448 454 10.1038/nature13163 24670762
    [Google Scholar]
  93. Chatterjee N. González-Durruthy M. Costa M.D. Ribeiro A.R. Vilas-Boas V. Vilasboas-Campos D. Maciel P. Alfaro-Moreno E. Differential impact of diesel exhaust particles on glutamatergic and dopaminergic neurons in Caenorhabditis elegans: A neurodegenerative perspective. Environ. Int. 2024 186 108597 10.1016/j.envint.2024.108597 38579453
    [Google Scholar]
  94. Van Pelt K.M. Truttmann M.C. Caenorhabditis elegans as a model system for studying aging-associated neurodegenerative diseases. Transl. Med. Aging 2020 4 60 72 10.1016/j.tma.2020.05.001 34327290
    [Google Scholar]
  95. Cooper J.F. Machiela E. Dues D.J. Spielbauer K.K. Senchuk M.M. Van Raamsdonk J.M. Activation of the mitochondrial unfolded protein response promotes longevity and dopamine neuron survival in Parkinson’s disease models. Sci. Rep. 2017 7 1 16441 10.1038/s41598‑017‑16637‑2 29180793
    [Google Scholar]
  96. Knight A.L. Yan X. Hamamichi S. Ajjuri R.R. Mazzulli J.R. Zhang M.W. Daigle J.G. Zhang S. Borom A.R. Roberts L.R. Lee S.K. DeLeon S.M. Viollet-Djelassi C. Krainc D. O’Donnell J.M. Caldwell K.A. Caldwell G.A. The glycolytic enzyme, GPI, is a functionally conserved modifier of dopaminergic neurodegeneration in Parkinson’s models. Cell Metab. 2014 20 1 145 157 10.1016/j.cmet.2014.04.017 24882066
    [Google Scholar]
  97. Harrington A.J. Yacoubian T.A. Slone S.R. Caldwell K.A. Caldwell G.A. Functional analysis of VPS41-mediated neuroprotection in Caenorhabditis elegans and mammalian models of Parkinson’s disease. J. Neurosci. 2012 32 6 2142 2153 10.1523/JNEUROSCI.2606‑11.2012 22323726
    [Google Scholar]
  98. Griffin E.F. Yan X. Caldwell K.A. Caldwell G.A. Distinct functional roles of Vps41-mediated neuroprotection in Alzheimer’s and Parkinson’s disease models of neurodegeneration. Hum. Mol. Genet. 2018 27 24 4176 4193 10.1093/hmg/ddy308 30508205
    [Google Scholar]
  99. Regitz C. Fitzenberger E. Mahn F.L. Dußling L.M. Wenzel U. Resveratrol reduces amyloid-beta (Aβ1–42)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur. J. Nutr. 2016 55 2 741 747 10.1007/s00394‑015‑0894‑1 25851110
    [Google Scholar]
  100. Palikaras K. Lionaki E. Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 2015 521 7553 525 528 10.1038/nature14300 25896323
    [Google Scholar]
  101. Martinez B.A. Petersen D.A. Gaeta A.L. Stanley S.P. Caldwell G.A. Caldwell K.A. Dysregulation of the mitochondrial unfolded protein response induces non-Apoptotic dopaminergic neurodegeneration in C. elegans models of parkinson’s Disease. J. Neurosci. 2017 37 46 11085 11100 10.1523/JNEUROSCI.1294‑17.2017 29030433
    [Google Scholar]
  102. Sammi S.R. Foguth R.M. Nieves C.S. De Perre C. Wipf P. McMurray C.T. Lee L.S. Cannon J.R. Perfluorooctane sulfonate (PFOS) produces dopaminergic neuropathology in caenorhabditis elegans. Toxicol. Sci. 2019 172 2 417 434 10.1093/toxsci/kfz191 31428778
    [Google Scholar]
  103. Mulcahy B. Ibbett P. Holden-Dye L. O’Connor V. The C. elegans cysteine-string protein homologue, DNJ-14, is dispensable for neuromuscular junction maintenance across ageing. J. Exp. Biol. 2019 222 Pt 22 jeb.205450 10.1242/jeb.205450 31624097
    [Google Scholar]
  104. Vaccaro A. Tauffenberger A. Ash P.E.A. Carlomagno Y. Petrucelli L. Parker J.A. TDP-1/TDP-43 regulates stress signaling and age-dependent proteotoxicity in Caenorhabditis elegans. PLoS Genet. 2012 8 7 e1002806 10.1371/journal.pgen.1002806 22792076
    [Google Scholar]
  105. Akinyemi A.J. Miah M.R. Ijomone O.M. Tsatsakis A. Soares F.A.A. Tinkov A.A. Skalny A.V. Venkataramani V. Aschner M. Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: Involvement of the dopamine transporter. Toxicol. Rep. 2019 6 833 840 10.1016/j.toxrep.2019.08.001 31463204
    [Google Scholar]
  106. Peres T.V. Arantes L.P. Miah M.R. Bornhorst J. Schwerdtle T. Bowman A.B. Leal R.B. Aschner M. Role of caenorhabditis elegans AKT-1/2 and SGK-1 in manganese Toxicity. Neurotox. Res. 2018 34 3 584 596 10.1007/s12640‑018‑9915‑1 29882004
    [Google Scholar]
  107. Gaeta A.L. Caldwell K.A. Caldwell G.A. Found in translation: The utility of C. elegans alpha-synuclein models of parkinson’s disease. Brain Sci. 2019 9 4 73 10.3390/brainsci9040073 30925741
    [Google Scholar]
  108. Goodman M.B. Sengupta P. How Caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. Genetics 2019 212 1 25 51 10.1534/genetics.118.300241 31053616
    [Google Scholar]
  109. Baskoylu S.N. Yersak J. O’Hern P. Grosser S. Simon J. Kim S. Schuch K. Dimitriadi M. Yanagi K.S. Lins J. Hart A.C. Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration. PLoS Genet. 2018 14 10 e1007682 10.1371/journal.pgen.1007682 30296255
    [Google Scholar]
  110. Lee Y. Choi S. Kim K.W. Dithianon exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2023 255 114752 10.1016/j.ecoenv.2023.114752 36924561
    [Google Scholar]
  111. Ikenaka K. Tsukada Y. Giles A.C. Arai T. Nakadera Y. Nakano S. Kawai K. Mochizuki H. Katsuno M. Sobue G. Mori I. A behavior-based drug screening system using a Caenorhabditis elegans model of motor neuron disease. Sci. Rep. 2019 9 1 10104 10.1038/s41598‑019‑46642‑6 31300701
    [Google Scholar]
  112. Salam S. Ansari A. Amon S. Rezai P. Selvaganapathy P.R. Mishra R.K. Gupta B.P. A microfluidic phenotype analysis system reveals function of sensory and dopaminergic neuron signaling in C. elegans electrotactic swimming behavior. Worm 2013 2 2 e24558 10.4161/worm.24558 24058875
    [Google Scholar]
  113. Hobert O. Behavioral plasticity in C. elegans : Paradigms, circuits, genes. J. Neurobiol. 2003 54 1 203 223 10.1002/neu.10168 12486705
    [Google Scholar]
  114. Lengert E. Parakhonskiy B. Khalenkow D. Zečić A. Vangheel M. Monje Moreno J.M. Braeckman B.P. Skirtach A.G. Laser-induced remote release in vivo in C. elegans from novel silver nanoparticles-alginate hydrogel shells. Nanoscale 2018 10 36 17249 17256 10.1039/C8NR00893K 30191939
    [Google Scholar]
  115. Fredens J. Engholm-Keller K. Giessing A. Pultz D. Larsen M.R. Højrup P. Møller-Jensen J. Færgeman N.J. Quantitative proteomics by amino acid labeling in C. elegans. Nat. Methods 2011 8 10 845 847 10.1038/nmeth.1675 21874006
    [Google Scholar]
  116. Hameed S. Ikegami K. Sugiyama E. Matsushita S. Kimura Y. Hayasaka T. Sugiura Y. Masaki N. Waki M. Ohta I. Hossen M.A. Setou M. Direct profiling of the phospholipid composition of adult Caenorhabditis elegans using whole-body imaging mass spectrometry. Anal. Bioanal. Chem. 2015 407 25 7589 7602 10.1007/s00216‑015‑8932‑7 26310845
    [Google Scholar]
  117. Torino S. Corrado B. Iodice M. Coppola G. Pdms-based microfluidic devices for cell culture. Inventions 2018 3 3 65 10.3390/inventions3030065
    [Google Scholar]
  118. Ha N.M. Tran S.H. Shim Y.H. Kang K. Caenorhabditis elegans as a powerful tool in natural product bioactivity research. Appl. Biol. Chem. 2022 65 1 18 10.1186/s13765‑022‑00685‑y
    [Google Scholar]
  119. Cornaglia M. Lehnert T. Gijs M.A.M. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans. Lab Chip 2017 17 22 3736 3759 10.1039/C7LC00509A 28840220
    [Google Scholar]
  120. Blaise B.J. Giacomotto J. Triba M.N. Toulhoat P. Piotto M. Emsley L. Ségalat L. Dumas M.E. Elena B. Metabolic profiling strategy of Caenorhabditis elegans by whole-organism nuclear magnetic resonance. J. Proteome Res. 2009 8 5 2542 2550 10.1021/pr900012d 19267476
    [Google Scholar]
  121. Corsi A.K. Wightman B. Chalfie M. A Transparent Window into Biology: A Primer on Caenorhabditis elegans. Genetics 2015 200 2 387 407 10.1534/genetics.115.176099 26088431
    [Google Scholar]
  122. An J.H. Blackwell T.K. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev. 2003 17 15 1882 1893 10.1101/gad.1107803 12869585
    [Google Scholar]
  123. Tullet J.M.A. Green J.W. Au C. Benedetto A. Thompson M.A. Clark E. Gilliat A.F. Young A. Schmeisser K. Gems D. The SKN ‐1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell 2017 16 5 1191 1194 10.1111/acel.12627 28612944
    [Google Scholar]
  124. Murphy C.T. McCarroll S.A. Bargmann C.I. Fraser A. Kamath R.S. Ahringer J. Li H. Kenyon C. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003 424 6946 277 283 10.1038/nature01789 12845331
    [Google Scholar]
  125. Tang X. Liu B. Wang X. Yu Q. Fang R. Epidermal growth factor, through alleviating oxidative stress, protect IPEC-J2 Cells from Lipopolysaccharides-Induced Apoptosis. Int. J. Mol. Sci. 2018 19 3 848 10.3390/ijms19030848 29538305
    [Google Scholar]
  126. Mudd N. Liceaga A.M. Caenorhabditis elegans as an in vivo model for food bioactives: A review. Curr. Res. Food Sci. 2022 5 845 856 10.1016/j.crfs.2022.05.001 35619588
    [Google Scholar]
  127. Zhao S. Cheng Q. Peng Q. Antioxidant peptides derived from the hydrolyzate of purple sea urchin (Strongylocentrotus nudus) gonad alleviate oxidative stress in Caenorhabditis elegans. J Funct. Foods 2018 48 594 604
    [Google Scholar]
  128. He X. Ma Q. NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation. Mol. Pharmacol. 2009 76 6 1265 1278 10.1124/mol.109.058453 19786557
    [Google Scholar]
  129. Martorell P. Bataller E. Llopis S. Gonzalez N. Álvarez B. Montón F. Ortiz P. Ramón D. Genovés S. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity. PLoS One 2013 8 5 e63283 10.1371/journal.pone.0063283 23675471
    [Google Scholar]
  130. Zhang Z. Ma H. Wang X. Zhao Z. Zhang Y. Zhao B. Guo Y. Xu L. A tetrapeptide from maize protects a transgenic Caenorhabditis elegans Aβ 1-42 model from Aβ-induced toxicity. RSC Advances 2016 6 62 56851 56858 10.1039/C6RA06130C
    [Google Scholar]
  131. Fay D.S. Classical genetic methods. WormBook 2013 1 58 24395816
    [Google Scholar]
  132. Sutphin G.L. Kaeberlein M. Measuring Caenorhabditis elegans life span on solid media. J. Vis. Exp. 2009 27 1152 19488025
    [Google Scholar]
  133. Romussi S. Giunti S. Andersen N. De Rosa M.J. C. elegans : A prominent platform for modeling and drug screening in neurological disorders. Expert Opin. Drug Discov. 2024 19 5 565 585 10.1080/17460441.2024.2329103 38509691
    [Google Scholar]
  134. Montaño K.J. Cuéllar C. Sotillo J. Rodent models for the study of soil-transmitted helminths: A proteomics approach. Front. Cell. Infect. Microbiol. 2021 11 639573 10.3389/fcimb.2021.639573 33968800
    [Google Scholar]
  135. Gruber J. Chen C.B. Fong S. Ng L.F. Teo E. Halliwell B. Caenorhabditis elegans : What we can and cannot learn from aging worms. Antioxid. Redox Signal. 2015 23 3 256 279 10.1089/ars.2014.6210 25544992
    [Google Scholar]
  136. Wang C. Zheng C. Using Caenorhabditis elegans to model therapeutic interventions of neurodegenerative diseases targeting microbe-Host interactions. Front. Pharmacol. 2022 13 875349 10.3389/fphar.2022.875349 35571084
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249340567241004043542
Loading
/content/journals/cnsamc/10.2174/0118715249340567241004043542
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test