Skip to content
2000
image of Nattokinase Attenuated Excitatory Amino Acids and Cytokines Release and Restored Cerebral Blood Fflow in a Thrombolytic Focal Cerebral Ischemic Rat Model

Abstract

Objective

Nattokinase (NK), a protease enzyme present in traditional fermented Japanese food, has shown fibrinolytic properties as well as in cardiac ischemia. In the present study, the Neuroprotective effect of standardized NK was evaluated in the thrombolytic focal cerebral ischemic model.

Methodology

The parameters of behavioural assessment, cerebral blood flow, inflammatory mediators, excitatory amino acids, and immunohistochemistry were measured to support the NK effect. NK was administered at 150 and 300 mg/kg, and its effects were compared with streptokinase (STK) (100µl/rat). Each mg of NK contains 5.5 Units of the enzyme, which can cause lysis of the fibrin.

Results

The results indicate that 7 days of treatment of 300 mg NK restored the cerebral blood flow and prevented the release of cytokine and excitatory amino acids. Similarly, neurological scores were reduced, and grip strength increased significantly with NK treatment. The GFAP and synaptophysin staining of the hippocampus (CA1) and cerebrum have shown recovery of neurons from ischemic damage in comparison to vehicle-treated ischemic-reperfused rats. The NK (300 mg/kg) fibrinolytic effect is comparable to STK treatment.

Conclusion

To conclude, NK, a serine protease, protects the brain from ischemic degeneration in thrombolytic cerebral ischemia. Consumption of this Japanese food might exhibit prophylactic activity.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249314623240923092315
2024-10-09
2025-07-09
Loading full text...

Full text loading...

References

  1. Sumi H. Hamada H. Tsushima H. Mihara H. Muraki H. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 1987 43 10 1110 1111 10.1007/BF01956052 3478223
    [Google Scholar]
  2. Nagata C. Wada K. Tamura T. Konishi K. Goto Y. Koda S. Kawachi T. Tsuji M. Nakamura K. Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: the Takayama study. Am. J. Clin. Nutr. 2017 105 2 426 431 10.3945/ajcn.116.137281 27927636
    [Google Scholar]
  3. Jensen G. Lenninger M. Ero M.P. Benson K. Consumption of nattokinase is associated with reduced blood pressure and von Willebrand factor, a cardiovascular risk marker: results from a randomized, double-blind, placebo-controlled, multicenter North American clinical trial. Integr. Blood Press. Control 2016 9 95 104 10.2147/IBPC.S99553 27785095
    [Google Scholar]
  4. Kurosawa Y. Nirengi S. Homma T. Esaki K. Ohta M. Clark J.F. Hamaoka T. A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci. Rep. 2015 5 1 11601 10.1038/srep11601 26109079
    [Google Scholar]
  5. Ji H. Yu L. Liu K. Yu Z. Zhang Q. Zou F. Liu B. Mechanisms of Nattokinase in protection of cerebral ischemia. Eur. J. Pharmacol. 2014 745 144 151 10.1016/j.ejphar.2014.10.024 25446567
    [Google Scholar]
  6. Jang J.Y. Kim T.S. Cai J. Kim J. Kim Y. Shin K. Kim K.S. Park S.K. Lee S.P. Choi E.K. Rhee M.H. Kim Y.B. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation. Lab. Anim. Res. 2013 29 4 221 225 10.5625/lar.2013.29.4.221 24396387
    [Google Scholar]
  7. Shah A.B. Rawat S. Mehta S. An open clinical pilot study to evaluate the safety and efficacy of nattokinase as an add-on oral fibrinolytic agent to low molecular weight heparin & antiplatelets in acute ischemic stroke. Jpn. Pharmacol. Ther. 2004 32 437 451
    [Google Scholar]
  8. Bhatt P.C. Pathak S. Kumar V. Panda B.P. Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer’s disease by fermented soybean nanonutraceutical. Inflammopharmacology 2018 26 1 105 118 10.1007/s10787‑017‑0381‑9 28791538
    [Google Scholar]
  9. Bhatt P. Verma A. Al-Abassi F. Anwar F. Kumar V. Panda B. Development of surface-engineered PLGA nanoparticulate-delivery system of Tet-1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer’s disease. Int. J. Nanomedicine 2017 12 8749 8768 10.2147/IJN.S144545 29263666
    [Google Scholar]
  10. Hsu R.L. Lee K.T. Wang J.H. Lee L.Y.L. Chen R.P.Y. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. J. Agric. Food Chem. 2009 57 2 503 508 10.1021/jf803072r 19117402
    [Google Scholar]
  11. Kleinschnitz C. Fluri F. Schuhmann M. Animal models of ischemic stroke and their application in clinical research. Drug Des. Devel. Ther. 2015 9 3445 3454 10.2147/DDDT.S56071 26170628
    [Google Scholar]
  12. Li Q. Khatibi N. Zhang J.H. Vascular neural network: the importance of vein drainage in stroke. Transl. Stroke Res. 2014 5 2 163 166 10.1007/s12975‑014‑0335‑0 24563018
    [Google Scholar]
  13. Powers W.J. Rabinstein, A. A.; Ackerson, T.; Adeoye, O. M.; Bambakidis, N. C., Becker, K.; Biller, J.; Brown, M.;Demaerschalk, B. M.; Hoh, B.;Jauch, E. C.; Kidwell, C. S.; Leslie-Mazwi, T. M.;Ovbiagele, B.; Scott, P. A.; Sheth, K. N.; Southerland, A. M.; Summers, D. V.;Tirschwell, D. L.;& American Heart Association Stroke Council. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2018 49 3 e46 e110 10.1161/STR.0000000000000158 29367334
    [Google Scholar]
  14. Guangbo Y. Min S. Wei S. Lixin M. Chao Z. Yaping W. Zunxi H. Heterologous expression of nattokinase from B. subtilis natto using Pichia pastoris GS115 and assessment of its thrombolytic activity. BMC Biotechnol. 2021 21 1 49 10.1186/s12896‑021‑00708‑4 34372833
    [Google Scholar]
  15. Li G. Li T. He F. Chen C. Xu X. Tian W. Yang Y. He X. Li H. Chen K. Hao N. Ouyang P. Microencapsulation of nattokinase from fermentation by spray drying: Optimization, comprehensive score, and stability. Food Sci. Nutr. 2021 9 7 3906 3916 10.1002/fsn3.2378 34262747
    [Google Scholar]
  16. Dubey R. Kumar J. Agrawala D. Char T. Pusp P. Isolation, production, purification, assay and characterization of fibrinolytic enzymes (Nattokinase, Streptokinase and Urokinase) from bacterial sources. Afr. J. Biotechnol. 2011 10 1408 1420 10.5897/AJB10.1268
    [Google Scholar]
  17. Zhang R.L. Chopp M. Zhang Z.G. Jiang Q. Ewing J.R. A rat model of focal embolic cerebral ischemia. Brain Res. 1997 766 1-2 83 92 10.1016/S0006‑8993(97)00580‑5 9359590
    [Google Scholar]
  18. Bederson J.B. Pitts L.H. Tsuji M. Nishimura M.C. Davis R.L. Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986 17 3 472 476 10.1161/01.STR.17.3.472 3715945
    [Google Scholar]
  19. Justin A. Sathishkumar M. Sudheer A. Shanthakumari S. Ramanathan M. Non-hypotensive dose of telmisartan and nimodipine produced synergistic neuroprotective effect in cerebral ischemic model by attenuating brain cytokine levels. Pharmacol. Biochem. Behav. 2014 122 61 73 10.1016/j.pbb.2014.03.009 24650592
    [Google Scholar]
  20. Sancheti J.S. Shaikh M.F. Khatwani P.F. Kulkarni S.R. Sathaye S. Development and Validation of a HPTLC Method for Simultaneous Estimation of L-Glutamic Acid and γ-Aminobutyric Acid in Mice Brain. Indian J. Pharm. Sci. 2013 75 6 716 721 24591747
    [Google Scholar]
  21. Calhoun M.E. Jucker M. Martin L.J. Thinakaran G. Price D.L. Mouton P.R. Comparative evaluation of synaptophysin-based methods for quantification of synapses. J. Neurocytol. 1996 25 1 821 828 10.1007/BF02284844 9023727
    [Google Scholar]
  22. Schmidt-Kastner R. Wietasch K. Weigel H. Eysel U.T. Immunohistochemical staining for glial fibrillary acidic protein (GFAP) after deafferentation or ischemic infarction in rat visual system: Features of reactive and damaged astrocytes. Int. J. Dev. Neurosci. 1993 11 2 157 174 10.1016/0736‑5748(93)90076‑P 7687085
    [Google Scholar]
  23. Weng Y. Yao J. Sparks S. Wang K. Nattokinase: An Oral Antithrombotic Agent for the Prevention of Cardiovascular Disease. Int. J. Mol. Sci. 2017 18 3 523 10.3390/ijms18030523 28264497
    [Google Scholar]
  24. Chen H. McGowan E.M. Ren N. Lal S. Nassif N. Shad-Kaneez F. Qu X. Lin Y. Nattokinase: A Promising Alternative in Prevention and Treatment of Cardiovascular Diseases. Biomark. Insights 2018 13 10.1177/1177271918785130 30013308
    [Google Scholar]
  25. Ramanathan M. Babu C.S. Justin A. Shanthakumari S. Elucidation of neuroprotective role of endogenous GABA and energy metabolites middle cerebral artery occluded model in rats. Indian J. Exp. Biol. 2012 50 6 391 397 22734249
    [Google Scholar]
  26. Ranjithkumar R. Premnath P. Ramanathan M. Measurement of inflammatory mediators at different time intervals after neuronal injury induced by bilateral common carotid artery occlusion model. Journal of Pharmaceutical Sciences and Research. 2015 7 662 667
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249314623240923092315
Loading
/content/journals/cnsamc/10.2174/0118715249314623240923092315
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Japanese food ; nattokinase ; cytokines ; glutamate ; fibrinolysis ; Cerebral blood flow
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test