Skip to content
2000
Volume 9, Issue 1
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

By virtue of the rapid development of technologies in the era of Industrial Revolution 4.0, additive manufacturing technology enables faster production, diverse raw materials, infinite shapes and geometries for fine products as compared to traditional manufacturing methods. Among many manufacturing materials, nanomaterials have attracted extensive attention due to their wide variety, high strength, and effect of catalytic, quantum, surface and boundary. From the aspect of an industrial manufacturing process, the practical advantages of using additive manufacturing techniques to fabricate nanomaterial-incorporated membranes for gas separation are valuable. This paper reviews the potential of using additive manufacturing in the fabrication of membranes incorporated with nanomaterials for gas separation.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/2405461508666230330112404
2024-03-01
2025-01-27
Loading full text...

Full text loading...

References

  1. AbbassianK. KargariA. Modification of membrane formulation for stabilization of emulsion liquid membrane for extraction of phenol from aqueous solutions.J. Environ. Chem. Eng.2016443926393310.1016/j.jece.2016.08.030
    [Google Scholar]
  2. MajeedH. SvendsenH.F. Characterization of aerosol emissions from CO2 capture plants treating various power plant and industrial flue gases.Int. J. Greenh. Gas Control20187428229510.1016/j.ijggc.2018.04.016
    [Google Scholar]
  3. ZhiminH. ZhigangT. AtaeivarjoviE. DongG. ZhijunZ. HongweiL. Study on polydimethylsiloxane desorption membrane of CO 2 - Dimethyl carbonate System.Energy Procedia201711821021510.1016/j.egypro.2017.07.024
    [Google Scholar]
  4. BrunettiA. ScuraF. BarbieriG. DrioliE. Membrane technologies for CO2 separation.J. Membr. Sci.20103591-211512510.1016/j.memsci.2009.11.040
    [Google Scholar]
  5. HuL. ChengJ. LiY. LiuJ. ZhouJ. CenK. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported poly-dimethylsiloxane membranes.Appl. Surf. Sci.2017413273410.1016/j.apsusc.2017.04.006
    [Google Scholar]
  6. ShiL. LaiL.S. TayW.H. YeapS.P. YeongY.F. Membrane fabrication for carbon dioxide separation: A critical review.ChemBioEng Rev.20229655657310.1002/cben.202200035
    [Google Scholar]
  7. QianX. RavindranT. LounderS.J. AsatekinA. McCutcheonJ.R. Printing zwitterionic self-assembled thin film composite membranes: Tuning thickness leads to remarkable permeability for nanofiltration.J. Membr. Sci.202163511942810.1016/j.memsci.2021.119428
    [Google Scholar]
  8. El-SayeghS. RomdhaneL. ManjikianS. A critical review of 3D printing in construction: Benefits, challenges, and risks.Arch. Civ. Mech. Eng.20202023410.1007/s43452‑020‑00038‑w
    [Google Scholar]
  9. YanarN. LiangY. YangE. ParkH. SonM. ChoiH. Electrically polarized graphene-blended spacers for organic fouling reduction in forward osmosis.Membranes20211113610.3390/membranes11010036 33406616
    [Google Scholar]
  10. SarwarZ. YousefS. TatariantsM. Fibrous PEBA-graphene nanocomposite filaments and membranes fabricated by extrusion and additive manufacturing.Eur. Polym. J.201912110931710.1016/j.eurpolymj.2019.109317
    [Google Scholar]
  11. WangS. GaoH. JinY. Defect engineering in novel broad-band gap hexaaluminate MAl12O19 (M=Ca, sr, Ba)-based photocatalysts boosts near ultraviolet and visible light-driven photocatalytic performance.Mater. Today Chem.20222410094210.1016/j.mtchem.2022.100942
    [Google Scholar]
  12. WangS. LiM. YinZ. Skillfully grafted C O functional group to enhance the adsorption/photocatalytic mechanism of YMnO3/MgAl2O4 heterojunction photocatalysts.Adv. Powder Technol.2022331110377110.1016/j.apt.2022.103771
    [Google Scholar]
  13. WangS. ChenX. FangL. Double heterojunction CQDs/CeO2/BaFe12O19 magnetic separation photocatalysts: Construction, structural characterization, dye and POPs removal, and the interrelationships between magnetism and photocatalysis.Nuclear Analysis20221310002610.1016/j.nucana.2022.100026
    [Google Scholar]
  14. GeorgantzinosS.K. GiannopoulosG.I. BakalisP.A. Additive manufacturing for effective smart structures: The idea of 6D printing.J Com-posit Sci20215511910.3390/jcs5050119
    [Google Scholar]
  15. BuzeaC. PachecoI.I. RobbieK. Nanomaterials and nanoparticles: Sources and toxicity.Biointerphases200724MR17MR7110.1116/1.2815690 20419892
    [Google Scholar]
  16. SalehT.A. Nanomaterials: Classification, properties, and environmental toxicities.Environ Technol Innov20202010106710.1016/j.eti.2020.101067
    [Google Scholar]
  17. StoneV. NowackB. BaunA. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation.Sci. Total Environ.201040871745175410.1016/j.scitotenv.2009.10.035 19903569
    [Google Scholar]
  18. SudhaP.N. SangeethaK. VijayalakshmiK. Nanomaterials history, classification, unique properties, production and market.In: Emerging applications of nanoparticles and architecture nano- structures.AmsterdamElsevier201834138410.1016/B978‑0‑323‑51254‑1.00012‑9
    [Google Scholar]
  19. BuzeaC. PachecoI. Nanomaterials and their classification.In EMR/ESR/EPR spectroscopy for characterization of nanomaterials.BerlinSpringer201734510.1007/978‑81‑322‑3655‑9_1
    [Google Scholar]
  20. RizwanM. ShoukatA. AyubA. Types and classification of nanomaterials.In Synthesis, Characterization, Hazards and Safety.AmsterdamElsevier2021315410.1016/B978‑0‑12‑823823‑3.00001‑X
    [Google Scholar]
  21. TrottaF. MeleA. Nanomaterials: Classification and properties, nanosponges: Synthesis and applications.1st edLondonWiley201910.1002/9783527341009
    [Google Scholar]
  22. JeevanandamJ. BarhoumA. ChanY.S. DufresneA. DanquahM.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations.Beilstein J. Nanotechnol.201891050107410.3762/bjnano.9.98 29719757
    [Google Scholar]
  23. PachecoM.J. VencesL.J. MorenoH. PachecoJ.O. ValdiviaR. HernándezC. Review: Mixed-matrix membranes with CNT for CO2 separa-tion processes.Membranes202111645710.3390/membranes11060457 34205664
    [Google Scholar]
  24. AliA. PothuR. SiyalS.H. PhulpotoS. SajjadM. TheboK.H. Graphene-based membranes for CO2 separation.Mater. Sci. Energy Technol.201921838810.1016/j.mset.2018.11.002
    [Google Scholar]
  25. YanL. LiuC. XiaJ. CNTs/TiO2 composite membrane with adaptable wettability for on-demand oil/water separation.J. Clean. Prod.202027512401110.1016/j.jclepro.2020.124011
    [Google Scholar]
  26. DuC. WangZ. LiuG. WangW. YuD. One-step electrospinning PVDF/PVP-TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property.Colloids Surf. A Physicochem. Eng. Asp.202162412679010.1016/j.colsurfa.2021.126790
    [Google Scholar]
  27. ZhaoY. TianH. OuyangY. Poly (Vinyl Alcohol) composite membrane with polyamidoamine dendrimers for efficient separation of CO2/H2 and CO2/N2.J. Polym. Environ.202230104193420010.1007/s10924‑022‑02491‑5
    [Google Scholar]
  28. CuiY. LiB. HeH. ZhouW. ChenB. QianG. Metal–Organic frameworks as platforms for functional materials.Acc. Chem. Res.201649348349310.1021/acs.accounts.5b00530 26878085
    [Google Scholar]
  29. YaghiO.M. LiG. LiH. Selective binding and removal of guests in a microporous metal–organic framework.Nature1995378655870370610.1038/378703a0
    [Google Scholar]
  30. FengL. WangK.Y. DayG.S. RyderM.R. ZhouH.C. Destruction of metal–organic frameworks: Positive and negative aspects of stability and lability.Chem. Rev.202012023130871313310.1021/acs.chemrev.0c00722 33049142
    [Google Scholar]
  31. FurukawaH. CordovaK.E. O’KeeffeM. YaghiO.M. The chemistry and applications of metal-organic frameworks.Science20133416149123044410.1126/science.1230444 23990564
    [Google Scholar]
  32. HouC.C. XuQ. Metal–organic frameworks for energy.Adv. Energy Mater.2019923180130710.1002/aenm.201801307
    [Google Scholar]
  33. MazariS.A. AliE. AbroR. Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges – A review.J. Environ. Chem. Eng.20219210502810.1016/j.jece.2021.105028
    [Google Scholar]
  34. PengZ. LiuX. ZhangW. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review.Environ. Int.202013410529810.1016/j.envint.2019.105298 31765863
    [Google Scholar]
  35. ParasharM. ShuklaV.K. SinghR. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applica-tions.J. Mater. Sci. Mater. Electron.20203153729374910.1007/s10854‑020‑02994‑8
    [Google Scholar]
  36. LiZ. HouB. XuY. Comparative study of sol–gel-hydrothermal and sol–gel synthesis of titania–silica composite nanoparticles.J. Solid State Chem.200517851395140510.1016/j.jssc.2004.12.034
    [Google Scholar]
  37. LiuH. WangS. GaoH. A simple polyacrylamide gel route for the synthesis of MgAl2O4 nanoparticles with different metal sources as an efficient adsorbent: Neural network algorithm simulation, equilibrium, kinetics and thermodynamic studies.Separ. Purif. Tech.202228111985510.1016/j.seppur.2021.119855
    [Google Scholar]
  38. FengX. YangZ. ChmelyS. WangQ. WangS. XieY. Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization.Carbohydr. Polym.201716927228110.1016/j.carbpol.2017.04.001 28504146
    [Google Scholar]
  39. ChenQ. MangadlaoJ.D. WallatJ. De LeonA. PokorskiJ.K. AdvinculaR.C. 3D printing biocompatible polyurethane/poly (lactic ac-id)/graphene oxide nanocomposites: Anisotropic properties.ACS Appl. Mater. Interfaces2017944015402310.1021/acsami.6b11793 28026926
    [Google Scholar]
  40. V.S.Abhisha V.P.Swapna R.Stephen Transport properties of polymeric membranes.AmsterdamElsevier2017
    [Google Scholar]
  41. ZhangJ. SchottJ.A. MahurinS.M. DaiS. Porous structure design of polymeric membranes for gas separation.Small Methods201715160005110.1002/smtd.201600051
    [Google Scholar]
  42. RezakazemiM. YounasM. Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation, and Carbon Capture.New Jersey, USAJohn Wiley & Sons2021
    [Google Scholar]
  43. IsmailA.F. KhulbeK.C. MatsuuraT. Gas Separation Membranes.BerlinSpringer201537192
    [Google Scholar]
  44. Sethu LakshmiM.B. FrancisB. Transport properties of polymeric membranes.AmsterdamElsevier2018349361
    [Google Scholar]
  45. FreemanB. YampolskiiY. Membrane gas separation.New Jersey, USAJohn Wiley & Sons2011
    [Google Scholar]
  46. LaliaB.S. KochkodanV. HashaikehR. HilalN. A review on membrane fabrication: Structure, properties and performance relationship.Desalination2013326779510.1016/j.desal.2013.06.016
    [Google Scholar]
  47. KahrsC. SchwellenbachJ. Membrane formation via non-solvent induced phase separation using sustainable solvents: A comparative study.Polymer202018612207110.1016/j.polymer.2019.122071
    [Google Scholar]
  48. TanX. RodrigueD. A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly (vi-nylidene fluoride).Polymers2019117116010.3390/polym11071160 31288433
    [Google Scholar]
  49. IsmailN. VenaultA. MikkolaJ.P. BouyerD. DrioliE. Tavajohi Hassan KiadehN. Investigating the potential of membranes formed by the vapor induced phase separation process.J. Membr. Sci.202059711760110.1016/j.memsci.2019.117601
    [Google Scholar]
  50. RaaijmakersM.J.T. BenesN.E. Current trends in interfacial polymerization chemistry.Prog. Polym. Sci.2016638614210.1016/j.progpolymsci.2016.06.004
    [Google Scholar]
  51. SongY. FanJ.B. WangS. Recent progress in interfacial polymerization.Mater. Chem. Front.2017161028104010.1039/C6QM00325G
    [Google Scholar]
  52. WangL. YangG. PengS. WangJ. YanW. RamakrishnaS. One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning.Energy Storage Mater.20202544347610.1016/j.ensm.2019.09.036
    [Google Scholar]
  53. LuX. WangC. WeiY. One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications.Small20095212349237010.1002/smll.200900445 19771565
    [Google Scholar]
  54. YuanS. StrobbeD. KruthJ.P. Van PuyveldeP. Van der BruggenB. Production of polyamide-12 membranes for microfiltration through selective laser sintering.J. Membr. Sci.201752515716210.1016/j.memsci.2016.10.041
    [Google Scholar]
  55. RaySS DommatiH WangJC ChenS-S Solvent based slurry stereolithography 3D printed hydrophilic ceramic membrane for ultrafiltration application.Ceram Int (Part B)202046812480810.1016/j.ceramint.2020.02.010
    [Google Scholar]
  56. MustaphaK.B. MetwalliK.M. A review of fused deposition modelling for 3D printing of smart polymeric materials and composites.Eur. Polym. J.202115611059110.1016/j.eurpolymj.2021.110591
    [Google Scholar]
  57. QianX. OstwalM. AsatekinA. A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology.J. Membr. Sci.202264512004110.1016/j.memsci.2021.120041
    [Google Scholar]
  58. KafleA. LuisE. SilwalR. PanH.M. ShresthaP.L. BastolaA.K. 3D/4D Printing of polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA).Polymers20211318310110.3390/polym13183101 34578002
    [Google Scholar]
  59. LowZ.X. ChuaY.T. RayB.M. MattiaD. MetcalfeI.S. PattersonD.A. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques.J. Membr. Sci.201752359661310.1016/j.memsci.2016.10.006
    [Google Scholar]
  60. PereiraG.G. FigueiredoS. FernandesA.I. PintoJ.F. Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics.Pharmaceutics202012979510.3390/pharmaceutics12090795 32842703
    [Google Scholar]
  61. KooJ.W. HoJ.S. AnJ. ZhangY. ChuaC.K. ChongT.H. A review on spacers and membranes: Conventional or hybrid additive manufactur-ing.Water Res.202118811649710.1016/j.watres.2020.116497 33075598
    [Google Scholar]
  62. T.Sathies P.Senthil M.Anoop A review on advancements in applications of fused deposition modelling process.Rapid Prototyping Journal.2020264669687
    [Google Scholar]
  63. MohanN. SenthilP. VinodhS. JayanthN. A review on composite materials and process parameters optimisation for the fused deposi-tion modelling process.Virtual Phys. Prototyp.2017121475910.1080/17452759.2016.1274490
    [Google Scholar]
  64. VyavahareS. TeraiyaS. PanghalD. KumarS. Fused deposition modelling: A review.Rapid Prototyping J.202026117620110.1108/RPJ‑04‑2019‑0106
    [Google Scholar]
  65. MwemaF.M. AkinlabiE.T. Fused deposition modeling: Strategies for quality enhancement.New York, USASpringer Nature202010.1007/978‑3‑030‑48259‑6
    [Google Scholar]
  66. Baca LopezD.M. AhmadR. Tensile mechanical behaviour of multi-polymer sandwich structures via fused deposition modelling.Polymers202012365110.3390/polym12030651 32178343
    [Google Scholar]
  67. LiuZ. WangY. ShiJ. Tensile performance of fused deposition modeling PA 6 polymer composites with nanoparticle reinforcement and/or continuous fiber reinforcement.J Micro Nano-Manufact20197404100110.1115/1.4044913
    [Google Scholar]
  68. WuH. ChenP. YanC. CaiC. ShiY. Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light pro-cessing.Mater. Des.201917110770410.1016/j.matdes.2019.107704
    [Google Scholar]
  69. WangC.C. ChenJ.Y. WangJ. The selection of photoinitiators for photopolymerization of biodegradable polymers and its application in digital light processing additive manufacturing.J. Biomed. Mater. Res. A2022110120421610.1002/jbm.a.37277 34397160
    [Google Scholar]
  70. PatelD.K. SakhaeiA.H. LayaniM. ZhangB. GeQ. MagdassiS. Highly stretchable and UV curable elastomers for digital light processing based 3D printing.Adv. Mater.20172915160600010.1002/adma.201606000 28169466
    [Google Scholar]
  71. ClarissaW.H-Y. ChiaC.H. ZakariaS. Recent advancement in 3-D printing: Nanocomposites with added functionality.Prog Addit Manufact2021126
    [Google Scholar]
  72. KoH. YiH. JeongH.E. Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D printing (uni-climb).Int J Precis Engin Manufact-Green Technol20174327328010.1007/s40684‑017‑0033‑y
    [Google Scholar]
  73. GuH. LiG. LiP. Superhydrophobic and breathable SiO2/polyurethane porous membrane for durable water repellent application and oil-water separation.Appl. Surf. Sci.202051214483710.1016/j.apsusc.2019.144837
    [Google Scholar]
  74. PezzanaL. RiccucciG. SprianoS. BattegazzoreD. SangermanoM. ChiapponeA. 3D printing of pdms-like polymer nanocomposites with enhanced thermal conductivity: Boron nitride based photocuring system.Nanomaterials202111237310.3390/nano11020373 33540598
    [Google Scholar]
  75. KimH. JohnsonJ. ChavezL.A. Garcia RosalesC.A. TsengT-L.B. LinY. Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing.Ceram. Int.20184489037904410.1016/j.ceramint.2018.02.107
    [Google Scholar]
  76. FieldingG. BoseS. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds en-hance osteogenesis and angiogenesis in vivo.Acta Biomater.20139119137914810.1016/j.actbio.2013.07.009 23871941
    [Google Scholar]
  77. RoopavathU.K. SoniR. MahantaU. DeshpandeA.S. RathS.N. 3D printable SiO 2 nanoparticle ink for patient specific bone regeneration.RSC Advances2019941238322384210.1039/C9RA03641E 35530605
    [Google Scholar]
  78. WangL. NiX. The effect of the inorganic nanomaterials on the UV-absorption, rheological and mechanical properties of the rapid proto-typing epoxy-based composites.Polym. Bull.20177462063207910.1007/s00289‑016‑1825‑x
    [Google Scholar]
  79. XiongH. LiuZ. ChenX. In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework.Science2022376659249149610.1126/science.abn7667 35482872
    [Google Scholar]
  80. LiP. WangZ. QiaoZ. Recent developments in membranes for efficient hydrogen purification.J. Membr. Sci.201549513016810.1016/j.memsci.2015.08.010
    [Google Scholar]
  81. V.S.Abhisha V.P.Swapna R.Stephen Transport properties of polymeric membranes.AmsterdamElsevier2017391423
    [Google Scholar]
  82. IsmailA.F. SallehW.N.W. YusofN. Synthetic polymeric membranes for advanced water treatment, gas separation, and energy sustainabil-ity.AmsterdamElsevier2020
    [Google Scholar]
  83. TavakoliA. RahimiK. SaghandaliF. ScottJ. LovellE. Nanofluid preparation, stability and performance for CO2 absorption and desorp-tion enhancement: A review.J. Environ. Manage.202231311495510.1016/j.jenvman.2022.114955 35405543
    [Google Scholar]
  84. WangJ.G. HuB. WuD. DouF. WangX. A multiscale fractal transport model with multilayer sorption and effective porosity effects.Transp. Porous Media20191291255110.1007/s11242‑019‑01276‑0
    [Google Scholar]
  85. LeiL. PanF. LindbråthenA. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superi-or hydrogen separation.Nat. Commun.202112126810.1038/s41467‑020‑20628‑9 33431865
    [Google Scholar]
  86. ZainuddinM I F AhmadA L Mixed matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture.J CO2 Utilization20226210209410.1016/j.jcou.2022.102094
    [Google Scholar]
  87. KimS. LeeY.M. High performance polymer membranes for CO2 separation.Curr. Opin. Chem. Eng.20132223824410.1016/j.coche.2013.03.006
    [Google Scholar]
  88. SchakelW. OrregioniG. StrømmanA. RamirezA. Impact of fuel selection on techno-environmental performance of post-combustion calcium looping process applied to a cement plant.Energy Procedia20171146215622110.1016/j.egypro.2017.03.1759
    [Google Scholar]
  89. JiY. ZhangM. GuanK. ZhaoJ. LiuG. JinW. High‐performance CO2 capture through polymer‐based ultrathin membranes.Adv. Funct. Mater.20192933190073510.1002/adfm.201900735
    [Google Scholar]
  90. AnsariA. NavarchianA.H. RajatiH. Permselectivity improvement of PEBAX ® 2533 membrane by addition of glassy polymers (Matri-mid® and polystyrene) for CO2/N2 separation.J. Appl. Polym. Sci.202213945155610.1002/app.51556
    [Google Scholar]
  91. LiP. ChenH.Z. ChungT.S. The effects of substrate characteristics and pre-wetting agents on PAN–PDMS composite hollow fiber mem-branes for CO2/N2 and O2/N2 separation.J. Membr. Sci.2013434182510.1016/j.memsci.2013.01.042
    [Google Scholar]
  92. HuL. ChengJ. LiY. LiuJ. ZhouJ. CenK. In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydime-thylsiloxane membranes for CO2 separation.J. Colloid Interface Sci.2018510121910.1016/j.jcis.2017.09.048 28926724
    [Google Scholar]
  93. JueM.L. BreedveldV. LivelyR.P. Defect-free PIM-1 hollow fiber membranes.J. Membr. Sci.2017530334110.1016/j.memsci.2017.02.012
    [Google Scholar]
  94. AlthumayriK. HarrisonW.J. ShinY. The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201637420602015003110.1098/rsta.2015.0031 26712643
    [Google Scholar]
  95. PaoliniA. KollmannsbergerS. RankE. Additive manufacturing in construction: A review on processes, applications, and digital planning methods.Addit. Manuf.20193010089410.1016/j.addma.2019.100894
    [Google Scholar]
  96. NgoT.D. KashaniA. ImbalzanoG. NguyenK.T.Q. HuiD. Additive manufacturing (3D printing): A review of materials, methods, applica-tions and challenges.Compos., Part B Eng.201814317219610.1016/j.compositesb.2018.02.012
    [Google Scholar]
  97. ParandoushP. LinD. A review on additive manufacturing of polymer-fiber composites.Compos. Struct.2017182365310.1016/j.compstruct.2017.08.088
    [Google Scholar]
  98. TijingL.D. DizonJ.R.C. IbrahimI. NisayA.R.N. ShonH.K. AdvinculaR.C. 3D printing for membrane separation, desalination and water treatment.Appl. Mater. Today20201810048610.1016/j.apmt.2019.100486
    [Google Scholar]
  99. WenY. XunS. HaoyeM. 3D printed porous ceramic scaffolds for bone tissue engineering: A review.Biomater. Sci.2017591690169810.1039/C7BM00315C 28686244
    [Google Scholar]
  100. Gumrah DumanliA. Nanocellulose and its composites for biomedical applications.Curr. Med. Chem.201724551252810.2174/0929867323666161014124008 27758719
    [Google Scholar]
  101. WorawitC. Cocovi-SolbergD.J. VaranusupakulP. MiróM. In-line carbon nanofiber reinforced hollow fiber-mediated liquid phase mi-croextraction using a 3D printed extraction platform as a front end to liquid chromatography for automatic sample preparation and anal-ysis: A proof of concept study.Talanta201818561161910.1016/j.talanta.2018.04.007 29759249
    [Google Scholar]
  102. CaoM. GuF. RaoC. FuJ. ZhaoP. Improving the electrospinning process of fabricating nanofibrous membranes to filter PM2.5.Sci. Total Environ.20196661011102110.1016/j.scitotenv.2019.02.207 30970468
    [Google Scholar]
/content/journals/cnm/10.2174/2405461508666230330112404
Loading
/content/journals/cnm/10.2174/2405461508666230330112404
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): additive; fabrication; gas separation; manufacturing; membrane; Nanomaterials
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test