Skip to content
2000
Volume 9, Issue 1
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Aim

The aim of the present investigation was to develop a polyherbal nano gel (PHNG) formulation capable of acting as a potential vehicle to deliver polyherbal phytoconstituents topically.

Background

Individual herbs, according to Ayurveda, are insufficient to deliver the intended medicinal effect. It will have a better therapeutic impact with less toxicity when it is optimized as multiple herb combinations in a certain ratio.

Objective

The objective of this study was to create a polyherbal gel for the delivery of medication from methanolic extracts of Linn, , and Linn.

Materials and Methods

The plant parts chosen for this work include methanolic extracts of areal part. The polyherbal-based nanogel was prepared by low energy self-emulsification technique, and was evaluated for pH, viscosity and spreadability, stability, and drug release. The drug release profile of stable nanogel formulations was studied at various time intervals. Furthermore, the prepared nanogel was characterized by zeta-potential, zeta-sizer, and transmission electron microscopy (TEM).

Results

Optimized PHNG had particle size and zeta potential of 11.25nm and -25.73 mV respectively. TEM analysis of optimized formulation revealed the spherical shape of particles. Furthermore, the optimized formulation was found to possess higher stability with a maximum extended cumulative release of up to 240 minutes.

Conclusion

We have formulated a polyherbal nanogel that can be validated by physiochemical and surface characterization.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/2405461508666230324084617
2024-03-01
2025-01-27
Loading full text...

Full text loading...

References

  1. KabanovA.V. VinogradovS.V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities.Angew. Chem. Int. Ed.200948305418542910.1002/anie.200900441 19562807
    [Google Scholar]
  2. TorchilinV.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.Nat. Rev. Drug Discov.2014131181382710.1038/nrd4333 25287120
    [Google Scholar]
  3. GarcíaM.C. CugginoJ.C. Stimulus-responsive nanogels for drug delivery.In Stimuli responsive polymeric nanocarriers for drug delivery applications.New Delhi: Woodhead Publishing201813214110.1016/B978‑0‑08‑101997‑9.00016‑3
    [Google Scholar]
  4. MuraS. NicolasJ. CouvreurP. Stimuli-responsive nanocarriers for drug delivery.Nat. Mater.20131211991100310.1038/nmat3776 24150417
    [Google Scholar]
  5. AyameH. MorimotoN. AkiyoshiK. Self-assembled cationic nanogels for intracellular protein delivery.Bioconjug. Chem.200819488289010.1021/bc700422s 18336000
    [Google Scholar]
  6. McAllisterK. SazaniP. AdamM. Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents.J. Am. Chem. Soc.200212451151981520710.1021/ja027759q 12487595
    [Google Scholar]
  7. MalmstenM. Soft drug delivery systems.Soft Matter20062976076910.1039/b608348j 32680216
    [Google Scholar]
  8. NapierM.E. DeSimoneJ.M. Nanoparticle drug delivery platform.J. Macromol. Sci. Part C Polym. Rev.2007473321327
    [Google Scholar]
  9. SiegwartD.J. OhJ.K. MatyjaszewskiK. ATRP in the design of functional materials for biomedical applications.Prog. Polym. Sci.2012371183710.1016/j.progpolymsci.2011.08.001 23525884
    [Google Scholar]
  10. WoodcockJ. GriffinJ.P. BehrmanR.E. Development of novel combination therapies.N. Engl. J. Med.20113641198598710.1056/NEJMp1101548 21323535
    [Google Scholar]
  11. DesaleS.S. CohenS.M. ZhaoY. KabanovA.V. BronichT.K. Biodegradable hybrid polymer micelles for combination drug therapy in ovar-ian cancer.J. Control. Release2013171333934810.1016/j.jconrel.2013.04.026 23665258
    [Google Scholar]
  12. DesaleS.S. RajaS.M. KimJ.O. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models.J. Control. Release2015208596610.1016/j.jconrel.2015.02.001 25660204
    [Google Scholar]
  13. ParkJ. WrzesinskiS.H. SternE. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhanc-es tumour immunotherapy.Nat. Mater.2012111089590510.1038/nmat3355 22797827
    [Google Scholar]
  14. KamolratanakulP. HayataT. EzuraY. Nanogel-based scaffold delivery of prostaglandin E2 receptor-specific agonist in combina-tion with a low dose of growth factor heals critical-size bone defects in mice.Arthritis Rheum.20116341021103310.1002/art.30151 21190246
    [Google Scholar]
  15. GlangchaiL.C. Caldorera-MooreM. ShiL. RoyK. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles.J. Control. Release2008125326327210.1016/j.jconrel.2007.10.021 18053607
    [Google Scholar]
  16. KerseyF.R. MerkelT.J. PerryJ.L. NapierM.E. DeSimoneJ.M. Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores.Langmuir201228238773878110.1021/la301279v 22612428
    [Google Scholar]
  17. SasakiY AkiyoshiK Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications.Chem Rec.2010 Dec1063667610.1002/tcr.20100000820836092Epub 2010 Sep 1010.1002/tcr.20100000820836092
    [Google Scholar]
  18. WaterJ.J. KimY. MaltesenM.J. FranzykH. FogedC. NielsenH.M. Hyaluronic acid-based nanogels produced by microfluidics-facilitated self-assembly improves the safety profile of the cationic host defense peptide novicidin.Pharm. Res.20153282727273510.1007/s11095‑015‑1658‑6 25813840
    [Google Scholar]
  19. LaiH. WuP. A infrared spectroscopic study on the mechanism of temperature-induced phase transition of concentrated aqueous solu-tions of poly(N-isopropylacrylamide) and N-isopropylpropio- namide.Polymer (Guildf.)20105161404141210.1016/j.polymer.2010.01.036
    [Google Scholar]
  20. JochumF.D. TheatoP. Temperature- and light-responsive smart polymer materials.Chem. Soc. Rev.201342177468748310.1039/C2CS35191A 22868906
    [Google Scholar]
  21. MokH. JeongH. KimS.J. ChungB.H. Indocyanine green encapsulated nanogels for hyaluronidase activatable and selective near infrared imaging of tumors and lymph nodes.Chem. Commun. (Camb.)201248698628863010.1039/c2cc33555g 22745939
    [Google Scholar]
  22. DevS.K. ChoudhuryP.K. SrivastavaR. SharmaM. Phytochemical characterization and antioxidant assessment of herbal extracts.J. Drug Deliv. Ther.20188412613310.22270/jddt.v8i4.1736
    [Google Scholar]
  23. MauriE. GiannitelliS.M. TrombettaM. RainerA. Synthesis of nanogels: Current trends and future outlook.Gels2021723610.3390/gels7020036 33805279
    [Google Scholar]
  24. RossoA.P. MartinelliM. Nanogels and dendritic molecules combined to form a smart nanomaterial.Eur. Polym. J.202216211087410.1016/j.eurpolymj.2021.110874
    [Google Scholar]
  25. SindhuR.K. GuptaR. WadheraG. KumarP. Modern herbal nanogels: Formulation, delivery methods, and applications.Gels2022829710.3390/gels8020097 35200478
    [Google Scholar]
  26. TariqL ArafahA AliS BeighS DarMA DarTUH DarAI AlsaffarRM MasoodiMH RehmanMU Nanogel-based transdermal drug delivery system: A therapeutic strategy with under discussed potential.Curr Top Med Chem.2023231446110.2174/156802662266622081811272835984019
    [Google Scholar]
  27. AhmedS. AlharethK. MignetN. Advancement in nanogel formulations provides controlled drug release.Int. J. Pharm.202058411943510.1016/j.ijpharm.2020.119435 32439585
    [Google Scholar]
  28. BerkovS. PavlovA. KovatchevaP. StanimirovaP. PhilipovS. Alkaloid spectrum in diploid and tetraploid hairy root cultures of Datura stramonium.Z. Naturforsch. C J. Biosci.2003581-2424610.1515/znc‑2003‑1‑207 12622224
    [Google Scholar]
  29. NayakP.S. KarD.M. NayakS.P. Isolation and characterization of stigmasterol from chloroform fraction of aerial part of Argemone mexi-cana L.Int. J. Pharm. Pharm. Sci.201572529
    [Google Scholar]
  30. AzmanN.A.N. AlhawarriM.B. RawaM.S.A. Potential anti-acetylcholinesterase activity of Cassia timorensis DC.Molecules20202519454510.3390/molecules25194545 33020403
    [Google Scholar]
  31. CinelliM.A. JonesA.D. Alkaloids of the genus datura: Review of a rich resource for natural product discovery.Molecules2021269262910.3390/molecules26092629 33946338
    [Google Scholar]
  32. YinY. HuB. YuanX. CaiL. GaoH. YangQ. Nanogel: A versatile nano-delivery system for biomedical applications.Pharmaceutics202012329010.3390/pharmaceutics12030290 32210184
    [Google Scholar]
  33. ReisbeckF. WedepohlS. DimdeM. Synthesis and functionalization of dendritic polyglycerol-based nanogels: application in T cell activation.J. Mater. Chem. B Mater. Biol. Med.20211019610610.1039/D1TB02144C 34881771
    [Google Scholar]
  34. ZengQ. ZengW. JinY. ShengL. Construction and evaluation of ovalbumin-pullulan nanogels as a potential delivery carrier for curcu-min.Food Chem.202236713071610.1016/j.foodchem.2021.130716 34384981
    [Google Scholar]
  35. DanaeiM. DehghankholdM. AtaeiS. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  36. SuhaimiS.H. HashamR. RosliN.A. Effects of formulation parameters on particle size and polydispersity index of orthosiphon stamineus loaded nanostructured lipid carrier.J Adv Res Appl Sci Engineer Technol2015113639
    [Google Scholar]
  37. GuL. SunR. WangW. XiaQ. Nanostructured lipid carriers for the encapsulation of phloretin: preparation and in vitro characterization studies.Chem. Phys. Lipids202224210515010.1016/j.chemphyslip.2021.105150 34673008
    [Google Scholar]
  38. YuanY. ZhangS. MaM. WangD. XuY. Encapsulation and delivery of curcumin in cellulose nanocrystals nanoparticles using pH-driven method.Lebensm. Wiss. Technol.202215511286310.1016/j.lwt.2021.112863
    [Google Scholar]
  39. TeaimaM.H. AlsofanyJ.M. El-NabarawiM.A. Clove oil endorsed transdermal flux of dronedarone hydrochloride loaded bilosomal nano-gel: Factorial design, in vitro evaluation and ex vivo permeation.AAPS PharmSciTech202223618210.1208/s12249‑022‑02337‑2 35773361
    [Google Scholar]
  40. GaikwadS.S. AkaladeN.V. SalunkheK.S. Nanogel Development and its Application in Transdermal Drug Delivery System.Curr. Nanomed.202212212613610.2174/2468187312666220630152606
    [Google Scholar]
/content/journals/cnm/10.2174/2405461508666230324084617
Loading
/content/journals/cnm/10.2174/2405461508666230324084617
Loading

Data & Media loading...

Supplements


  • Article Type:
    Rapid Communication
Keyword(s): ayurveda; Carbopol 940; drug release; nanogel; polyherbal; zetapotential
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test