Skip to content
2000
Volume 9, Issue 1
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Water is the most critical component of the earth's ecosystem because it is fundamental to the survival of plants and animals. However, our water supply is continuously polluting. Removing contaminants from water is a crucial part of addressing water scarcity and maintaining a healthy ecosystem for all. This review focuses on adsorption and the CNTs/AC family nano adsorbents and their contribution to the removal of fluoride and other contaminants. Many types of wastewater treatment methods have been employed, including precipitation, ion-exchange, adsorption, membrane filtration, . A water technology with great efficiency and low cost, without requiring costly infrastructure, is the most preferred option due to adsorption. Recently, the application of carbon family nanomaterials as adsorbents has been prevalent due to their phenomenal surface properties, simple customization, immense specific surface area, numerous variations in structural type, chemical stability, porosity, low density, ease of regeneration, and the ability to be reused. Hazardous contaminants, such as fluoride, generate major public health risks. Water contamination by heavy metals provides a significant health concern, including an increased chance of getting diseases like cancer, anaemia, carcinogenic effects, and acute effects in children. The increased presence of fluoride in water could cause fluorosis, joint pain, severe anaemia, and other problems. The following review focuses on current findings regarding the utilisation of CNTs and AC nanoparticles in the elimination of harmful contaminants and fluoride.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/2405461508666230221143138
2024-03-01
2025-01-27
Loading full text...

Full text loading...

References

  1. SushmaD. RichaS. Use of nanoparticles in water treatment: a review.Int. Res. J. Environ. Sci.2015410103106
    [Google Scholar]
  2. AhmadI. SiddiquiW.A. QadirS. AhmadT. Synthesis and characterization of molecular imprinted nanomaterials for the removal of heavy metals from water.J. Mater. Res. Technol.20187327028210.1016/j.jmrt.2017.04.010
    [Google Scholar]
  3. PrathnaT.C. SharmaS.K. KennedyM. Nanoparticles in household level water treatment: an overview.Separ. Purif. Tech.201819926027010.1016/j.seppur.2018.01.061
    [Google Scholar]
  4. KaurP. ThakurR. MalwalH. ManujaA. ChaudhuryA. Biosynthesis of biocompatible and recyclable silver/iron and gold/iron core-shell nanoparticles for water purification technology.Biocatal. Agric. Biotechnol.20181418919710.1016/j.bcab.2018.03.002
    [Google Scholar]
  5. SimonovicS.P. FahmyH. A new modeling approach for water resources policy analysis.Water Resour. Res.199935129530410.1029/1998WR900023
    [Google Scholar]
  6. MontgomeryM.A. ElimelechM. Water and sanitation in developing countries: including health in the equation.Environ. Sci. Technol.2007411172410.1021/es072435t 17265923
    [Google Scholar]
  7. ZimmermanJB MihelcicJR SmithAJ Global stressors on water quality and quantity.200810.1021/es0871457
    [Google Scholar]
  8. GautamP.K. SinghA. MisraK. SahooA.K. SamantaS.K. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment.J. Environ. Manage.201923173474810.1016/j.jenvman.2018.10.104 30408767
    [Google Scholar]
  9. BoraT. DuttaJ. Applications of nanotechnology in wastewater treatment--a review.J. Nanosci. Nanotechnol.201414161362610.1166/jnn.2014.8898 24730286
    [Google Scholar]
  10. HarrisonP.T.C. Fluoride in water: A UK perspective.J. Fluor. Chem.200512611-121448145610.1016/j.jfluchem.2005.09.009
    [Google Scholar]
  11. LiuA. MingJ. AnkumahR.O. Nitrate contamination in private wells in rural Alabama, United States.Sci. Total Environ.20053461-311212010.1016/j.scitotenv.2004.11.019 15993687
    [Google Scholar]
  12. Hojjat AnsariM. Basiri ParsaJ. MeratiZ. Removal of fluoride from water by nanocomposites of POPOA/Fe3O4, POPOA/TiO2, PO-POT/Fe3O4 and POPOT/TiO2: Modelling and optimization via RSM.Chem. Eng. Res. Des.201712611810.1016/j.cherd.2017.08.008
    [Google Scholar]
  13. FanY. FuD. ZhouS. Facile synthesis of goethite anchored regenerated graphene oxide nanocomposite and its application in the removal of fluoride from drinking water.Desalination Water Treat.20165758283932840410.1080/19443994.2016.1179222
    [Google Scholar]
  14. ChenY. ZhangQ. ChenL. BaiH. LiL. Basic aluminum sulfate@graphene hydrogel composites: preparation and application for removal of fluoride.J. Mater. Chem. A Mater. Energy Sustain.2013142131011311010.1039/c3ta13285d
    [Google Scholar]
  15. ChenP. WangT. XiaoY. Efficient fluoride removal from aqueous solution by synthetic Fe Mg La tri-metal nanocomposite and the analysis of its adsorption mechanism.J. Alloys Compd.201873811812910.1016/j.jallcom.2017.12.142
    [Google Scholar]
  16. SinghS.K. LawranceS. BajpaiJ. BajpaiA.K. Batch studies of alginate nanoparticles for efficient removal of fluoride ions from drinking water.Int. J. Eng. Res. Technol. (Ahmedabad)20132111
    [Google Scholar]
  17. RanganathanA.G. ChandrasekaranS. Stable and microcrystalline Ce-Fe Bi-metal oxide nano particles: Synthesis, characterization and fluoride adsorption performance in drinking water.Indian J. Chem. Technol.2019262122130
    [Google Scholar]
  18. SanthoshC. VelmuruganV. JacobG. JeongS.K. GraceA.N. BhatnagarA. Role of nanomaterials in water treatment applications: A review.Chem. Eng. J.20163061116113710.1016/j.cej.2016.08.053
    [Google Scholar]
  19. KumarR. ChawlaJ. Carbon-based materials for de-fluoridation of water: current status and challenges.In:Carbon-based material for environmental protection and remediation.IntechOpen2020
    [Google Scholar]
  20. SuhagRoopal. “Overview of ground water in India.” PRS On Standing Committee On Water Resources, Legislative Research (February),12p2016
    [Google Scholar]
  21. SamalA.K. MishraP.K. BiswasA. Assessment of origin and distribution of fluoride contamination in groundwater using an isotopic sig-nature from a part of the Indo-Gangetic Plain (IGP), India.HydroResearch20203758410.1016/j.hydres.2020.05.001
    [Google Scholar]
  22. AdimallaN. VasaS.K. LiP. Evaluation of groundwater quality, peddavagu in central telangana (PCT), South India: An insight of control-ling factors of fluoride enrichment.Model. Earth Syst. Environ.20184284185210.1007/s40808‑018‑0443‑z
    [Google Scholar]
  23. AyoobS. GuptaA.K. Fluoride in drinking water: a review on the status and stress effects.Crit. Rev. Environ. Sci. Technol.200636643348710.1080/10643380600678112
    [Google Scholar]
  24. AdimallaN. LiP. QianH. Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: a special emphasis on human health risk assessment (HHRA).Hum. Ecol. Risk Assess.201810.1080/10807039.2018.1460579
    [Google Scholar]
  25. NarsimhaA. SudarshanV. Assessment of fluoride contamination in groundwater from Basara, Adilabad district, Telangana state, India.Appl. Water Sci.2017762717272510.1007/s13201‑016‑0489‑x
    [Google Scholar]
  26. AdimallaN. VenkatayogiS. Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India.Environ. Earth Sci.20177614510.1007/s12665‑016‑6362‑2
    [Google Scholar]
  27. AdimallaN. LiP. VenkatayogiS. Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies.Environ. Process.20185236338310.1007/s40710‑018‑0297‑4
    [Google Scholar]
  28. Subba RaoN. VidyasagarG. Surya RaoP. BhanumurthyP. Assessment of hydrogeochemical processes in a coastal region: Application of multivariate statistical model.J. Geol. Soc. India201484449450010.1007/s12594‑014‑0155‑6
    [Google Scholar]
  29. AdimallaN. VenkatayogiS. DasS.V.G. Assessment of fluoride contamination and distribution: a case study from a rural part of Andhra Pradesh, India.Appl. Water Sci.2019949410.1007/s13201‑019‑0968‑y
    [Google Scholar]
  30. YadavK.K. KumarS. PhamQ.B. Fluoride contamination, health problems and remediation methods in Asian groundwater: A com-prehensive review.Ecotoxicol. Environ. Saf.201918210936210.1016/j.ecoenv.2019.06.045 31254856
    [Google Scholar]
  31. AliS. FakhriY. GolbiniM. Concentration of fluoride in groundwater of India: A systematic review, meta-analysis and risk as-sessment.Groundw. Sustain. Dev.2019910022410.1016/j.gsd.2019.100224
    [Google Scholar]
  32. Revelo-MejíaI.A. HardissonA. RubioC. GutiérrezÁ.J. PazS. Dental fluorosis: the risk of misdiagnosis—a Review.Biol. Trace Elem. Res.202119951762177010.1007/s12011‑020‑02296‑4 32705431
    [Google Scholar]
  33. MallisheryShivani KashmiraSawant and MokshiJain "Fluoride toxicity: A review on dental fluorosis and its prevalence in India." Journal of Dental and Medical Sciences 19, no. 1 (2020): 48- 53.
    [Google Scholar]
  34. SrivastavaS. FloraS.J.S. Fluoride in drinking water and skeletal fluorosis: a review of the global impact.Curr. Environ. Health Rep.20207214014610.1007/s40572‑020‑00270‑9 32207100
    [Google Scholar]
  35. DhillonA. PrasadS. KumarD. Recent advances and spectroscopic perspectives in fluoride removal.Appl. Spectrosc. Rev.201752317523010.1080/05704928.2016.1213737
    [Google Scholar]
  36. Meenakshi, Maheshwari RC. Fluoride in drinking water and its removal.J. Hazard. Mater.2006137145646310.1016/j.jhazmat.2006.02.024 16600479
    [Google Scholar]
  37. WaghmareS.S. ArfinT. Fluoride removal from water by various techniques.Int J Innov Sci Eng Technol201523560571
    [Google Scholar]
  38. PremathilakaR.W. LiyanagederaN.D. Fluoride in drinking water and nanotechnological approaches for eliminating excess fluoride.J. Nanotechnol.2019201911510.1155/2019/2192383
    [Google Scholar]
  39. AnadãoP. Nanocomposite filtration membranes for drinking water purification. Water purification.Academic Press201751754910.1016/B978‑0‑12‑804300‑4.00015‑0
    [Google Scholar]
  40. KumariP. AlamM. SiddiqiW.A. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend.Sustain Mater Technol201922e0012810.1016/j.susmat.2019.e00128
    [Google Scholar]
  41. GusainR. KumarN. RayS.S. Recent advances in carbon nanomaterial-based adsorbents for water purification.Coord. Chem. Rev.202040521311110.1016/j.ccr.2019.213111
    [Google Scholar]
  42. LiuM. ZangZ. ZhangS. OuyangG. HanR. Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated mag-netic chitosan graphene oxide.Int. J. Biol. Macromol.20211821759176810.1016/j.ijbiomac.2021.05.116 34048839
    [Google Scholar]
  43. RafiqueA. AwanM.A. WastiA. QaziI.A. ArshadM. Removal of fluoride from drinking water using modified immobilized activated alumina.J. Chem.201320131710.1155/2013/386476
    [Google Scholar]
  44. SivasankarV. RamachandramoorthyT. DarchenA. Manganese dioxide improves the efficiency of earthenware in fluoride removal from drinking water.Desalination20112721-317918610.1016/j.desal.2011.01.021
    [Google Scholar]
  45. García-SánchezJ.J. Solache-RíosM. Martínez-MirandaV. Solís MorelosC. Removal of fluoride ions from drinking water and fluoride solutions by aluminum modified iron oxides in a column system.J. Colloid Interface Sci.201340741041510.1016/j.jcis.2013.06.031 23859818
    [Google Scholar]
  46. MohapatraM. HariprasadD. MohapatraL. AnandS. MishraB.K. Mg-doped nano ferrihydrite—A new adsorbent for fluoride removal from aqueous solutions.Appl. Surf. Sci.2012258104228423610.1016/j.apsusc.2011.12.047
    [Google Scholar]
  47. Reyes BahenaJ.L. Robledo CabreraA. López ValdiviesoA. Herrera UrbinaR. Fluoride adsorption onto α-Al2O3 and its effect on the zeta potential at the alumina–aqueous electrolyte interface.Sep. Sci. Technol.20023781973198710.1081/SS‑120003055
    [Google Scholar]
  48. MaliyekkalS.M. SharmaA.K. PhilipL. Manganese-oxide-coated alumina: A promising sorbent for defluoridation of water.Water Res.200640193497350610.1016/j.watres.2006.08.007 17011020
    [Google Scholar]
  49. ChaiL. WangY. ZhaoN. YangW. YouX. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water.Water Res.201347124040404910.1016/j.watres.2013.02.057 23602616
    [Google Scholar]
  50. ViswanathanN. MeenakshiS. Enriched fluoride sorption using alumina/chitosan composite.J. Hazard. Mater.20101781-322623210.1016/j.jhazmat.2010.01.067 20144851
    [Google Scholar]
  51. NaghizadehA. GholamiK. Bentonite and montmorillonite nanoparticles effectiveness in removal of fluoride from water solutions.J. Water Health201715455556510.2166/wh.2017.052 28771153
    [Google Scholar]
  52. KongL. TianY. PangZ. Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@MgAl nanocomposites.Chem. Eng. J.201937189390210.1016/j.cej.2019.04.116
    [Google Scholar]
  53. LiuL. CuiZ. MaQ. CuiW. ZhangX. One-step synthesis of magnetic iron–aluminum oxide/graphene oxide nanoparticles as a selective adsorbent for fluoride removal from aqueous solution.RSC Advances2016613107831079110.1039/C5RA23676B
    [Google Scholar]
  54. WuX. ZhangY. DouX. YangM. Fluoride removal performance of a novel Fe–Al–Ce trimetal oxide adsorbent.Chemosphere200769111758176410.1016/j.chemosphere.2007.05.075 17624402
    [Google Scholar]
  55. RuanZ. TianY. RuanJ. Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solu-tion.Appl. Surf. Sci.201741257859010.1016/j.apsusc.2017.03.215
    [Google Scholar]
  56. XuC. LiJ. HeF. Al 2 O 3 –Fe 3 O 4 –expanded graphite nano-sandwich structure for fluoride removal from aqueous solution.RSC Advances2016699973769738410.1039/C6RA19390K
    [Google Scholar]
  57. ZhangY. WuB. XuH. Nanomaterials-enabled water and wastewater treatment.NanoImpact20163-4223910.1016/j.impact.2016.09.004
    [Google Scholar]
  58. WangX. LuJ. XingB. Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter.Environ. Sci. Technol.20084293207321210.1021/es702971g 18522095
    [Google Scholar]
  59. StafiejA. PyrzynskaK. Solid phase extraction of metal ions using carbon nanotubes.Microchem. J.2008891293310.1016/j.microc.2007.11.001
    [Google Scholar]
  60. BaruahA. ChaudharyV. MalikR. TomerV.K. Nanotechnology based solutions for wastewater treatment.Nanotechnology in Water and wastewater treatment.Elsevier201933736810.1016/B978‑0‑12‑813902‑8.00017‑4
    [Google Scholar]
  61. AnsariM. KazemipourM. DehghaniM. KazemipourM. The defluoridation of drinking water using multi-walled carbon nanotubes.J. Fluor. Chem.2011132851652010.1016/j.jfluchem.2011.05.008
    [Google Scholar]
  62. AqelA. El-NourK.M.M.A. AmmarR.A.A. Al-WarthanA. Carbon nanotubes, science and technology part (I) structure, synthesis and char-acterisation.Arab. J. Chem.20125112310.1016/j.arabjc.2010.08.022
    [Google Scholar]
  63. YinZ. CuiC. ChenH. DuoniYu.X. QianW. The application of carbon nanotube/graphene‐based nanomaterials in wastewater treat-ment.Small20201615190230110.1002/smll.201902301 31788946
    [Google Scholar]
  64. BabyR. SaifullahB. HusseinM.Z. Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remedi-ation.Nanoscale Res. Lett.201914134110.1186/s11671‑019‑3167‑8 31712991
    [Google Scholar]
  65. HashemiB. RezaniaS. Carbon-based sorbents and their nanocomposites for the enrichment of heavy metal ions: a review.Mikrochim. Acta2019186857810.1007/s00604‑019‑3668‑2 31350596
    [Google Scholar]
  66. DehghaniM.H. HaghighatG.A. YetilmezsoyK. Adsorptive removal of fluoride from aqueous solution using single- and multi-walled carbon nanotubes.J. Mol. Liq.201621640141010.1016/j.molliq.2016.01.057
    [Google Scholar]
  67. AffonsoL.N. MarquesJ.L.Jr LimaV.V.C. Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge.J. Hazard. Mater.202038812204210.1016/j.jhazmat.2020.122042 31954304
    [Google Scholar]
  68. AragaR. KaliS. SharmaC.S. Coconut‐shell‐derived carbon/carbon nanotube composite for fluoride adsorption from aqueous solution.Clean2019475180028610.1002/clen.201800286
    [Google Scholar]
  69. FaghihianH. AtarodiH. KooravandM. Synthesis, treatment, and application of a novel carbon nanostructure for removal of fluoride from aqueous solution.Desalination Water Treat.20155492432244010.1080/19443994.2014.899519
    [Google Scholar]
  70. BalarakD. MahdaviY. BazrafshanE. MahviA.H. EsfandyariY. Adsorption of fluoride from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetic, and thermodynamic parameters.Fluoride201649171
    [Google Scholar]
  71. RamamurthyS.S. ChenY. KalyanM.K. RaoG.N. ChelliJ. MitraS. Carbon nanotube-zirconium dioxide hybrid for defluoridation of water.J. Nanosci. Nanotechnol.20111143552355910.1166/jnn.2011.3806 21776736
    [Google Scholar]
  72. HaghighatG.A. DehghaniM.H. NasseriS. MahviA.H. RastkariN. Comparison of carbon nonotubes and activated alumina efficiencies in fluoride removal from drinking water.Indian J. Sci. Technol.2012531410.17485/ijst/2012/v5i3.35
    [Google Scholar]
  73. RoyS. DasP. Assessment on the defluoridation using novel activated carbon synthesized from tea waste: batch, statistical optimization and mathematical modeling.Journal of Industrial Pollution Control.2016322
    [Google Scholar]
  74. TeferaN. MulualemY. FitoJ. Adsorption of fluoride from aqueous solution and groundwater onto activated carbon of avocado seeds.Water Conservation Science and Engineering202053-418719710.1007/s41101‑020‑00093‑7
    [Google Scholar]
  75. KumarG.K. KamathM.S. MallapurP.S. Defluoridation of water by using low cost activated carbon prepared from lemon peels.J Basic Appl Eng Res20163658660
    [Google Scholar]
  76. SharmaA. PurohitH. HussainM.S. SutharA.K. SharmaS. Defluoridation of ground water using activated carbon of Ber (In- dian Jujube) leaves. International Journal of Engineering and Ap- plied.Sciences201745257469
    [Google Scholar]
  77. DaifullahA. YakoutS. ElreefyS. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw.J. Hazard. Mater.20071471-263364310.1016/j.jhazmat.2007.01.062 17314006
    [Google Scholar]
  78. DehghaniM.H. FarhangM. AlimohammadiM. AfsharniaM. MckayG. Adsorptive removal of fluoride from water by activated carbon derived from CaCl2 -modified Crocus sativus leaves: Equilibrium adsorption isotherms, optimization, and influence of anions.Chem. Eng. Commun.2018205795596510.1080/00986445.2018.1423969
    [Google Scholar]
  79. GetachewT. HussenA. RaoV.M. Defluoridation of water by activated carbon prepared from banana (Musa paradisiaca) peel and coffee (Coffea arabica) husk.Int. J. Environ. Sci. Technol.20151261857186610.1007/s13762‑014‑0545‑8
    [Google Scholar]
  80. HalderG. SinhaK. DhawaneS. Defluoridation of wastewater using powdered activated carbon developed from Eichhornia crassipes stem: optimization by response surface methodology.Desalination Water Treat.201556495396610.1080/19443994.2014.942375
    [Google Scholar]
  81. HeL. WangG. ZhangX. ZhangY. ChenY. Lanthanum-doped activated carbon derived from municipal sludge for enhanced defluorida-tion: characteristics and mechanism.Water Sci. Technol.20208281643165210.2166/wst.2020.435 33107858
    [Google Scholar]
  82. KimM. ChoongC.E. HyunS. ParkC.M. LeeG. Mechanism of simultaneous removal of aluminum and fluoride from aqueous solution by La/Mg/Si-activated carbon.Chemosphere202025312658010.1016/j.chemosphere.2020.126580 32464758
    [Google Scholar]
  83. MaY. WangS.G. FanM. GongW.X. GaoB.Y. Characteristics and defluoridation performance of granular activated carbons coated with manganese oxides.J. Hazard. Mater.20091682-31140114610.1016/j.jhazmat.2009.02.145 19345485
    [Google Scholar]
  84. PalodkarA.V. AnupamK. BanerjeeS. HalderG. Insight into preparation of activated carbon towards defluoridation of waste water: Op-timization, kinetics, equilibrium, and cost estimation.Environ. Prog. Sustain. Energy20173661597161110.1002/ep.12613
    [Google Scholar]
  85. PangT. Aye ChanT.S. JandeY.A.C. ShenJ. Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method.Chemosphere202025512695010.1016/j.chemosphere.2020.126950 32380266
    [Google Scholar]
  86. RashidU.S. BezbaruahA.N. Citric acid modified granular activated carbon for enhanced defluoridation.Chemosphere202025212663910.1016/j.chemosphere.2020.126639 32443281
    [Google Scholar]
  87. SaidM. MachundaR.L. Defluoridation of water supplies using coconut shells activated carbon: batch studies.Int. J. Sci. Res.20143723272331
    [Google Scholar]
  88. SathishR.S. SairamS. RajaV.G. RaoG.N. JanardhanaC. Defluoridation of water using zirconium impregnated coconut fiber carbon.Sep. Sci. Technol.200843143676369410.1080/01496390802222541
    [Google Scholar]
  89. SuneethaM. SundarB.S. RavindhranathK. Defluoridation of waters using low-cost HNO<SUB align=“right”>3 activated carbon derived from stems of Senna Occidentalis plant.Int. J. Environ. Technol. Manag.2015185/642044710.1504/IJETM.2015.073079
    [Google Scholar]
  90. TalatM. MohanS. DixitV. SinghD.K. HasanS.H. SrivastavaO.N. Effective removal of fluoride from water by coconut husk activated carbon in fixed bed column: Experimental and breakthrough curves analysis.Groundw. Sustain. Dev.20187485510.1016/j.gsd.2018.03.001
    [Google Scholar]
  91. BrunsonL.R. SabatiniD.A. Methods for optimizing activated materials for removing fluoride from drinking water sources.J. Environ. Eng.201614220401507810.1061/(ASCE)EE.1943‑7870.0001044
    [Google Scholar]
  92. MullickA. NeogiS. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption.Ultrason. Sonochem.201845657710.1016/j.ultsonch.2018.03.002 29705326
    [Google Scholar]
  93. SathishR.S. RajuN.S.R. RajuG.S. Nageswara RaoG. KumarK.A. JanardhanaC. Equilibrium and kinetic studies for fluoride adsorption from water on zirconium impregnated coconut shell carbon.Sep. Sci. Technol.200742476978810.1080/01496390601070067
    [Google Scholar]
  94. YadavA.K. AbbassiR. GuptaA. DadashzadehM. Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane.Ecol. Eng.20135221121810.1016/j.ecoleng.2012.12.069
    [Google Scholar]
  95. SilveiraC. ShimabukuQ.L. Fernandes SilvaM. BergamascoR. Iron-oxide nanoparticles by the green synthesis method using Moringa oleifera leaf extract for fluoride removal.Environ. Technol.201839222926293610.1080/09593330.2017.1369582 28823221
    [Google Scholar]
  96. SiddiqueA. NayakA.K. SinghJ. Synthesis of FeCl3-activated carbon derived from waste Citrus limetta peels for removal of fluoride: An eco-friendly approach for the treatment of groundwater and bio-waste collectively.Groundw. Sustain. Dev.20201010033910.1016/j.gsd.2020.100339
    [Google Scholar]
  97. MullickA. NeogiS. Ultrasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for effective fluoride adsorption from water.Ultrason. Sonochem.20195012613710.1016/j.ultsonch.2018.09.010 30245202
    [Google Scholar]
  98. MahviA.H. MostafapourF.K. BalarakD. Adsorption of fluoride from aqueous solution by eucalyptus bark activated carbon: Thermody-namic analysis.Fluoride2019524562568
    [Google Scholar]
  99. ChenC.L. ParkS.W. SuJ.F. The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary am-monium salts (Quats).Sci. Total Environ.201969313360510.1016/j.scitotenv.2019.133605 31634998
    [Google Scholar]
  100. MariappanR. VairamuthuR. GanapathyA. Use of chemically activated cotton nut shell carbon for the removal of fluoride contaminated drinking water: Kinetics evaluation.Chin. J. Chem. Eng.201523471072110.1016/j.cjche.2014.05.019
    [Google Scholar]
  101. MeiL. QiaoH. KeF. One-step synthesis of zirconium dioxide-biochar derived from Camellia oleifera seed shell with enhanced removal capacity for fluoride from water.Appl. Surf. Sci.202050914468510.1016/j.apsusc.2019.144685
    [Google Scholar]
  102. SainiA. MaheshwariP.H. TripathyS.S. WaseemS. DhakateS.R. Processing of rice straw to derive carbon with efficient de-fluoridation properties for drinking water treatment.J. Water Process Eng.20203410113610.1016/j.jwpe.2020.101136
    [Google Scholar]
  103. TakmilF. EsmaeiliH. MousaviS.M. HashemiS.A. Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion.Adv. Powder Technol.20203183236324510.1016/j.apt.2020.06.015
    [Google Scholar]
  104. LiY.H. WangS. ZhangX. Adsorption of fluoride from water by aligned carbon nanotubes.Mater. Res. Bull.200338346947610.1016/S0025‑5408(02)01063‑2
    [Google Scholar]
  105. TangQ. DuanT. LiP. ZhangP. WuD. Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube.Front Chem.2018610410.3389/fchem.2018.00104 29696138
    [Google Scholar]
  106. YangY. DuX. AbudulaA. Highly efficient defluoridation using a porous MWCNT@NiMn-LDH composites based on ion transport of EDL coupled with ligand exchange mechanism.Separ. Purif. Tech.201922315416110.1016/j.seppur.2019.04.052
    [Google Scholar]
  107. LiY.H. WangS. CaoA. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes.Chem. Phys. Lett.20013505-641241610.1016/S0009‑2614(01)01351‑3
    [Google Scholar]
  108. Leyva RamosR. Ovalle-TurrubiartesJ. Sanchez-CastilloM.A. Adsorption of fluoride from aqueous solution on aluminum-impregnated carbon.Carbon199937460961710.1016/S0008‑6223(98)00231‑0
    [Google Scholar]
  109. VeeraputhiranV. AlagumuthuG. Sorption equilibrium of fluoride onto Phyllanthus emblica activated carbon.Int. J. Res. Chem. Environ.201114247
    [Google Scholar]
  110. ChoongC.E. KimM. YoonS. LeeG. ParkC.M. Mesoporous La/Mg/Si-incorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water.J. Taiwan Inst. Chem. Eng.20189330631410.1016/j.jtice.2018.07.035
    [Google Scholar]
  111. SinghK. LatayeD.H. WasewarK.L. Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study.J. Fluor. Chem.2017194233210.1016/j.jfluchem.2016.12.009
    [Google Scholar]
  112. KumarD. TomarV. MishraA.K. Removal of fluoride from potable water using smart nanomaterial as adsorbent.Hoboken, NJJohn Wiley & Sons201428530810.1002/9781118939314.ch11
    [Google Scholar]
  113. TliliI. AlkanhalT.A. Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment.J. Water Reuse Desalin.20199323224810.2166/wrd.2019.057
    [Google Scholar]
  114. AdakM.K. SenA. MukherjeeA. SenS. DhakD. Removal of fluoride from drinking water using highly efficient nanoadsorbent, Al(III)-Fe(III)-La(III) trimetallic oxide prepared by chemical route.J. Alloys Compd.201771946046910.1016/j.jallcom.2017.05.149
    [Google Scholar]
  115. PekakisP.A. XekoukoulotakisN.P. MantzavinosD. Treatment of textile dyehouse wastewater by TiO2 photocatalysis.Water Res.20064061276128610.1016/j.watres.2006.01.019 16510167
    [Google Scholar]
  116. SahaP. ChowdhuryS. GuptaS. KumarI. Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin.Chem. Eng. J.2010165387488210.1016/j.cej.2010.10.048
    [Google Scholar]
  117. HusainM. HusainQ. Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review.Crit. Rev. Environ. Sci. Technol.200738114210.1080/10643380701501213
    [Google Scholar]
  118. MichaelI. RizzoL. McArdellC.S. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review.Water Res.201347395799510.1016/j.watres.2012.11.027 23266388
    [Google Scholar]
  119. ChowdhuryS. BalasubramanianR. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.Adv. Colloid Interface Sci.2014204355610.1016/j.cis.2013.12.005 24412086
    [Google Scholar]
  120. SweetmanMJ MayS MebbersonN Activated carbon,carbon nanotubes and graphene: materials and composites for advanced water purification. C2017321810.3390/c3020018
    [Google Scholar]
  121. VelmaV. VutukuruS.S. TchounwouP.B. Ecotoxicology of hexavalent chromium in freshwater fish: a critical review.Rev. Environ. Health200924212914510.1515/REVEH.2009.24.2.129 19658319
    [Google Scholar]
  122. OliveiraH. Chromium as an environmental pollutant: insights on induced plant toxicity.J. Bot.201220121810.1155/2012/375843
    [Google Scholar]
  123. WaniA.L. AraA. UsmaniJ.A. Lead toxicity: a review.Interdiscip. Toxicol.201582556410.1515/intox‑2015‑0009 27486361
    [Google Scholar]
  124. JaishankarM. TsetenT. AnbalaganN. MathewB.B. BeeregowdaK.N. Toxicity, mechanism and health effects of some heavy metals.Interdiscip. Toxicol.201472607210.2478/intox‑2014‑0009 26109881
    [Google Scholar]
  125. MazumderD.G. Health effects chronic arsenic toxicity.Handbook of arsenic toxicology.Academic Press201513717710.1016/B978‑0‑12‑418688‑0.00006‑X
    [Google Scholar]
  126. BernhoftR.A. Mercury toxicity and treatment: a review of the literature.J. Environ. Public Health2012201211010.1155/2012/460508 22235210
    [Google Scholar]
  127. Rafati RahimzadehM. Rafati RahimzadehM. KazemiS. MoghadamniaA.A. Cadmium toxicity and treatment: An update.Caspian J. Intern. Med.20178313514510.22088/cjim.8.3.13528932363
    [Google Scholar]
  128. FosmireG.J. Zinc toxicity.Am. J. Clin. Nutr.199051222522710.1093/ajcn/51.2.2252407097
    [Google Scholar]
  129. WalligM.A. KeenanK.P. Nutritional toxicologic pathology. Haschek and Rousseaux’s Handbook of Toxicologic Pathology.Academic Press20131077112110.1016/B978‑0‑12‑415759‑0.00036‑4
    [Google Scholar]
  130. TaylorA.A. TsujiJ.S. GarryM.R. Critical review of exposure and effects: Implications for setting regulatory health criteria for in-gested copper.Environ. Manage.202065113115910.1007/s00267‑019‑01234‑y 31832729
    [Google Scholar]
  131. GenchiG. CarocciA. LauriaG. SinicropiM.S. CatalanoA. Nickel: Human health and environmental toxicology.Int. J. Environ. Res. Public Health202017367910.3390/ijerph17030679 31973020
    [Google Scholar]
  132. Nicolopoulou-StamatiP. MaipasS. KotampasiC. StamatisP. HensL. Chemical pesticides and human health: the urgent need for a new concept in agriculture.Front. Public Health2016414810.3389/fpubh.2016.00148 27486573
    [Google Scholar]
  133. KodavantiPRS LoganathanBG Organohalogen pollutants and human health201710.1016/B978‑0‑12‑803678‑5.00318‑0
    [Google Scholar]
  134. LellisB. Fávaro-PolonioC.Z. PamphileJ.A. PolonioJ.C. Effects of textile dyes on health and the environment and bioremediation poten-tial of living organisms.Biotechnology Research and Innovation20193227529010.1016/j.biori.2019.09.001
    [Google Scholar]
  135. LuC. ChiuH. Adsorption of zinc(II) from water with purified carbon nanotubes.Chem. Eng. Sci.20066141138114510.1016/j.ces.2005.08.007
    [Google Scholar]
  136. GuptaV.K. AgarwalS. SalehT.A. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes.Water Res.20114562207221210.1016/j.watres.2011.01.012 21303713
    [Google Scholar]
  137. LiY.H. WangS. WeiJ. Lead adsorption on carbon nanotubes.Chem. Phys. Lett.20023573-426326610.1016/S0009‑2614(02)00502‑X
    [Google Scholar]
  138. LuC. LiuC. Removal of nickel(II) from aqueous solution by carbon nanotubes.J. Chem. Technol. Biotechnol.200681121932194010.1002/jctb.1626
    [Google Scholar]
  139. LiY.H. DingJ. LuanZ. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nano-tubes.Carbon200341142787279210.1016/S0008‑6223(03)00392‑0
    [Google Scholar]
  140. AnithaK. NamsaniS. SinghJ.K. Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynam-ics study.J. Phys. Chem. A2015119308349835810.1021/acs.jpca.5b03352 26158866
    [Google Scholar]
  141. LuC. ChungY.L. ChangK.F. Adsorption of trihalomethanes from water with carbon nanotubes.Water Res.20053961183118910.1016/j.watres.2004.12.033 15766973
    [Google Scholar]
  142. WuC.H. Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics.J. Hazard. Mater.20071441-29310010.1016/j.jhazmat.2006.09.083 17081687
    [Google Scholar]
  143. ChatterjeeS. LeeM.W. WooS.H. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes.Bioresour. Technol.201010161800180610.1016/j.biortech.2009.10.051 19962883
    [Google Scholar]
  144. BazrafshanE. MostafapourF.K. HosseiniA.R. Raksh KhorshidA. MahviA.H. Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions.J. Chem.201320131810.1155/2013/938374
    [Google Scholar]
  145. YangK. ZhuL. XingB. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials.Environ. Sci. Technol.20064061855186110.1021/es052208w 16570608
    [Google Scholar]
  146. WangS. NgC.W. WangW. LiQ. LiL. A comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems.J. Chem. Eng. Data20125751563156910.1021/je3001552
    [Google Scholar]
  147. LiaoQ. SunJ. GaoL. The adsorption of resorcinol from water using multi-walled carbon nanotubes.Colloids Surf. A Physicochem. Eng. Asp.20083122-316016510.1016/j.colsurfa.2007.06.045
    [Google Scholar]
  148. HyungH. KimJ.H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters.Environ. Sci. Technol.200842124416442110.1021/es702916h 18605564
    [Google Scholar]
  149. JosephL. FloraJ.R.V. ParkY.G. BadawyM. SalehH. YoonY. Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials.Separ. Purif. Tech.201295647210.1016/j.seppur.2012.04.033
    [Google Scholar]
  150. MaJ. YuF. ZhouL. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes.ACS Appl. Mater. Interfaces20124115749576010.1021/am301053m 23062571
    [Google Scholar]
  151. MoradiO. Adsorption behavior of basic red 46 by single-walled carbon nanotubes surfaces.Fuller. Nanotub. Carbon Nanostruct.201321428630110.1080/1536383X.2011.572317
    [Google Scholar]
  152. ZhangL. SongX. LiuX. YangL. PanF. LvJ. Studies on the removal of tetracycline by multi-walled carbon nanotubes.Chem. Eng. J.2011178263310.1016/j.cej.2011.09.127
    [Google Scholar]
  153. ZhangL. XuT. LiuX. ZhangY. JinH. Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions.J. Hazard. Mater.201119738939610.1016/j.jhazmat.2011.09.100 22018864
    [Google Scholar]
  154. MehrizadA. AghaieM. GharbaniP. DastmalchiS. MonajjemiM. ZareK. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes.Iranian . J. Environ. Health Sci. Engin.2012911610.1186/1735‑2746‑9‑5
    [Google Scholar]
  155. LouJ.C. JungM.J. YangH.W. HanJ.Y. HuangW.H. Removal of dissolved organic matter (DOM) from raw water by single-walled carbon nanotubes (SWCNTs).J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.201146121357136510.1080/10934529.2011.606688 21942388
    [Google Scholar]
  156. YuF. WuY. LiX. MaJ. Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes.J. Agric. Food Chem.20126050122451225310.1021/jf304104z 23185965
    [Google Scholar]
  157. ZhuH.Y. JiangR. XiaoL. ZengG.M. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange.Bioresour. Technol.2010101145063506910.1016/j.biortech.2010.01.107 20219366
    [Google Scholar]
  158. Álvarez-TorrellasS. RodríguezA. OvejeroG. GarcíaJ. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials.Chem. Eng. J.201628393694710.1016/j.cej.2015.08.023
    [Google Scholar]
  159. MaJ. ZhuangY. YuF. Facile method for the synthesis of a magnetic CNTs–C@Fe–chitosan composite and its application in tetracycline removal from aqueous solutions.Phys. Chem. Chem. Phys.20151724159361594410.1039/C5CP02542G 26023730
    [Google Scholar]
  160. NcibiM.C. SillanpääM. Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes.J. Hazard. Mater.201529810211010.1016/j.jhazmat.2015.05.025 26024613
    [Google Scholar]
  161. WangF. SunW. PanW. XuN. Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites.Chem. Eng. J.2015274172910.1016/j.cej.2015.03.113
    [Google Scholar]
  162. YangQ. ChenG. ZhangJ. LiH. Adsorption of sulfamethazine by multi-walled carbon nanotubes: effects of aqueous solution chemistry.RSC Advances2015532255412554910.1039/C4RA15056B
    [Google Scholar]
  163. YangW. LuY. ZhengF. XueX. LiN. LiuD. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nano-tube.Chem. Eng. J.201217911211810.1016/j.cej.2011.10.068
    [Google Scholar]
  164. HsiehS.H. HorngJ.J. Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles.J. Univ. Sci. Technol. Beijing2007141778410.1016/S1005‑8850(07)60016‑4
    [Google Scholar]
  165. KarnibM. KabbaniA. HolailH. OlamaZ. Heavy metals removal using activated carbon, silica and silica activated carbon composite.Energy Procedia20145011312010.1016/j.egypro.2014.06.014
    [Google Scholar]
  166. LuoX. LeiX. CaiN. XieX. XueY. YuF. Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon.ACS Sustain. Chem.& Eng.2016473960396910.1021/acssuschemeng.6b00790
    [Google Scholar]
  167. Rahmani-SaniA. SinghP. RaizadaP. Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions.Bioresour. Technol.202029712245210.1016/j.biortech.2019.122452 31787507
    [Google Scholar]
  168. NejadshafieeV. IslamiM.R. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bioadsorbent.Mater. Sci. Eng. C2019101425210.1016/j.msec.2019.03.081 31029336
    [Google Scholar]
  169. Yegane BadiM. AzariA. PasalariH. EsrafiliA. FarzadkiaM. Modification of activated carbon with magnetic Fe 3 O 4 nanoparticle com-posite for removal of ceftriaxone from aquatic solutions.J. Mol. Liq.201826114615410.1016/j.molliq.2018.04.019
    [Google Scholar]
  170. FuR. LiuY. LouZ. WangZ. BaigS.A. XuX. Adsorptive removal of Pb(II) by magnetic activated carbon incorporated with amino groups from aqueous solutions.J. Taiwan Inst. Chem. Eng.20166224725810.1016/j.jtice.2016.02.012
    [Google Scholar]
  171. KharraziS.M. MirghaffariN. DastgerdiM.M. SoleimaniM. A novel postmodification of powdered activated carbon prepared from ligno-cellulosic waste through thermal tension treatment to enhance the porosity and heavy metals adsorption.Powder Technol.202036635836810.1016/j.powtec.2020.01.065
    [Google Scholar]
  172. SharmaM. JoshiM. NigamS. ZnO tetrapods and activated carbon based hybrid composite: Adsorbents for enhanced decontamina-tion of hexavalent chromium from aqueous solution.Chem. Eng. J.201935854055110.1016/j.cej.2018.10.031
    [Google Scholar]
  173. SharmaG. NaushadM. Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: Isotherm and kinetic modelling.J. Mol. Liq.202031011302510.1016/j.molliq.2020.113025
    [Google Scholar]
  174. LiH. ZhengF. WangJ. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption per-formance.Chem. Eng. J.202039012451310.1016/j.cej.2020.124513
    [Google Scholar]
  175. OsmanA.I. BlewittJ. Abu-DahriehJ.K. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal.Environ. Sci. Pollut. Res. Int.20192636372283724110.1007/s11356‑019‑06594‑w 31745803
    [Google Scholar]
  176. ZhuS. YangN. ZhangD. Poly(N,N-dimethylaminoethyl methacrylate) modification of activated carbon for copper ions removal.Mater. Chem. Phys.20091132-378478910.1016/j.matchemphys.2008.08.025
    [Google Scholar]
  177. MoussaS.I. AliM.M.S. ShehaR.R. The performance of activated carbon/NiFe2O4 magnetic composite to retain heavy metal ions from aqueous solution.Chin. J. Chem. Eng.20212913514510.1016/j.cjche.2020.07.036
    [Google Scholar]
  178. OladipoA.A. GaziM. Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of cop-per(II) ions and direct red 80 dye: A multi-component adsorption system.J. Taiwan Inst. Chem. Eng.20154712513610.1016/j.jtice.2014.09.027
    [Google Scholar]
  179. ParkH.G. KimT.W. ChaeM.Y. YooI.K. Activated carboncontaining alginate adsorbent for the simultaneous removal of heavy metals and toxic organics.Process Biochem.200742101371137710.1016/j.procbio.2007.06.016
    [Google Scholar]
  180. NejadshafieeV. IslamiM.R. Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy met-als from industrial waste of copper mine.Environ. Sci. Pollut. Res. Int.20202721625163910.1007/s11356‑019‑06732‑4 31755054
    [Google Scholar]
  181. AzariA. KakavandiB. KalantaryR.R. Rapid and efficient magnetically removal of heavy metals by magnetite-activated carbon composite: a statistical design approach.J. Porous Mater.20152241083109610.1007/s10934‑015‑9983‑z
    [Google Scholar]
  182. AmudaO.S. GiwaA.A. BelloI.A. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon.Biochem. Eng. J.200736217418110.1016/j.bej.2007.02.013
    [Google Scholar]
  183. TounsadiH. KhalidiA. AbdennouriM. BarkaN. Activated carbon from Diplotaxis Harra biomass: Optimization of preparation condi-tions and heavy metal removal.J. Taiwan Inst. Chem. Eng.20165934835810.1016/j.jtice.2015.08.014
    [Google Scholar]
  184. BaccarR. BouzidJ. FekiM. MontielA. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorp-tion of heavy metal ions.J. Hazard. Mater.20091622-31522152910.1016/j.jhazmat.2008.06.041 18653277
    [Google Scholar]
  185. WangK. ZhaoJ. LiH. ZhangX. ShiH. Removal of cadmium (II) from aqueous solution by granular activated carbon supported magnesium hydroxide.J. Taiwan Inst. Chem. Eng.20166128729110.1016/j.jtice.2016.01.006
    [Google Scholar]
  186. LeV.T. TranT.K.N. TranD.L. One-pot synthesis of a novel magnetic activated carbon/clay composite for removal of heavy metals from aqueous solution.J. Dispers. Sci. Technol.201940121761177610.1080/01932691.2018.1541414
    [Google Scholar]
  187. SatoS. YoshiharaK. MoriyamaK. MachidaM. TatsumotoH. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution.Appl. Surf. Sci.2007253208554855910.1016/j.apsusc.2007.04.025
    [Google Scholar]
  188. GuoJ. SongY. JiX. Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions.Materials.201912224110.3390/ma12020241 30642039
    [Google Scholar]
  189. YanagisawaH. MatsumotoY. MachidaM. Adsorption of Zn(II) and Cd(II) ions onto magnesium and activated carbon composite in aqueous solution.Appl. Surf. Sci.201025661619162310.1016/j.apsusc.2009.10.010
    [Google Scholar]
  190. ZhangZ. WangT. ZhangH. LiuY. XingB. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism.Sci. Total Environ.202175714391010.1016/j.scitotenv.2020.143910 33310569
    [Google Scholar]
  191. NogueiraH.P. TomaS.H. SilveiraA.T. CarvalhoA.A.C. FiorotoA.M. ArakiK. Efficient Cr(VI) removal from wastewater by activated carbon superparamagnetic composites.Microchem. J.201914910402510.1016/j.microc.2019.104025
    [Google Scholar]
  192. ZhangQ.L. LinY.C. ChenX. GaoN.Y. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water.J. Hazard. Mater.2007148367167810.1016/j.jhazmat.2007.03.026 17434260
    [Google Scholar]
  193. SreejalekshmiK.G. KrishnanK.A. AnirudhanT.S. Adsorption of Pb(II) and Pb(II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies.J. Hazard. Mater.20091612-31506151310.1016/j.jhazmat.2008.05.002 18550276
    [Google Scholar]
  194. ShahrashoubM. BakhtiariS. The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies.Microporous Mesoporous Mater.202131111069210.1016/j.micromeso.2020.110692
    [Google Scholar]
  195. Habuda-StanićM. RavančićM. FlanaganA. A review on adsorption of fluoride from aqueous solution.Materials.2014796317636610.3390/ma7096317 28788194
    [Google Scholar]
  196. AlijaniH. ShariatiniaZ. Synthesis of high growth rate SWCNTs and their magnetite cobalt sulfide nanohybrid as super-adsorbent for mercury removal.Chem. Eng. Res. Des.201812913214910.1016/j.cherd.2017.11.014
    [Google Scholar]
  197. DehghaniM.H. TaherM.M. BajpaiA.K. Removal of noxious Cr (VI) ions using singlewalled carbon nanotubes and multi-walled carbon nanotubes.Chem. Eng. J.201527934435210.1016/j.cej.2015.04.151
    [Google Scholar]
/content/journals/cnm/10.2174/2405461508666230221143138
Loading
/content/journals/cnm/10.2174/2405461508666230221143138
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test