Skip to content
2000
Volume 9, Issue 1
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Semiconductors have gained recognition as efficient photocatalysts for the degradation of antibiotics in water. However, their performance is limited due to poor absorption of light, recombination of electron-hole pairs, and poor recovery from an aqueous solution. This study reviewed the inclusion of semiconductor nanoparticles in a metal-organic framework (MOF), forming nanoparticle@MOF composite to overcome these challenges. Three methods including ship-in-bottle, bottle-around-ship, and one-step synthesis were identified for the synthesis of nanoparticle@MOF composite. Among the synthesis methods, the one-step method remains promising with high prospects. Nanoparticle@MOF composite has exhibited high efficiency in removing antibiotics in an aqueous system utilizing visible light as a photo source for promoting the process. Despite the success achieved, there is a need for large-scale studies and cost evaluation to understand better the feasibility and economic implications of the nanoparticle@MOF composite technique as an affordable technique for the purification of an antibiotic-contaminated water system.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/2405461508666230329100850
2024-03-01
2025-01-26
Loading full text...

Full text loading...

References

  1. PolianciucS.I. GurzăuA.E. KissB. ȘtefanM.G. LoghinF. Antibiotics in the environment: Causes and consequences.Med. Pharm. Rep.202093323124010.15386/mpr‑1742 32832887
    [Google Scholar]
  2. ArchundiaD. DuwigC. LehembreF. Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: Major transformation products and occurrence of resistance genes.Sci. Total Environ.201757667168210.1016/j.scitotenv.2016.10.129 27810754
    [Google Scholar]
  3. LocatelliM.A.F. SodréF.F. JardimW.F. Determination of antibiotics in Brazilian surface waters using liquid chromatography-electrospray tandem mass spectrometry.Arch. Environ. Contam. Toxicol.201160338539310.1007/s00244‑010‑9550‑1 20535610
    [Google Scholar]
  4. KleywegtS. PileggiV. YangP. Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada — Occurrence and treatment efficiency.Sci. Total Environ.201140981481148810.1016/j.scitotenv.2011.01.010 21315426
    [Google Scholar]
  5. ChaJ.M. YangS. CarlsonK.H. Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatog-raphy combined with electrospray tandem mass spectrometry.J. Chromatogr. A200611151-2465710.1016/j.chroma.2006.02.086 16595135
    [Google Scholar]
  6. BielenA. ŠimatovićA. Kosić-VukšićJ. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries.Water Res.2017126798710.1016/j.watres.2017.09.019 28923406
    [Google Scholar]
  7. Rodriguez-MozazS. ChamorroS. MartiE. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river.Water Res.20156923424210.1016/j.watres.2014.11.021 25482914
    [Google Scholar]
  8. Tuc DinhQ. AlliotF. Moreau-GuigonE. EurinJ. ChevreuilM. LabadieP. Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS.Talanta20118531238124510.1016/j.talanta.2011.05.013 21807177
    [Google Scholar]
  9. MirzaeiR. YunesianM. NasseriS. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran.Sci. Total Environ.2018619-62044645910.1016/j.scitotenv.2017.07.272 29156265
    [Google Scholar]
  10. aus der BeekT. WeberF.A. BergmannA. Pharmaceuticals in the environment-Global occurrences and perspectives.Environ. Toxicol. Chem.201635482383510.1002/etc.3339 26666847
    [Google Scholar]
  11. MurataA. TakadaH. MutohK. HosodaH. HaradaA. NakadaN. Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers.Sci. Total Environ.2011409245305531210.1016/j.scitotenv.2011.09.014 21975006
    [Google Scholar]
  12. MadikizelaL.M. TavengwaN.T. ChimukaL. Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical meth-ods.J. Environ. Manage.201719321122010.1016/j.jenvman.2017.02.022 28222352
    [Google Scholar]
  13. AzanuD. StyrishaveB. DarkoG. WeisserJ.J. AbaidooR.C. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana.Sci. Total Environ.2018622-62329330510.1016/j.scitotenv.2017.11.287 29216470
    [Google Scholar]
  14. K’orejeK.O. DemeestereK. De WispelaereP. VergeynstL. DewulfJ. Van LangenhoveH. From multi-residue screening to target analysis of pharmaceuticals in water: Development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin, Kenya.Sci. Total Environ.201243715316410.1016/j.scitotenv.2012.07.052 22935682
    [Google Scholar]
  15. Rodriguez-MozazS. Vaz-MoreiraI. Varela Della GiustinaS. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment.Environ. Int.202014010573310.1016/j.envint.2020.105733 32353669
    [Google Scholar]
  16. RasheedT. BilalM. NabeelF. AdeelM. IqbalH.M.N. Environmentally-related contaminants of high concern: Potential sources and ana-lytical modalities for detection, quantification, and treatment.Environ. Int.2019122526610.1016/j.envint.2018.11.038 30503315
    [Google Scholar]
  17. FairbairnD.J. ElliottS.M. KieslingR.L. SchoenfussH.L. FerreyM.L. WesterhoffB.M. Contaminants of emerging concern in urban storm-water: Spatiotemporal patterns and removal by iron-enhanced sand filters (IESFs).Water Res.201814533234510.1016/j.watres.2018.08.020 30165318
    [Google Scholar]
  18. GrenniP. Antimicrobial resistance in rivers: A review of the genes detected and new challenges.Environ. Toxicol. Chem.202241368771410.1002/etc.5289 35191071
    [Google Scholar]
  19. Rodriguez-NarvaezO.M. Peralta-HernandezJ.M. GoonetillekeA. BandalaE.R. Treatment technologies for emerging contaminants in water: A review.Chem. Eng. J.201732336138010.1016/j.cej.2017.04.106
    [Google Scholar]
  20. VelempiniT. PrabakaranE. PillayK. Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water-a review.Mater. Today Chem.20211910038010.1016/j.mtchem.2020.100380
    [Google Scholar]
  21. YuanB. LiL. MurugadossV. Nanocellulose-based composite materials for wastewater treatment and waste-oil remediation.ES Food Agroforestry202017415210.30919/esfaf0004
    [Google Scholar]
  22. PengH. CaoJ. XiongW. Two-dimension N-doped nanoporous carbon from KCl thermal exfoliation of Zn-ZIF-L: Efficient adsorp-tion for tetracycline and optimizing of response surface model.J. Hazard. Mater.202140212349810.1016/j.jhazmat.2020.123498 32712366
    [Google Scholar]
  23. WangH. LiX. ZhaoX. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modifi-cation strategies.Chin. J. Catal.202243217821410.1016/S1872‑2067(21)63910‑4
    [Google Scholar]
  24. ZhuC. LiY. YangY. Influence of operational parameters on photocatalytic decolorization of a cationic azo dye under visiblelight in aqueous Ag3PO4.Inorg. Chem. Commun.202011510785010.1016/j.inoche.2020.107850
    [Google Scholar]
  25. Anju ChanuL. Joychandra SinghW. Jugeshwar SinghK. Nomita DeviK. Effect of operational parameters on the photocatalytic degrada-tion of Methylene blue dye solution using manganese doped ZnO nanoparticles.Results Phys.2019121230123710.1016/j.rinp.2018.12.089
    [Google Scholar]
  26. ZhaoX. LiJ. LiX. HuoP. ShiW. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants.Chin. J. Catal.202142687290310.1016/S1872‑2067(20)63715‑9
    [Google Scholar]
  27. BrionesR.M. SarmahA.K. PadhyeL.P. A global perspective on the use, occurrence, fate and effects of anti-diabetic drug metformin in natural and engineered ecosystems.Environ. Pollut.20162191007102010.1016/j.envpol.2016.07.040 27473659
    [Google Scholar]
  28. JjembaP.K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment.Ecotoxicol. Environ. Saf.200663111313010.1016/j.ecoenv.2004.11.011 16399163
    [Google Scholar]
  29. LienertJ. BürkiT. EscherB.I. Reducing micropollutants with source control: Substance flow analysis of 212 pharmaceuticals in faeces and urine.Water Sci. Technol.2007565879610.2166/wst.2007.560 17881841
    [Google Scholar]
  30. PengX. TangC. YuY. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China.Environ. Int.200935230330910.1016/j.envint.2008.07.021 18774173
    [Google Scholar]
  31. ZhenluS. HouyuL. XiaochenL. YanX. XiangqunZ. The occurrence and risk management of antibiotics and antibiotic resistant genes in rural solid waste.Asian J. Ecotoxicol.20204112122
    [Google Scholar]
  32. ZhouW. TangY. DuX. Fine polystyrene microplastics render immune responses more vulnerable to two veterinary antibiotics in a bivalve species.Mar. Pollut. Bull.202116411199510.1016/j.marpolbul.2021.111995 33493858
    [Google Scholar]
  33. MahmoodA.R. Al-HaideriH.H. HassanF.M. Detection of antibiotics in drinking water treatment plants in Baghdad City, Iraq.Advances. Public Health201920197851354
    [Google Scholar]
  34. GuoX. XiaojunL. ZhangA. YanZ. ChenS. WangN. Antibiotic contamination in a typical water-rich city in southeast China: a concern for drinking water resource safety.J. Environ. Sci. Health B202055319320910.1080/03601234.2019.1679563 31658861
    [Google Scholar]
  35. ÖstmanM. LindbergR.H. FickJ. BjörnE. TysklindM. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater.Water Res.201711531832810.1016/j.watres.2017.03.011 28288311
    [Google Scholar]
  36. LarssonD.G.J. de PedroC. PaxeusN. Effluent from drug manufactures contains extremely high levels of pharmaceuticals.J. Hazard. Mater.2007148375175510.1016/j.jhazmat.2007.07.008 17706342
    [Google Scholar]
  37. AgunbiadeF.O. MoodleyB. Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa.Environ. Toxicol. Chem.2016351364610.1002/etc.3144 26138880
    [Google Scholar]
  38. KleinE.Y. Van BoeckelT.P. MartinezE.M. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015.Proc. Natl. Acad. Sci. USA201811515E3463E347010.1073/pnas.1717295115 29581252
    [Google Scholar]
  39. BhagatC. KumarM. TyagiV.K. MohapatraP.K. Proclivities for prevalence and treatment of antibiotics in the ambient water: A review.NPJ Clean Water202031118
    [Google Scholar]
  40. IyaneeF. SimamuraK. PrabhasankarV. TaniyasuS. TsurutaM. BalakrishnaK. Occurrence of antibiotics in river water: A case study of Vrishabhavathi River near Bangalore, India. 33rd International Symposium on Halogenated Persistent Organic Pollutants. DIOXIN; Daegu, South Korea2013
    [Google Scholar]
  41. SharmaB.M. BečanováJ. ScheringerM. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, person-al care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India.Sci. Total Environ.20196461459146710.1016/j.scitotenv.2018.07.235 30235631
    [Google Scholar]
  42. GothwalR. ThatikondaS. Role of environmental pollution in prevalence of antibiotic resistant bacteria in aquatic environment of river: case of Musi river, South India.Water Environ. J.201731445646210.1111/wej.12263
    [Google Scholar]
  43. UnderwoodJ.C. HarveyR.W. MetgeD.W. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment.Environ. Sci. Technol.20114573096310110.1021/es103605e 21384910
    [Google Scholar]
  44. ChenY.Y. MaY.L. YangJ. WangL.Q. LvJ.M. RenC.J. Aqueous tetracycline degradation by H2O2 alone: Removal and transformation pathway.Chem. Eng. J.2017307152310.1016/j.cej.2016.08.046
    [Google Scholar]
  45. SalamandaneA. Vila-BoaF. Malfeito-FerreiraM. BritoL. High fecal contamination and high levels of antibiotic-resistant Enterobacteri-aceae in water consumed in the city of Maputo, Mozambique.Biology.202110655810.3390/biology10060558 34203039
    [Google Scholar]
  46. KaurS. SharmaB. Microbial evaluation of bottled water marketed in North India.Indian J. Public Health201559429930110.4103/0019‑557X.169660 26584170
    [Google Scholar]
  47. EpunduU.U. AdinmaE.D. EzeamaN.N. UzochukwuB.S. EpunduO.C. OgbonnaB.O. Assessment of the physical, chemical and microbio-logical quality of packaged water sold in Nnewi, South-East Nigeria: A population health risk assessment and preventive care study.Int. J. Community Med. Public Health20174114003401010.18203/2394‑6040.ijcmph20174809
    [Google Scholar]
  48. AbrokwahS. EkumahB. AbrokwahF.K. Microbial assessment of plastic bottles reused for packaging food products in Ghana.Food Control202010910695610.1016/j.foodcont.2019.106956
    [Google Scholar]
  49. SeguraP.A. TakadaH. CorreaJ.A. Global occurrence of anti-infectives in contaminated surface waters: Impact of income inequality between countries.Environ. Int.201580899710.1016/j.envint.2015.04.001 25910860
    [Google Scholar]
  50. RussoV. HmoudahM. BroccoliF. IesceM.R. JungO.S. Di SerioM. Applications of metal organic frameworks in wastewater treatment: A review on adsorption and photodegradation.Front Chem Eng2020258148710.3389/fceng.2020.581487
    [Google Scholar]
  51. HussainM.Z. YangZ. HuangZ. JiaQ. ZhuY. XiaY. Recent advances in metal–organic frameworks derived nanocomposites for photo-catalytic applications in energy and environment.Adv. Sci.2021814210062510.1002/advs.202100625 34032017
    [Google Scholar]
  52. VédrineJ.C. Importance, features and uses of metal oxide catalysts in heterogeneous catalysis.Chin. J. Catal.201940111627163610.1016/S1872‑2067(18)63162‑6
    [Google Scholar]
  53. HaberJ. The Concept of Structure-Sensitivity in Catalysis by Oxides Studies in Surface Science and Catalysis 48.AmsterdamElsevier1989447467
    [Google Scholar]
  54. KansalS.K. KunduP. SoodS. LambaR. UmarA. MehtaS.K. Photocatalytic degradation of the antibiotic levofloxacin using highly crys-talline TiO2 nanoparticles.New J. Chem.20143873220322610.1039/C3NJ01619F
    [Google Scholar]
  55. AyoubM. Degradation of tetracycline using nanoparticles of zero-valent iron and copper.Water Pract Technol202217124625310.2166/wpt.2021.100
    [Google Scholar]
  56. MalakootianM. NasiriA. Amiri GharaghaniM. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate.Chem. Eng. Commun.20202071567210.1080/00986445.2019.1573168
    [Google Scholar]
  57. ChenF. YangQ. SunJ. Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradi-ation: Mineralization efficiency and mechanism.ACS Appl. Mater. Interfaces2016848328873290010.1021/acsami.6b12278 27934136
    [Google Scholar]
  58. WenX.J. NiuC.G. ZhangL. LiangC. GuoH. ZengG.M. Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight.J. Catal.201835814115410.1016/j.jcat.2017.11.029
    [Google Scholar]
  59. TangJ. WangR. LiuM. Construction of novel Z-scheme Ag/FeTiO3/Ag/BiFeO3 photocatalyst with enhanced visible-light-driven photocatalytic performance for degradation of norfloxacin.Chem. Eng. J.20183511056106610.1016/j.cej.2018.06.171
    [Google Scholar]
  60. YuX. ZhangJ. ZhangJ. Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation path-ways and intermediates.Chem. Eng. J.201937431632710.1016/j.cej.2019.05.177
    [Google Scholar]
  61. YazdanbakhshA. EslamiA. MassoudinejadM. AvazpourM. Enhanced degradation of sulfamethoxazole antibiotic from aqueous solu-tion using Mn-WO3/LED photocatalytic process: Kinetic, mechanism, degradation pathway and toxicity reduction.Chem. Eng. J.202038012249710.1016/j.cej.2019.122497
    [Google Scholar]
  62. NguyenT.T. NamS.N. SonJ. OhJ. Tungsten trioxide (WO3)-assisted photocatalytic degradation of amoxicillin by simulated solar irradia-tion.Sci. Rep.201991934910.1038/s41598‑019‑45644‑8 30626917
    [Google Scholar]
  63. RongF. LuQ. MaiH. ChenD. CarusoR.A. Hierarchically porous WO3/CdWO4 fiber-in-tube nanostructures featuring readily accessible active sites and enhanced photocatalytic effectiveness for antibiotic degradation in water.ACS Appl. Mater. Interfaces20211318211382114810.1021/acsami.0c22825 33908249
    [Google Scholar]
  64. OlusegunS.J. LarreaG. OsialM. JackowskaK. KrysinskiP. Photocatalytic degradation of antibiotics by superparamagnetic iron oxide nanoparticles.Tetracycl Case Catal20211110124310.3390/catal11101243
    [Google Scholar]
  65. GholamiP. KhataeeA. BhatnagarA. Photocatalytic degradation of antibiotic and hydrogen production using diatom-templated 3D WO3-x@mesoporous carbon nanohybrid under visible light irradiation.J. Clean. Prod.202027512415710.1016/j.jclepro.2020.124157
    [Google Scholar]
  66. ShurbajiS. HuongP.T. AltahtamouniT.M. Review on the visible light photocatalysis for the decomposition of ciprofloxacin, norfloxacin, tetracyclines, and sulfonamides antibiotics in wastewater.Catalysts202111443710.3390/catal11040437
    [Google Scholar]
  67. HuangZ.F. SongJ. PanL. Mesoporous W 18 O 49 hollow spheres as highly active photocatalysts.Chem. Commun.20145075109591096210.1039/C4CC02201G 24995560
    [Google Scholar]
  68. GasconJ. CormaA. KapteijnF. Llabrés i XamenaF.X. Metal organic framework catalysis: Quo vadis?ACS Catal.20144236137810.1021/cs400959k
    [Google Scholar]
  69. ChughtaiA.H. AhmadN. YounusH.A. LaypkovA. VerpoortF. Metal–organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations.Chem. Soc. Rev.201544196804684910.1039/C4CS00395K 25958955
    [Google Scholar]
  70. CuiY. LiB. HeH. ZhouW. ChenB. QianG. Metal–organic frameworks as platforms for functional materials.Acc. Chem. Res.201649348349310.1021/acs.accounts.5b00530 26878085
    [Google Scholar]
  71. FangZ. BuekenB. De VosD.E. FischerR.A. Defect‐engineered metal–organic frameworks.Angew. Chem. Int. Ed.201554257234725410.1002/anie.201411540 26036179
    [Google Scholar]
  72. Rubio-MartinezM. BattenM.P. PolyzosA. Versatile, high quality and scalable continuous flow production of metal-organic frame-works.Sci. Rep.201441544310.1038/srep05443 24962145
    [Google Scholar]
  73. ShollD.S. LivelyR.P. Defects in metal–organic frameworks: Challenge or opportunity?J. Phys. Chem. Lett.20156173437344410.1021/acs.jpclett.5b01135 26268796
    [Google Scholar]
  74. DhakshinamoorthyA. LiZ. GarciaH. Catalysis and photocatalysis by metal organic frameworks.Chem. Soc. Rev.201847228134817210.1039/C8CS00256H 30003212
    [Google Scholar]
  75. XiangW. ZhangY. LinH. LiuC. Nanoparticle/metal–organic framework composites for catalytic applications: Current status and per-spective.Molecules20172212210310.3390/molecules22122103 29189744
    [Google Scholar]
  76. RaileyP. SongY. LiuT. LiY. Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage.Mater. Res. Bull.20179638539410.1016/j.materresbull.2017.04.020
    [Google Scholar]
  77. FarhaO.K. EryaziciI. JeongN.C. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?J. Am. Chem. Soc.201213436150161502110.1021/ja3055639 22906112
    [Google Scholar]
  78. ChenL. LuqueR. LiY. Controllable design of tunable nanostructures inside metal–organic frameworks.Chem. Soc. Rev.201746154614463010.1039/C6CS00537C 28516998
    [Google Scholar]
  79. ChenC.X. ZhengS.P. WeiZ.W. A robust metal–organic framework combining open metal sites and polar groups for methane purifi-cation and CO2/fluorocarbon capture.Chemistry201723174060406410.1002/chem.201606038 28177165
    [Google Scholar]
  80. FuocoA. KhdhayyerM. AttfieldM. EspositoE. JansenJ. BuddP. Synthesis and transport properties of novel MOF/PIM-1/MOF sand-wich membranes for gas separation.Membranes201771710.3390/membranes7010007 28208658
    [Google Scholar]
  81. SharanyakanthP.S. RadhakrishnanM. Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review.Trends Food Sci. Technol.202010410211610.1016/j.tifs.2020.08.004
    [Google Scholar]
  82. StockN. BiswasS. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites.Chem. Rev.2012112293396910.1021/cr200304e 22098087
    [Google Scholar]
  83. KhanM.S. ShahidM. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites Electrochemical Applications of Metal-Organic Frameworks.AmsterdamElsevier20221735
    [Google Scholar]
  84. DaiJ. XiaoX. DuanS. Synthesis of novel microporous nanocomposites of ZIF-8 on multiwalled carbon nanotubes for adsorptive removing benzoic acid from water.Chem. Eng. J.2018331647410.1016/j.cej.2017.08.090
    [Google Scholar]
  85. LiuJ. ZhuangY. WangL. ZhouT. HirosakiN. XieR.J. Achieving multicolor long-lived luminescence in dye-encapsulated metal–organic frameworks and its application to anticounterfeiting stamps.ACS Appl. Mater. Interfaces20181021802180910.1021/acsami.7b13486 29261282
    [Google Scholar]
  86. LiuJ. LiuT. WangC. YinX. XiongZ. Introduction of amidoxime groups into metal-organic frameworks to synthesize MIL-53(Al)-AO for enhanced U(VI) sorption.J. Mol. Liq.201724253153610.1016/j.molliq.2017.07.024
    [Google Scholar]
  87. AnumahA. LouisH. ZafarS-u. HamzatA.T. AmusanO.O. PigwehA.I. Metal-organic frameworks (MOFs): Recent advances in syn-thetic methodologies and some applications.Chem Methodol201933283305
    [Google Scholar]
  88. WanS. XuO. ZhuX. Synthesis of ionic liquid modified metal-organic framework composites and its application in solid-phase extrac-tion: A review.Ionics202127244545610.1007/s11581‑020‑03894‑x
    [Google Scholar]
  89. MaoW. HuangR. XuH. Effects of acid modulators on the microwave-assisted synthesis of Cr/Sn metal-organic frameworks.Polymers.20221418382610.3390/polym14183826 36145971
    [Google Scholar]
  90. VarshaM. NageswaranG. Direct electrochemical synthesis of metal organic frameworks.J. Electrochem. Soc.20201671515552710.1149/1945‑7111/abc6c6
    [Google Scholar]
  91. AsgharA. IqbalN. NoorT. KariukiB.M. KidwellL. EasunT.L. Efficient electrochemical synthesis of a manganese-based metal–organic framework for H2 and CO2 uptake.Green Chem.20212331220122710.1039/D0GC03292A
    [Google Scholar]
  92. PachfuleP. YangX. ZhuQ.L. TsumoriN. UchidaT. XuQ. From Ru nanoparticle-encapsulated metal–organic frameworks to highly cata-lytically active Cu/Ru nanoparticle-embedded porous carbon.J. Mater. Chem. A Mater. Energy Sustain.20175104835484110.1039/C6TA10748F
    [Google Scholar]
  93. HermesS. SchröderF. AmirjalayerS. SchmidR. FischerR.A. Loading of porous metal–organic open frameworks with organometallic CVD precursors: Inclusion compounds of the type] [L n M] a @MOF-5.J. Mater. Chem.200616252464247210.1039/B603664C
    [Google Scholar]
  94. MoonH.R. LimD.W. SuhM.P. Fabrication of metal nanoparticles in metal–organic frameworks.Chem. Soc. Rev.20134241807182410.1039/C2CS35320B 23192676
    [Google Scholar]
  95. HuP. MorabitoJ.V. TsungC.K. Core–shell catalysts of metal nanoparticle core and metal–organic framework shell.ACS Catal.20144124409441910.1021/cs5012662
    [Google Scholar]
  96. SchröderF. EskenD. CokojaM. Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: A solid-state reference system for surfactant-stabilized ruthenium colloids.J. Am. Chem. Soc.2008130196119613010.1021/ja078231u 18402452
    [Google Scholar]
  97. HoukR.J.T. JacobsB.W. GabalyF.E. Silver cluster formation, dynamics, and chemistry in metal-organic frameworks.Nano Lett.20099103413341810.1021/nl901397k 19757817
    [Google Scholar]
  98. SadakiyoM. YoshimaruS. KasaiH. KatoK. TakataM. YamauchiM. A new approach for the facile preparation of metal–organic framework composites directly contacting with metal nanoparticles through arc plasma deposition.Chem. Commun.201652548385838810.1039/C6CC02729F 27298045
    [Google Scholar]
  99. YuY. MaiJ. WangL. LiX. JiangZ. WangF. Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in NaY zeolite for CO2 capture.Sci. Rep.201441599710.1038/srep05997 25104324
    [Google Scholar]
  100. CohenS.M. Postsynthetic methods for the functionalization of metal-organic frameworks.Chem. Rev.20121122970100010.1021/cr200179u 21916418
    [Google Scholar]
  101. MuldoonP.F. ColletG. EliseevaS.V. LuoT.Y. PetoudS. RosiN.L. Ship-in-a-bottle preparation of long wavelength molecular antennae in lanthanide metal–organic frameworks for biological imaging.J. Am. Chem. Soc.2020142198776878110.1021/jacs.0c01426 32311264
    [Google Scholar]
  102. AijazA. KarkamkarA. ChoiY.J. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic frame-work: A double solvents approach.J. Am. Chem. Soc.201213434139261392910.1021/ja3043905 22888976
    [Google Scholar]
  103. YangQ. XuQ. JiangH.L. Metal–organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis.Chem. Soc. Rev.201746154774480810.1039/C6CS00724D 28621344
    [Google Scholar]
  104. ArulP. JohnS.A. Size controlled synthesis of Ni-MOF using polyvinylpyrrolidone: New electrode material for the trace level determina-tion of nitrobenzene.J. Electroanal. Chem.201882916817610.1016/j.jelechem.2018.10.014
    [Google Scholar]
  105. QinG. CaoD. WanX. WangX. KongY. Polyvinylpyrrolidone-assisted synthesis of highly water-stable cadmium-based metal–organic framework nanosheets for the detection of metronidazole.RSC Advances20211155348423484810.1039/D1RA05349C 35494769
    [Google Scholar]
  106. ZhaoY. KornienkoN. LiuZ. Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nano-crystals.J. Am. Chem. Soc.201513762199220210.1021/ja512951e 25622094
    [Google Scholar]
  107. LuG. LiS. GuoZ. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation.Nat. Chem.20124431031610.1038/nchem.1272 22437717
    [Google Scholar]
  108. ChenL. XuQ. Metal-organic framework composites for catalysis.Matter201911578910.1016/j.matt.2019.05.018
    [Google Scholar]
  109. KuoC.H. TangY. ChouL.Y. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control.J. Am. Chem. Soc.201213435143451434810.1021/ja306869j 22901021
    [Google Scholar]
  110. LiuH. ChangL. BaiC. ChenL. LuqueR. LiY. Controllable encapsulation of “clean” metal clusters within MOFs through kinetic modu-lation: towards advanced heterogeneous nanocatalysts.Angew. Chem. Int. Ed.201655165019502310.1002/anie.201511009 26970412
    [Google Scholar]
  111. LiX. WuZ. TaoX. LiR. TianD. LiuX. Gentle one-step co-precipitation to synthesize bimetallic CoCu-MOF immobilized laccase for boosting enzyme stability and Congo red removal.J. Hazard. Mater.202243812952510.1016/j.jhazmat.2022.129525 35816800
    [Google Scholar]
  112. CaoJ. YangZ. XiongW. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis.Chem. Eng. J.201835312613710.1016/j.cej.2018.07.060
    [Google Scholar]
  113. ParkK.S. NiZ. CôtéA.P. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks.Proc. Natl. Acad. Sci. USA200610327101861019110.1073/pnas.0602439103 16798880
    [Google Scholar]
  114. OrrK.W.P. CollinsS.M. ReynoldsE.M. Single-step synthesis and interface tuning of core–shell metal–organic framework nanoparti-cles.Chem. Sci.202112124494450210.1039/D0SC03940C 34163714
    [Google Scholar]
  115. LaiC. ZhangM. LiB. Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight.Chem. Eng. J.201935889190210.1016/j.cej.2018.10.072
    [Google Scholar]
  116. LiuL. CuiW. LuC. Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups depend-ence of adsorption performance and mechanisms.J. Environ. Manage.202026811063010.1016/j.jenvman.2020.110630 32510425
    [Google Scholar]
  117. LiuN. ShangQ. GaoK. ChengQ. PanZ. Construction of ZnO/ZIF-9 heterojunction photocatalyst: Enhanced photocatalytic performance and mechanistic insight.New J. Chem.202044166384639310.1039/D0NJ00510J
    [Google Scholar]
  118. YuanR. QiuJ. YueC. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification.Chem. Eng. J.202040112602010.1016/j.cej.2020.126020
    [Google Scholar]
  119. LiX. ZengZ. ZengG. A “bottle-around-ship” like method synthesized yolk-shell Ag3PO4@MIL-53(Fe) Z-scheme photocatalysts for enhanced tetracycline removal.J. Colloid Interface Sci.202056150151110.1016/j.jcis.2019.11.025 31735413
    [Google Scholar]
  120. AbazariR. MorsaliA. DubalD.P. An advanced composite with ultrafast photocatalytic performance for the degradation of antibiotics by natural sunlight without oxidizing the source over TMU-5@Ni–Ti LDH: mechanistic insight and toxicity assessment.Inorg. Chem. Front.20207122287230410.1039/D0QI00050G
    [Google Scholar]
  121. AskariN. BeheshtiM. MowlaD. FarhadianM. Fabrication of CuWO4/Bi2S3/ZIF67 MOF: A novel double Z-scheme ternary heterostruc-ture for boosting visible-light photodegradation of antibiotics.Chemosphere202025112645310.1016/j.chemosphere.2020.126453 32443224
    [Google Scholar]
  122. HeX. NguyenV. JiangZ. WangD. ZhuZ. WangW.N. Highly-oriented one-dimensional MOF-semiconductor nanoarrays for efficient photodegradation of antibiotics.Catal. Sci. Technol.2018882117212310.1039/C8CY00229K
    [Google Scholar]
  123. YanD. HuH. GaoN. YeJ. OuH. Fabrication of carbon nanotube functionalized MIL-101(Fe) for enhanced visible-light photocatalysis of ciprofloxacin in aqueous solution.Appl. Surf. Sci.201949814383610.1016/j.apsusc.2019.143836
    [Google Scholar]
  124. RaclesC. ZaltariovM.F. SilionM. MacsimA.M. CozanV. Photo-oxidative degradation of doxorubicin with siloxane MOFs by exposure to daylight.Environ. Sci. Pollut. Res. Int.20192619196841969610.1007/s11356‑019‑05288‑7 31081534
    [Google Scholar]
  125. HeL. DongY. ZhengY. JiaQ. ShanS. ZhangY. A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light.J. Hazard. Mater.2019361859410.1016/j.jhazmat.2018.08.079 30176419
    [Google Scholar]
  126. LiS. CuiJ. WuX. ZhangX. HuQ. HouX. Rapid in situ microwave synthesis of Fe3O4@MIL-100(Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation.J. Hazard. Mater.201937340841610.1016/j.jhazmat.2019.03.102 30933863
    [Google Scholar]
  127. CaoH.L. CaiF.Y. YuK. ZhangY.Q. LüJ. CaoR. Photocatalytic degradation of tetracycline antibiotics over CdS/nitrogen-doped–carbon composites derived from in situ carbonization of metal–organic frameworks.ACS Sustain. Chem.& Eng.2019712108471085410.1021/acssuschemeng.9b01685
    [Google Scholar]
  128. LiR. LiW. JinC. HeQ. WangY. Fabrication of ZIF-8@TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation.J. Alloys Compd.202082515400810.1016/j.jallcom.2020.154008
    [Google Scholar]
  129. HeL. ZhangY. ZhengY. JiaQ. ShanS. DongY. Degradation of tetracycline by a novel MIL-101(Fe)/TiO2 composite with persulfate.J. Porous Mater.20192661839185010.1007/s10934‑019‑00778‑y
    [Google Scholar]
  130. WangC. XueY. WangP. AoY. Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation.J. Alloys Compd.201874831432210.1016/j.jallcom.2018.03.129
    [Google Scholar]
  131. DengL. YinD. KhaingK.K. The facile boosting sunlight-driven photocatalytic performance of a metal–organic-framework through coupling with Ag2S nanoparticles.New J. Chem.20204429125681257810.1039/D0NJ02030C
    [Google Scholar]
  132. GaoY. WuJ. WangJ. FanY. ZhangS. DaiW. A novel multifunctional p-type semiconductor@ MOFs nanoporous platform for simulta-neous sensing and photodegradation of tetracycline.ACS Appl. Mater. Interfaces2020129110361104410.1021/acsami.9b23314 32048511
    [Google Scholar]
  133. LvS.W. LiuJ.M. LiC.Y. ZhaoN. WangZ.H. WangS. In situ growth of benzothiadiazole functionalized UiO-66-NH2 on carboxyl modified g-C3N4 for enhanced photocatalytic degradation of sulfamethoxazole under visible light.Catal. Sci. Technol.202010144703471110.1039/D0CY01019G
    [Google Scholar]
  134. ChenW.Q. LiL.Y. LiL. MoS2/ZIF-8 hybrid materials for environmental catalysis: Solar-driven antibiotic-degradation engineering.Engineering20195475576710.1016/j.eng.2019.02.003
    [Google Scholar]
  135. Jahurul IslamM. KimH.K. Amaranatha ReddyD. Hierarchical BiOI nanostructures supported on a metal organic framework as efficient photocatalysts for degradation of organic pollutants in water.Dalton Trans.201746186013602310.1039/C7DT00459A 28426035
    [Google Scholar]
  136. SubudhiS. ParamanikL. SultanaS. MansinghS. MohapatraP. ParidaK. A type-II interband alignment heterojunction architecture of cobalt titanate integrated UiO-66-NH2: A visible light mediated photocatalytic approach directed towards Norfloxacin degradation and green energy (Hydrogen) evolution.J. Colloid Interface Sci.20205688910510.1016/j.jcis.2020.02.043 32088455
    [Google Scholar]
  137. HeY. DongW. LiX. Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation.J. Colloid Interface Sci.202057436437610.1016/j.jcis.2020.04.075 32339819
    [Google Scholar]
  138. WangH. YuanX. WuY. In situ synthesis of In2S3@MIL-125(Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis.Appl. Catal. B2016186192910.1016/j.apcatb.2015.12.041
    [Google Scholar]
  139. ZhangS. WangY. CaoZ. Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/CdS/rGO composites to-ward ofloxacin photo-degradation.Chem. Eng. J.202038112277110.1016/j.cej.2019.122771
    [Google Scholar]
  140. DuC. ZhangZ. YuG. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis.Chemosphere202127212950110.1016/j.chemosphere.2020.129501 33486457
    [Google Scholar]
  141. AbazariR. MahjoubA.R. Amine-functionalized Al-MOF#@ yx Sm2O3–ZnO: a visible light-driven nanocomposite with excellent photo-catalytic activity for the photo-degradation of amoxicillin.Inorg. Chem.20185752529254510.1021/acs.inorgchem.7b02880 29446935
    [Google Scholar]
  142. ZhangY. ZhouJ. ChenX. WangL. CaiW. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient deg-radation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway.Chem. Eng. J.201936974575710.1016/j.cej.2019.03.108
    [Google Scholar]
  143. YangZ. TongX. FengJ. Flower-like BiOBr/UiO-66-NH2 nanosphere with improved photocatalytic property for norfloxacin re-moval.Chemosphere20192209810610.1016/j.chemosphere.2018.12.086 30579953
    [Google Scholar]
  144. WangD. JiaF. WangH. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs.J. Colloid Interface Sci.201851927328410.1016/j.jcis.2018.02.067 29505989
    [Google Scholar]
/content/journals/cnm/10.2174/2405461508666230329100850
Loading
/content/journals/cnm/10.2174/2405461508666230329100850
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test