Skip to content
2000
Volume 10, Issue 1
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Background

There are various synthetic routes to synthesize the ZnO particle. However, none of the routes is best suited for the synthesis of ZnO nanoparticles. Moreover, ZnO nanoparticles have potential industrial applications.

Aims

In this research article, ZnO nanoparticles were synthesized by auto combustion route using the low-cost reagents zinc nitrate hexahydrate and citric acid as a precursor at 90-120°C.

Objective

Herein, we have synthesized ZnO nanoparticles auto combustion route using the low-cost reagents zinc nitrate hexahydrate and citric acid. The current route is very simple as well as energy-saving with the requirement of using low-cost precursor as compared to the traditional solid-state method and multi-step sol-gel route.

Methods

Citric-assisted auto-combustion synthesis was employed to fabricate the ZnO nanoparticles.

Results

The formed precursor powder was calcinated at 500°C for 5 hours in an electrical furnace. It was found that these particles were in a single phase, and the crystallite size of the nanoparticles was found to be in the range of 10 to 15 nm.

Conclusion

We synthesized ZnO nanoparticles at a lower temperature the citric acid-assisted combustion method. The thermal properties of ZnO nanoparticles were studied by TGA spectra, representing the total weight loss of around 47.71% and their thermal stability after 900°C.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615255537230920051037
2023-11-06
2025-01-15
Loading full text...

Full text loading...

References

  1. Medina CruzD. MostafaviE. Vernet-CruaA. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review.JPhys Mater.20203303400510.1088/2515‑7639/ab8186
    [Google Scholar]
  2. ElumalaiK. VelmuruganS. RaviS. KathiravanV. Adaikala RajG. Bio-approach: Plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity.Adv. Powder Technol.20152661639165110.1016/j.apt.2015.09.008
    [Google Scholar]
  3. SahooS. KarS. GangulyA. MaitiM. BhowmickA.K. Synthetic zinc oxide nanoparticles as curing agent for polychloroprene.Polym. Polymer Compos.200816319319810.1177/096739110801600304
    [Google Scholar]
  4. TripathiN. RathS. Facile synthesis of ZnO nanostructures and investigation of structural and optical properties.Mater. Charact.20138626326910.1016/j.matchar.2013.10.008
    [Google Scholar]
  5. RoyB. ChakrabartyS. MondalO. PalM. DuttaA. Effect of neodymium doping on structure, electrical and optical properties of nanocrystalline ZnO.Mater. Charact.2012701710.1016/j.matchar.2012.04.015
    [Google Scholar]
  6. GoswamiS.K. LeeB.W. OhE. IslamM.S. Effect of precursors on optical and structural properties of ZnO nanorods synthesized by sonochemical method.J. Korean Phys. Soc.20115932313231710.3938/jkps.59.2313
    [Google Scholar]
  7. YangL.L. ZhaoQ.X. WillanderM. YangJ.H. IvanovI. Annealing effects on optical properties of low temperature grown ZnO nanorod arrays.J. Appl. Phys.2009105505350310.1063/1.3073993
    [Google Scholar]
  8. GarciaM.A. MerinoJ.M. Fernández PinelE. Magnetic properties of ZnO nanoparticles.Nano Lett.2007761489149410.1021/nl070198m17521211
    [Google Scholar]
  9. RajalakshmiM. AroraA.K. BendreB.S. MahamuniS. Optical phonon confinement in zinc oxide nanoparticles.J. Appl. Phys.20008752445244810.1063/1.372199
    [Google Scholar]
  10. Mohd YusofH. MohamadR. ZaidanU.H. Abdul RahmanN.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review.J. Anim. Sci. Biotechnol.20191015710.1186/s40104‑019‑0368‑z31321032
    [Google Scholar]
  11. GetieA.M. BelayA. ReddyA.R.C. BelayZ. Synthesis and characterization of zinc oxide nanoparticles for antibacterial applications.J. Nanomed. Nanotechnol.20178921572524
    [Google Scholar]
  12. Happy Agarwal , Soumya Menon , Venkat Kumar S Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route.Chem. Biol. Interact.2018286607010.1016/j.cbi.2018.03.00829551637
    [Google Scholar]
  13. SahayP.P. TewariS. NathR.K. JhaS. ShamsuddinM. Studies on ac response of zinc oxide pellets.J. Mater. Sci.200843134534454010.1007/s10853‑008‑2642‑x
    [Google Scholar]
  14. LookD.C. Recent advances in ZnO materials and devices.Mater. Sci. Eng. B2001801-338338710.1016/S0921‑5107(00)00604‑8
    [Google Scholar]
  15. KareemM.A. BelloI.T. ShittuH.A. SivaprakashP. AdedokunO. ArumugamS. Synthesis, characterization, and photocatalytic application of silver doped zinc oxide nanoparticles.Cleaner Mater2022310004110.1016/j.clema.2022.100041
    [Google Scholar]
  16. JiangS. LinK. CaiM. ZnO nanomaterials: Current advancements in antibacterial mechanisms and applications.Front Chem.2020858010.3389/fchem.2020.0058032793554
    [Google Scholar]
  17. TripathyN. KimD.H. Metal oxide modified ZnO nanomaterials for biosensor applications.Nano Converg.2018512710.1186/s40580‑018‑0159‑930467757
    [Google Scholar]
  18. ChangS.P. ChangS.J. LuC.Y. A ZnO nanowire-based humidity sensor.Superlattices Microstruct.201047677277810.1016/j.spmi.2010.03.006
    [Google Scholar]
  19. DashK.K. DekaP. BangarS.P. ChaudharyV. TrifM. RusuA. Applications of inorganic nanoparticles in food packaging: A comprehensive review.Polymers 202214352110.3390/polym1403052135160510
    [Google Scholar]
  20. RahaS. AhmaruzzamanM. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives.Nanoscale Adv.2022481868192510.1039/D1NA00880C36133407
    [Google Scholar]
  21. SaadiH. BenzartiZ. RhoumaF.I.H. Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications.J. Mater. Sci. Mater. Electron.20213221536155610.1007/s10854‑020‑04923‑1
    [Google Scholar]
  22. PatiR. MehtaR.K. MohantyS. Topical application of zinc oxide nanoparticles reduces bacterial skin 2 infection in mice and exhibits antibacterial activity by inducing oxidative 3 stress response and cell membrane disintegration in macrophage.Nanomedicine 20141061195120810.1016/j.nano.2014.02.012
    [Google Scholar]
  23. ZhangW. Morphology and optical property of zno nanostructures grown by solvothermal method: effect of the solution pretreatment.J. Nanomater.201320131410.1155/2013/381682
    [Google Scholar]
  24. WangZ.L. Zinc oxide nanostructures: Growth, properties and applications.J. Phys. Condens. Matter20041625R829R85810.1088/0953‑8984/16/25/R01
    [Google Scholar]
  25. CombeN. ChassaingP.M. DemangeotF. Surface effects in zinc oxidenanoparticles.Phys. Rev. B 20097904540810.1103/PhysRevB.79.045408
    [Google Scholar]
  26. AshkarranA.A. ZnO nanoparticles prepared by electrical arc discharge method in water.Mater. Chem. Phys.200911816810.1016/j.matchemphys.2009.07.002
    [Google Scholar]
  27. LuJ. NgK.M. YangS. Fengone step, paste- state mechanochemical process for the synthesis of zinc oxide nanoparticles. U.S Patent 20100034730, 2010
    [Google Scholar]
  28. LuJ. NgK.M. YangS. Efficient, one-step mechanochemical process for the synthesis of ZnO nanoparticles.Ind. Eng. Chem. Res.20084741095110110.1021/ie071034j
    [Google Scholar]
  29. KakiuchiK. HosonoE. KimuraT. ImaiH. FujiharaS. Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions.J. Sol-Gel Sci. Technol.2006391637210.1007/s10971‑006‑6321‑6
    [Google Scholar]
  30. YuW. PanC. Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism.Mater. Chem. Phys.20091151747910.1016/j.matchemphys.2008.11.022
    [Google Scholar]
  31. KlingshirnC. ZnO: Material, physics and applications.ChemPhysChem20078678280310.1002/cphc.20070000217429819
    [Google Scholar]
  32. KlingshirnC. ZnO: From basics towards applications.Phys. Stat Sol200724493027307310.1002/pssb.200743072
    [Google Scholar]
  33. TangE. ChengG. PangX. MaX. XingF. Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property.Colloid Polym. Sci.2006284442242810.1007/s00396‑005‑1389‑z
    [Google Scholar]
  34. WinstonA.E. DomkeT.W. JosephA.L. Dentifrices containingzinc oxideParticles. U.S Patent 5330748,1994
    [Google Scholar]
  35. DjurišićA.B. ChenX. LeungY.H. Man Ching NgA. ZnO nanostructures: Growth, properties and applications.J. Mater. Chem.20122214652610.1039/c2jm15548f
    [Google Scholar]
  36. WuZ.Y. CaiJ.H. NiG. ZnO films fabricated by chemical bath deposition from zinc nitrate and ammonium citrate tribasic solution.Thin Solid Films2008516217318732210.1016/j.tsf.2008.01.014
    [Google Scholar]
  37. HwangC. WuT. Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method.Mater. Sci. Eng. B20041112-319720610.1016/S0921‑5107(04)00203‑X
    [Google Scholar]
  38. HwangC.C. WuT.Y. Combustion synthesis of nanocrystalline ZnO powders using zinc nitrate and glycine as reactants-influence of reactant composition.J. Mater. Sci.200439196111611510.1023/B:JMSC.0000041713.37366.c2
    [Google Scholar]
  39. MeulenkampE.A. Synthesis and growth of ZnO nanoparticles.J. Phys. Chem. B1998102295566557210.1021/jp980730h
    [Google Scholar]
  40. LimS.C. OhJ.Y. KooJ.B. Electrical properties of solution-deposited ZnO thin-film transistors by low-temperature annealing.J. Nanosci. Nanotechnol.201414118665867010.1166/jnn.2014.1000225958581
    [Google Scholar]
  41. ThilagavathiT. GeethaD. Low-temperature hydrothermal synthesis and characterization of ZnO nanoparticles.Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci.201387874775010.1007/s12648‑013‑0290‑8
    [Google Scholar]
  42. PeartonS.J. NortonD.P. IpK. HeoY.W. SteinerT. RETRACTED: Recent progress in processing and properties of ZnO.Prog. Mater. Sci.200550329334010.1016/j.pmatsci.2004.04.001
    [Google Scholar]
  43. MllerJ. WeienriederS.W. ZnO-thin film chemical sensors.Fresenius J. Anal. Chem.1994349538038410.1007/BF00326603
    [Google Scholar]
  44. AshfoldM.N.R. DohertyR.P. Ndifor-AngwaforN.G. RileyD.J. SunY. The kinetics of the hydrothermal growth of ZnO nanostructures.Thin Solid Films2007515248679868310.1016/j.tsf.2007.03.122
    [Google Scholar]
  45. MuhammadW. UllahN. HaroonM. AbbasiB.H. Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L.RSC Advances2019951295412954810.1039/C9RA04424H35531532
    [Google Scholar]
  46. ChauhanJ. ShrivastavN. DugayaA. Synthesis and characterization of Ni and CuDopedZnO.MOJ Poly Sci2017112634
    [Google Scholar]
  47. KlinkM.J. LalooN. Leudjo TakaA. PakadeV.E. MonapathiM.E. ModiseJ.S. Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles against selected waterborne bacterial and yeast pathogens.Molecules20222711353210.3390/molecules2711353235684468
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615255537230920051037
Loading
/content/journals/cnm/10.2174/0124054615255537230920051037
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): auto-combustion synthesis; biosensor; photocatalytic; SEM; XRD; ZnO NPs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test