Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Background

Quinoa was cultivated in different parts of the world because of the water crisis. On the other view, proteins from plant sources have attracted significant interest. One of the sustainable protein sources is quinoa protein.

Objective

The aim of this study was to isolate quinoa protein and determine physicochemical properties for its use in the food industry.

Methods

Quinoa Protein Isolates (QPIs) were separated from Quinoa Seed (QS) varieties (Black-QS, Q12-QS, and Titicaca-QS). The particle size, FTIR, SEM, emulsion activity and stability, protein solubility, and gelation properties were assessed.

Results

The Q12-QPI had the highest average particle size, 945 μm. The Black-QPI and Titicaca (T)-QPI had a higher protein content (87.32 ± 1.93, 87.84 ± 1.62% w/w), respectively, and a more condensed structure. The surface morphology of Black-QPI and T-QPI showed regular flat and compact surfaces with some small aggregates. Black-QPI had the most negative zeta potential charge (-38.8 ± 0.03) and stability among the TQPIs. Emulsion capacity was equal among the samples, but emulsion stability was the greatest value (34.48 ± 8.1) in T-QPI. The protein solubility ratio was 70.72, 70.0, and 69.27% in Q12-QPI, T-QPI, and Black-QPI, respectively. The higher elastic performance of Q12-QPI and T-QPI than Black-QPI was seen during the heating steps in the gelation stage.

Conclusion

The suitable nutritional and functional resources of protein make it an appropriate candidate to use as a safe food additive.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013300153240522065719
2024-03-30
2025-02-21
Loading full text...

Full text loading...

References

  1. TarahiM. AbdolalizadehL. HedayatiS. Mung bean protein isolate: Extraction, structure, physicochemical properties, modifications, and food applications.Food Chem.202444413862610.1016/j.foodchem.2024.13862638309079
    [Google Scholar]
  2. FösteM. ElgetiD. BrunnerA.K. JekleM. BeckerT. Isolation of quinoa protein by milling fractionation and solvent extraction.Food Bioprod. Process.201596202610.1016/j.fbp.2015.06.003
    [Google Scholar]
  3. ManuyakornW. TanpowpongP. Cow milk protein allergy and other common food allergies and intolerances.Paediatr. Int. Child Health2019391324010.1080/20469047.2018.149009930014782
    [Google Scholar]
  4. SekhavatizadehS.S. HosseinzadehS. MohebbiG. Nutritional, antioxidant properties and polyphenol content of quinoa (chenopodium quinoa willd) cultivated in Iran.Future Food J. Food Agric. Soc.202192112
    [Google Scholar]
  5. ShenY. TangX. LiY. Drying methods affect physicochemical and functional properties of quinoa protein isolate.Food Chem.202133912782310.1016/j.foodchem.2020.12782332829242
    [Google Scholar]
  6. DakhiliS. AbdolalizadehL. HosseiniS.M. Shojaee-AliabadiS. MirmoghtadaieL. Quinoa protein: Composition, structure and functional properties.Food Chem.201929912516110.1016/j.foodchem.2019.12516131323439
    [Google Scholar]
  7. SekhavatizadehS.S. KarimiA. HosseinzadehS. ShavikloA.R. AbediM. MahmoodianfardH. GhaedmohammadiM. Nutritional and sensory properties of low-fat milk dessert enriched with quinoa ( Chenopodium quinoa Willd) Titicaca protein isolate.Food Sci. Nutr.202311151652610.1002/fsn3.308236655108
    [Google Scholar]
  8. AbugochL.E. RomeroN. TapiaC.A. SilvaJ. RiveraM. Study of some physicochemical and functional properties of quinoa (chenopodium quinoa willd) protein isolates.J. Agric. Food Chem.200856124745475010.1021/jf703689u18489119
    [Google Scholar]
  9. MirandaM. Vega-GálvezA. LópezJ. ParadaG. SandersM. ArandaM. UribeE. Di ScalaK. Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.).Ind. Crops Prod.201032325826310.1016/j.indcrop.2010.04.019
    [Google Scholar]
  10. ElsohaimyS.A. RefaayT.M. ZaytounM.A.M. Physicochemical and functional properties of quinoa protein isolate.Ann. Agric. Sci.201560229730510.1016/j.aoas.2015.10.007
    [Google Scholar]
  11. GuptaA. SharmaS. Reddy SurasaniV.K. Quinoa protein isolate supplemented pasta: Nutritional, physical, textural and morphological characterization.Lebensm. Wiss. Technol.202113511004510.1016/j.lwt.2020.110045
    [Google Scholar]
  12. López-AlarcónC.A. Cerdán-LealM.A. BeristainC.I. Pascual-PinedaL.A. AzuaraE. Jiménez-FernándezM. The potential use of modified quinoa protein isolates in cupcakes: Physicochemical properties, structure and stability of cupcakes.Food Funct.20191074432443910.1039/C9FO00852G31287454
    [Google Scholar]
  13. Abugoch JamesL.E. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties.Adv. Food Nutr. Res.20095813110.1016/S1043‑4526(09)58001‑119878856
    [Google Scholar]
  14. LimanP.B. Mulyana Yenny DjuwitaR. Mulyana, Yenny, and Djuwita R. Liquid chromatography with tandem mass spectrometry analysis of carboxymethyl lysine in Indonesian foods.Molecules2024296130410.3390/molecules2906130438542940
    [Google Scholar]
  15. LiQ. WangZ. DaiC. WangY. ChenW. JuX. YuanJ. HeR. Physical stability and microstructure of rapeseed protein isolate/gum Arabic stabilized emulsions at alkaline pH.Food Hydrocoll.201988505710.1016/j.foodhyd.2018.09.020
    [Google Scholar]
  16. MoayyediM. EskandariM.H. RadA.H.E. ZiaeeE. KhodaparastM.H.H. GolmakaniM.T. Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469.J. Funct. Foods20184039139910.1016/j.jff.2017.11.016
    [Google Scholar]
  17. AiM. XiaoN. JiangA. Molecular structural modification of duck egg white protein conjugates with monosaccharides for improving emulsifying capacity.Food Hydrocoll.202111110627110.1016/j.foodhyd.2020.106271
    [Google Scholar]
  18. MorowvatM.H. GhasemiY. Rapid determination of lipid accumulation under sulfur starvation in Chlamydomonas reinhardtii microalga using fourier transform infrared (FTIR) spectroscopy.Int. J. Pharm. Clin. Res.2016813561360
    [Google Scholar]
  19. RahpeymaE. SekhavatizadehS.S. Effects of encapsulated green coffee extract and canola oil on liquid kashk quality.Foods and Raw Materials202081405110.21603/2308‑4057‑2020‑1‑40‑51
    [Google Scholar]
  20. KarimiM. SekhavatizadehS.S. HosseinzadehS. Milk dessert containing Lactobacillus reuteri (ATCC 23272) encapsulated with sodium alginate, Ferula assa-foetida and Zedo (Amygdalus scoparia) gum as three layers of wall materials.Food Bioprod. Process.202112724425410.1016/j.fbp.2021.03.003
    [Google Scholar]
  21. RavanfarR. TamaddonA.M. NiakousariM. MoeinM.R. Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket–Burman and Box–Behnken designs.Food Chem.201619957358010.1016/j.foodchem.2015.12.06126776010
    [Google Scholar]
  22. DasD. MirN.A. ChandlaN.K. SinghS. Combined effect of pH treatment and the extraction pH on the physicochemical, functional and rheological characteristics of amaranth (Amaranthus hypochondriacus) seed protein isolates.Food Chem.202135312946610.1016/j.foodchem.2021.12946633735770
    [Google Scholar]
  23. GanjeM. SekhavatizadehS.S. HejaziS.J. MehrpooyaR. Effect of encapsulation of Lactobacillus reuteri (ATCC 23272) in sodium alginate and tomato seed mucilage on properties of ketchup sauce.Carbohydrate Polymer Technologies and Applications2024710048610.1016/j.carpta.2024.100486
    [Google Scholar]
  24. KumaraB. JinapS. ManY.B.C. YusoffM.S.A. Note: Comparison of colour techniques to measure chocolate fat bloom.Food Sci. Technol. Int.20039429529910.1177/108201303036045
    [Google Scholar]
  25. SissonsM. CutilloS. MarcotuliI. GadaletaA. Impact of durum wheat protein content on spaghetti in vitro starch digestion and technological properties.J. Cereal Sci.20219810315610.1016/j.jcs.2020.103156
    [Google Scholar]
  26. NwekeF.N. Rate of water absorption and proximate analysis of different varieties of maize cultivated in ikwo local government area of ebonyi state, Nigeria.Afr. J. Biotechnol.201095289138917
    [Google Scholar]
  27. BenelhadjS. GharsallaouiA. DegraeveP. AttiaH. GhorbelD. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate.Food Chem.20161941056106310.1016/j.foodchem.2015.08.13326471653
    [Google Scholar]
  28. GhummanA. MudgalS. SinghN. RanjanB. KaurA. RanaJ.C. Physicochemical, functional and structural characteristics of grains, flour and protein isolates of Indian quinoa lines.Food Res. Int.202114010998210.1016/j.foodres.2020.10998233648217
    [Google Scholar]
  29. ZhangR. ChengL. LuoL. HemarY. YangZ. Formation and characterisation of high-internal-phase emulsions stabilised by high-pressure homogenised quinoa protein isolate.Colloids Surf. A Physicochem. Eng. Asp.202163112768810.1016/j.colsurfa.2021.127688
    [Google Scholar]
  30. MirN.A. RiarC.S. SinghS. Rheological, structural and thermal characteristics of protein isolates obtained from album (Chenopodium album) and quinoa (Chenopodium quinoa) seeds.Food Hydrocolloids for Health2021110001910.1016/j.fhfh.2021.100019
    [Google Scholar]
  31. GoormaghtighE. RuysschaertJ.M. RaussensV. Evaluation of the information content in infrared spectra for protein secondary structure determination.Biophys. J.20069082946295710.1529/biophysj.105.07201716428280
    [Google Scholar]
  32. FeyziS. VaridiM. ZareF. VaridiM.J. A comparison of chemical, structural and functional properties of fenugreek ( Trigonella foenum graecum) protein isolates produced using different defatting solvents.Int. J. Biol. Macromol.2017105Pt 1273510.1016/j.ijbiomac.2017.06.10128663151
    [Google Scholar]
  33. NasirM.A. PashaI. ButtM.S. NawazH. Biochemical characterization of quinoa with special reference to its protein quality.Pak. J. Agric. Sci.2015523731737
    [Google Scholar]
  34. AñónM.C. SorgentiniD.A. WagnerJ.R. Relationships between different hydration properties of commercial and laboratory soybean isolates.J. Agric. Food Chem.200149104852485810.1021/jf010384s11600034
    [Google Scholar]
  35. AlrosanM. TanT.C. Mat EasaA. GammohS. Alu’dattM.H. Recent updates on lentil and quinoa protein-based dairy protein alternatives: Nutrition, technologies, and challenges.Food Chem.202238313238610.1016/j.foodchem.2022.13238635176718
    [Google Scholar]
  36. López-CastejónM.L. BengoecheaC. Díaz-FrancoJ. CarreraC. Interfacial and emulsifying properties of quinoa protein concentrates.Food Biophys.202015112213210.1007/s11483‑019‑09603‑0
    [Google Scholar]
  37. OgungbenleH.N. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour.Int. J. Food Sci. Nutr.200354215315810.1080/096374803100008410612701372
    [Google Scholar]
  38. RualesJ. ValenciaS. NairB. Effect of processing on the physico-chemical characteristics of quinoa flour (Chenopodium quinoa, Willd).Stärke1993451131910.1002/star.19930450105
    [Google Scholar]
  39. JiangF. RenY. DuC. NieG. LiangJ. YuX. DuS. Effect of pearling on the physicochemical properties and antioxidant capacity of quinoa (Chenopodium quinoa Willd.) flour.J. Cereal Sci.202110210333010.1016/j.jcs.2021.103330
    [Google Scholar]
  40. ShiD. FidelisM. RenY. StoneA.K. AiY. NickersonM.T. The functional attributes of Peruvian (Kankolla and Blanca juli blend) and Northern quinoa (NQ94PT) flours and protein isolates, and their protein quality.Food Res. Int.202012810879910.1016/j.foodres.2019.10879931955761
    [Google Scholar]
  41. VeraA. ValenzuelaM.A. Yazdani-PedramM. TapiaC. AbugochL. Conformational and physicochemical properties of quinoa proteins affected by different conditions of high-intensity ultrasound treatments.Ultrason. Sonochem.20195118619610.1016/j.ultsonch.2018.10.02630377080
    [Google Scholar]
  42. SunX.D. ArntfieldS.D. Gelation properties of salt-extracted pea protein induced by heat treatment.Food Res. Int.201043250951510.1016/j.foodres.2009.09.039
    [Google Scholar]
  43. RenardD. van de VeldeF. VisschersR.W. The gap between food gel structure, texture and perception.Food Hydrocoll.200620442343110.1016/j.foodhyd.2005.10.014
    [Google Scholar]
  44. ZhangL. ZengJ. GaoH. ZhangK. WangM. Effects of different frozen storage conditions on the functional properties of wheat gluten protein in nonfermented dough.Food Sci. Technol.202242e9782110.1590/fst.97821
    [Google Scholar]
  45. MäkinenO.E. ZanniniE. KoehlerP. ArendtE.K. Heat-denaturation and aggregation of quinoa (Chenopodium quinoa) globulins as affected by the pH value.Food Chem.2016196172410.1016/j.foodchem.2015.08.06926593460
    [Google Scholar]
  46. LawalO.S. AdebowaleK.O. AdebowaleY.A. Functional properties of native and chemically modified protein concentrates from bambarra groundnut.Food Res. Int.20074081003101110.1016/j.foodres.2007.05.011
    [Google Scholar]
  47. MirN.A. RiarC.S. SinghS. Improvement in the functional properties of quinoa (Chenopodium quinoa) protein isolates after the application of controlled heat-treatment: Effect on structural properties.Food Structure20212810018910.1016/j.foostr.2021.100189
    [Google Scholar]
  48. LestariD. MulderW. SandersJ. Improving Jatropha curcas seed protein recovery by using counter current multistage extraction.Biochem. Eng. J.2010501-2162310.1016/j.bej.2010.02.011
    [Google Scholar]
  49. SteffolaniM.E. VillacortaP. Morales-SorianoE.R. Repo-CarrascoR. LeónA.E. PérezG.T. Physicochemical and functional characterization of protein isolated from different quinoa varieties ( Chenopodium quinoa Willd.).Cereal Chem.201693327528110.1094/CCHEM‑04‑15‑0083‑R
    [Google Scholar]
  50. Salcedo-ChávezB. Osuna-CastroJ.A. Guevara-LaraF. Domínguez-DomínguezJ. Paredes-LópezO. Optimization of the isoelectric precipitation method to obtain protein isolates from amaranth (Amaranthus cruentus) seeds.J. Agric. Food Chem.200250226515652010.1021/jf020522t12381143
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013300153240522065719
Loading
/content/journals/cnf/10.2174/0115734013300153240522065719
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Black; emulsion activity; emulsion stability; Q12; quinoa protein isolate; titicaca
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test