Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

This review highlighted the innovative utilization of zeolite Nanoparticles (NPs) in various environmental applications, emphasizing their role in transforming waste materials into valuable resources. Zeolite-confined metal NPs, particularly Palladium (Pd), exhibit enhanced catalytic performance in the deep oxidation of light alkanes due to their unique interfaces and protective zeolite structures. Developing electrospun membranes incorporating cellulose acetate and nano-zeolites demonstrates promising potential for effective oil removal from wastewater, achieving up to 97% separation efficiency. The synthesis of silver NPs from Tilapia fish waste and their valorization within natural zeolites showcases an eco-friendly approach for ammonia removal and antimicrobial applications. Integrating nano-silicon and nano-zeolite treatments in combating salinity stress in medicinal plants highlights sustainable agricultural practices. This review emphasizes the multifaceted benefits of zeolite NPs in addressing urgent environmental challenges and promotes future research directions to optimize their applications in pollution control and resource recovery. Prospects include scaling up production methods, exploring novel composite materials, and investigating the long-term environmental impacts of these nanomaterials to enhance their practical applicability in diverse settings.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137360904250103053003
2025-01-23
2026-02-16
Loading full text...

Full text loading...

References

  1. LaniyanT.A. MorakinyoO.M. Environmental sustainability and prevention of heavy metal pollution of some geo-materials within a city in southwestern Nigeria.Heliyon202174e0679610.1016/j.heliyon.2021.e06796 33948515
    [Google Scholar]
  2. ZhaoY. ZhanL. XueZ. YusefK.K. HuH. WuM. Adsorption of Cu (II) and Cd (II) from wastewater by sodium alginate modified materials.J. Chem.2020202011310.1155/2020/5496712
    [Google Scholar]
  3. KuneckiP. WdowinM. HancE. Fly ash-derived zeolites and their sorption abilities in relation to elemental mercury in a simulated gas stream.J. Clean. Prod.202339113618110.1016/j.jclepro.2023.136181
    [Google Scholar]
  4. BelvisoC. LuciniP. MancinelliM. AbdolrahimiM. MartucciA. PeddisD. MaraschiF. CavalcanteF. SturiniM. Lead, zinc, nickel and chromium ions removal from polluted waters using zeolite formed from bauxite, obsidian and their combination with red mud: Behaviour and mechanisms.J. Clean. Prod.202341513781410.1016/j.jclepro.2023.137814
    [Google Scholar]
  5. LiJ. FanM. YuanZ. LiuF. LiM. One-pot synthesis of lamellar fe-cu bimetal-decorated reduced graphene oxide and its enhanced removal of Cr(VI) from water.Nanomaterials20231320274510.3390/nano13202745 37887896
    [Google Scholar]
  6. FengY. JiangJ. XuY. WangS. AnW. ChaiQ. ProvaU.H. WangC. HuangG. Biomass derived diverse carbon nanostructure for electrocatalysis, energy conversion and storage.Carbon202321111810510.1016/j.carbon.2023.118105
    [Google Scholar]
  7. ZiejewskaC. GrelaA. ŁachM. MarczykJ. HordyńskaN. Szechyńska-HebdaM. HebdaM. Eco-friendly zeolites for innovative purification of water from cationic dye and heavy metal ions.J. Clean. Prod.202340613694710.1016/j.jclepro.2023.136947
    [Google Scholar]
  8. García-ChirinoJ. DáderJ.A. Van der BruggenB. Hybrid Na-A zeolite/oxycut residue thin film composite nanofiltration membrane for Cr (III) removal.J. Environ. Chem. Eng.202311210935110.1016/j.jece.2023.109351
    [Google Scholar]
  9. NatsukiJ. NatsukiT. Silver nanoparticle/carbon nanotube hybrid nanocomposites: One-step green synthesis, properties, and applications.Nanomaterials2023138129710.3390/nano13081297 37110882
    [Google Scholar]
  10. ShiJ. YangZ. DaiH. LuX. PengL. TanX. ShiL. FahimR. Preparation and application of modified zeolites as adsorbents in wastewater treatment.Water Sci. Technol.20182017362163510.2166/wst.2018.249 30016280
    [Google Scholar]
  11. WangS. PengY. Natural zeolites as effective adsorbents in water and wastewater treatment.Chem. Eng. J.20101561112410.1016/j.cej.2009.10.029
    [Google Scholar]
  12. HudcovaB. OsackýM. VítkovaM. MitziaA. KomarekM. Investigation of zinc binding properties onto natural and synthetic zeolites: Implications for soil remediation.Micropor. Mesopor. Mat.202131711102210.1016/j.micromeso.2021.111022
    [Google Scholar]
  13. SenilaM. NeagE. CadarO. HoaghiaM.A. RomanM. MoldovanA. HosuA. LupasA. KovacsE.D. Characteristics of volcanic tuff from Macicasu (Romania) and its capacity to remove ammonia from contaminated air.Molecules20222711350310.3390/molecules27113503 35684443
    [Google Scholar]
  14. AdamovichS.N. FilatovaE.G. PozhidaevY.N. UshakovI.A. ChugunovA.D. OborinaE.N. RozentsveigI.B. VerpoortF. Natural zeolite modified with 4-(3-triethoxysilylpropyl) thiosemicarbazide as an effective adsorbent for Cu(II), Co(II) and Ni(II).J. Taiwan Inst. Chem. Eng.202112939640910.1016/j.jtice.2021.09.014
    [Google Scholar]
  15. CadarO. VagnerI. MiuI. ScurtuD. SenilaM. Preparation, characterization, and performance of natural zeolites as alternative materials for beer filtration.Materials2023165191410.3390/ma16051914 36903029
    [Google Scholar]
  16. ShirendevN. Bat-AmgalanM. KanoN. KimH.J. GunchinB. GanbatB. YundenG. A Natural zeolite developed with 3-aminopropyltriethoxysilane and adsorption of Cu (II) from aqueous media.Appl. Sci.202212221134410.3390/app122211344
    [Google Scholar]
  17. SenilaL. EmiliaN. CadarO. BeczeA. ScurtuD.A. TomoiagC.H. SenilaM. Removal of methylene blue on thermally treated natural zeolites.Anal. Lett.202255222623610.1080/00032719.2021.1922431
    [Google Scholar]
  18. DinariS. EslamiF. Effect of clinoptilolite natural zeolite particles on the destabilization of the oil-in-water emulsion.Colloid Interface Sci. Commun.20203710029710.1016/j.colcom.2020.100297
    [Google Scholar]
  19. HoaghiaM.A. AschileanI. Babalau-FussV. BeczeA. CadarO. RomanC. RomanM. SenilaM. KovacsE. Activated natural zeolites for petroleum hydrocarbons adsorption.Stud. Univ. Babes-Bolyai Chem.20216629510410.24193/subbchem.2021.02.08
    [Google Scholar]
  20. SenilaL. NeagE. ScurtuD.A. CadarO. BeczeA. TomoiagC.H. SenilaM. Removal of rhodamine from aqueous solutions using natural zeolite.Stud. Univ. Babes-Bolyai Chem.202166217118010.24193/subbchem.2021.02.15
    [Google Scholar]
  21. DoğaroğluZ.G. UysalY. DemirA. MakasM.N. ÇaylalıZ. Synthesis, characterization and optimization of PVA/SA hydrogel functionalized with zeolite (clinoptilolite): Efficient and rapid color removal from complex textile effluents.Mater. Chem. Phys.202329512709010.1016/j.matchemphys.2022.127090
    [Google Scholar]
  22. BelovaT.P. Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite.Heliyon201959e0232010.1016/j.heliyon.2019.e02320 31517110
    [Google Scholar]
  23. de PietreM.K. FreitasJ.C.C. Fundamental studies on zeolite–adsorbate interactions: Designing a better aluminosilicate adsorbent for pollutants’ removal.Environ. Earth Sci.20228111710.1007/s12665‑021‑10130‑w
    [Google Scholar]
  24. DamianF. DamianG. LacatusuR. PostolacheC. IepureG. JeleaM. NasuiD. The heavy metals immobilization in polluted soils from Romania by the natural zeolites use.Carpath. J. Earth Environ. Sci.201384231250
    [Google Scholar]
  25. ArunkumarD. KrishnaniK.K. KumarN. SarkarB. UpadhyayA.K. SawantP.B. ChadhaN.K. AbishaR. Mitigating abiotic stresses using natural and modified stilbites synergizing with changes in oxidative stress markers in aquaculture.Environ. Geochem. Health20234574565458110.1007/s10653‑023‑01507‑w 36882549
    [Google Scholar]
  26. SenilaM. ColdeaT.E. SenilaL. MuduraE. CadarO. Activated natural zeolites for beer filtration: A pilot scale approach.Heliyon202399e2003110.1016/j.heliyon.2023.e20031 37809938
    [Google Scholar]
  27. MahmoudA.W.M. SwaefyH.M. Comparison between commercial and nano NPK in presence of nano zeolite on sage plant yield and its components under water stress.Agriculture2020662439
    [Google Scholar]
  28. HassanA.Z.A. MahmoudA.W.M. Strategy for boosting rock phosphate efficiency and conversion into nano zeolite.Am. J. Nanomater201642738
    [Google Scholar]
  29. KarhuM. LagerbomJ. SolismaaS. HonkanenM. IsmailovA. IsmailovA. RäisänenM. LagerbomJ. SolismaaS. HonkanenM. IsmailovA. RäisänenM.L. Huttunen-SaarivirtaE. LevänenE. Kivikytö-ReponenP. Mining tailings as raw materials for reaction-sintered aluminosilicate ceramics: Effect of mineralogical composition on microstructure and properties.Ceram. Int.20194544840484810.1016/j.ceramint.2018.11.180
    [Google Scholar]
  30. MaD. WangZ. GuoM. ZhangM. LiuJ. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application.Waste Manag.201434112365237210.1016/j.wasman.2014.07.012 25153822
    [Google Scholar]
  31. IzidoroJ.C. KimM.C. BellelliV.F. PaneM.C. BotelhoJuniorA.B. EspinosaD.C.R. TenórioJ.A.S. Synthesis of zeolite A using the waste of iron mine tailings dam and its application for industrial effluent treatment.J. Sustain. Min.20191827728610.1016/j.jsm.2019.11.001
    [Google Scholar]
  32. GuayaD. ValderramaC. FarranA. ArmijosC. CortinaJ.L. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite.Chem. Eng. J.201527120421310.1016/j.cej.2015.03.003
    [Google Scholar]
  33. KrólM. Natural vs. synthetic zeolites.Crystals202010762210.3390/cryst10070622
    [Google Scholar]
  34. LoiolaA.R. BessaR.A. OliveiraC.P. FreitasA.D.L. SoaresS.A. BohnF. PergherS.B.C. Magnetic zeolite composites: Classification, synthesis routes, and technological applications.J. Magn. Magn. Mater.202256016965110.1016/j.jmmm.2022.169651
    [Google Scholar]
  35. LimW.R. LeeC.H. HammS.Y. Synthesis and characteristics of Na-A zeolite from natural kaolin in Korea.Mater. Chem. Phys.202126112423010.1016/j.matchemphys.2021.124230
    [Google Scholar]
  36. SenthilR.B. SenthilK.P. NatanyaI.S.J. FranciaV.J. DharaniR. SanjayS. RangasamyG. Recent research progress on the removal of heavy metals from wastewater using modified zeolites: A critical review.Desalination Water Treat.202431910057310.1016/j.dwt.2024.100573
    [Google Scholar]
  37. RehanM. MontaserA.S. El-ShahatM. AbdelhameedR.M. Decoration of viscose fibers with silver nanoparticle-based titanium-organic framework for use in environmental applications.Environ. Sci. Pollut. Res. Int.2024319131851320610.1007/s11356‑024‑31858‑5 38240971
    [Google Scholar]
  38. SisubalanN. ShaliniR. RamyaS. SivamaruthiB.S. ChaiyasutC. Recent advances in nanomaterials for neural applications: Opportunities and challenges.Nanomedicine202318261979199410.2217/nnm‑2023‑0261 38078433
    [Google Scholar]
  39. SisubalanN. KarthikeyanC. Senthil KumarV. VaraprasadK. Haja HameedA.S. VanajothiR. SadikuR. Biocidal activity of Ba 2+ -doped CeO 2 NPs against Streptococcus mutans and Staphylococcus aureus bacterial strains.RSC Advances20211149306233063410.1039/D1RA05948C 35479864
    [Google Scholar]
  40. PrakashkumarN. SivamaruthiB.S. ChaiyasutC. SuganthyN. Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta amyloid-induced oxidative stress-mediated apoptosis: An in vitro study.Pharmaceutics202113329910.3390/pharmaceutics13030299 33668877
    [Google Scholar]
  41. SivamaruthiB.S. RamkumarV.S. ArchunanG. ChaiyasutC. SuganthyN. Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula – In vitro evaluation of anticancer and antimicrobial activity.J. Drug Deliv. Sci. Technol.20195113915110.1016/j.jddst.2019.02.024
    [Google Scholar]
  42. SivamaruthiB. ThangaleelaS. KesikaP. SuganthyN. ChaiyasutC. Mesoporous silica-based nanoplatforms are theranostic agents for the treatment of inflammatory disorders.Pharmaceutics202315243910.3390/pharmaceutics15020439 36839761
    [Google Scholar]
  43. ChaiyasutC. SivamaruthiB.S. JungsinyatamP. TansrisookC. JinaratD. ChaiyasutK. PeerajanS. RungseevijitprapaW. Development and evaluation of Elaeagnus rhamnoides (L.) A. Nelson oil-loaded nanostructured lipid carrier for improved skin hydration.Appl. Sci.20221216832410.3390/app12168324
    [Google Scholar]
  44. AminzaiM.T. YildirimM. YabalakE. Metallic nanoparticles unveiled: Synthesis, characterization, and their environmental, medicinal, and agricultural applications.Talanta202428012679010.1016/j.talanta.2024.126790 39217711
    [Google Scholar]
  45. GhobashyM.M. AlkhursaniS.A. AlqahtaniH.A. El-damhougyT.K. MadaniM. Gold nanoparticles in microelectronics advancements and biomedical applications.Mater. Sci. Eng. B202430111719110.1016/j.mseb.2024.117191
    [Google Scholar]
  46. ChakrobortyS. NathN. SorenS. BarikA. KaurK. Plasmonic-based TiO2 and TiO2 nanoparticles for photocatalytic CO2 to methanol conversion in energy applications: Current status and future prospects.Top. Catal.2024671-423224510.1007/s11244‑023‑01816‑5
    [Google Scholar]
  47. ZhangW. ZhangT. LvY. JingT. GaoX. GuZ. LiS. AoH. FangD. Recent progress on the synthesis and applications of zeolites from industrial solid wastes.Catalysts2024141073410.3390/catal14100734
    [Google Scholar]
  48. PengH. DongT. YangS. ChenH. YangZ. LiuW. HeC. WuP. TianJ. PengY. ChuX. WuD. AnT. WangY. DaiS. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes.Nat. Commun.202213129510.1038/s41467‑021‑27828‑x 35027532
    [Google Scholar]
  49. SultanaN. RahmanR. Electrospun nanofiber composite membranes based on cellulose acetate/nano-zeolite for the removal of oil from oily wastewater.Emergent Materials.20225114515310.1007/s42247‑021‑00326‑y
    [Google Scholar]
  50. DasK. KrishnaniK.K. UpadhyayA.K. ShuklaS.P. PrasadK.P. ChakrabortyP. SarkarB. Fish waste capped and colloidal nanosilver and its valorization as natural zeolite conjugates for application in aquaculture.J. Dispers. Sci. Technol.20244571281129510.1080/01932691.2023.2204980
    [Google Scholar]
  51. OthmanE.Z. El-AttarA.B. El-BahbohyR.M. Abd El-KhalekS.N. MorganS.H. MahmoudA.W.M. Exogenous appliance of nano-zeolite and nano-silicon elevate solidago canadensis invasive plant tolerance to water deficiency.Horticulturae20239217210.3390/horticulturae9020172
    [Google Scholar]
  52. LiuJ. ZhongX. GaoL. ZhangY. WangZ. ZhangX. ZhangB. Hierarchical porous Pd/HS-1 zeolite as an efficient and reusable catalysts for Suzuki-Miyaura reaction.Appl. Surf. Sci.202465915990410.1016/j.apsusc.2024.159904
    [Google Scholar]
  53. MohammadiH. ParvizL. BeyramiA. Anosheh-BonabF. GhorbanpourM. Exposure to TiO2 nanoparticles (NPs) and zeolite stimulates growth, physiology, and phytochemical characteristics and elevates Mentha piperita L. tolerance to salinity stress.Ind. Crops Prod.202421111822810.1016/j.indcrop.2024.118228
    [Google Scholar]
  54. RibeiroA.C. de OliveiraA.M. BeltranL.B. DiórioA. Magalhães-GhiottoG.A.V. de Abreu FilhoB.A. de Almeida DuarteE.C.N.F. BergamascoR. Antibacterial activity of functionalized natural zeolites (NZ-AgNPs) and its application in bacteriological water treatment and commercial paints.Environ. Nanotechnol. Monit. Manag.20242210100110.1016/j.enmm.2024.101001
    [Google Scholar]
  55. Abdel-GawadS.A. FekryA.M. A novel environmental nano-catalyst of zeolite amended with carbon nanotube/silver nanoparticles decorated carbon paste electrode for electro-oxidation of propylene glycol.Sci. Rep.2022121913610.1038/s41598‑022‑12268‑4 35650287
    [Google Scholar]
  56. TorbinaV.V. IvanchikovaI.D. KholdeevaO.A. SkobelevI.Y. VodyankinaO.V. Propylene glycol oxidation with tert -butyl hydroperoxide over Cr-containing metal-organic frameworks MIL-101 and MIL-100.Catal. Today20162789710310.1016/j.cattod.2016.04.008
    [Google Scholar]
  57. JafariB. RezaeiE. AbbasiM. HashemifardS.A. KhosraviA. SillanpääM. Application of mullite-zeolite-alumina microfiltration membranes coated by SiO2 nanoparticles for separation of oil-in-water emulsions.J. Eur. Ceram. Soc.202242136005601410.1016/j.jeurceramsoc.2022.06.060
    [Google Scholar]
  58. CampoverdeJ. GuayaD. From waste to added-value product: Synthesis of highly crystalline LTA zeolite from ore mining tailings.Nanomaterials2023138129510.3390/nano13081295 37110881
    [Google Scholar]
  59. AlzahraniH.K. KatowahD.F. Chitosan and ferrite nanoparticles modified zeolite (ZSM-5) as adsorbent for the removal of acid red dye from water.Int. J. Polym. Sci.20242024111510.1155/2024/1899137
    [Google Scholar]
  60. Ruíz-BaltazarÁ.J. Reyes-LópezS.Y. Méndez-LozanoN. Medellín-CastilloN.A. PérezR. Sustainable zeolite–silver nanocomposites via green methods for water contaminant mitigation and modeling approaches.Nanomaterials202414325810.3390/nano14030258 38334529
    [Google Scholar]
  61. ZhangY. WangW. ZhouL. ZhangY. An active and stable catalyst of Zn modified Pt nanoparticles encapsulated within silicalite-1 zeolite for dehydrogenation of ethane.Appl. Surf. Sci.202464815909910.1016/j.apsusc.2023.159099
    [Google Scholar]
  62. FaghihianH. MoayedM. FiroozA. IravaniM. Evaluation of a new magnetic zeolite composite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium and thermodynamic studies.C. R. Chim.201317210811710.1016/j.crci.2013.02.006
    [Google Scholar]
  63. Kozera-SuchardaB. GworekB. KondzielskiI. The simultaneous removal of zinc and cadmium from multicomponent aqueous solutions by their sorption onto selected natural and synthetic zeolites.Minerals202010434310.3390/min10040343
    [Google Scholar]
  64. ParisE.C. MalafattiJ.O.D. MusettiH.C. ManzoliA. ZenattiA. EscoteM.T. Faujasite zeolite decorated with cobalt ferrite nanoparticles for improving removal and reuse in Pb2+ ions adsorption.Chin. J. Chem. Eng.20202871884189010.1016/j.cjche.2020.04.019
    [Google Scholar]
  65. NogueiraH. TomaS. SilveiraA.Jr ArakiK. Zeolite-SPION nanocomposite for ammonium and heavy metals removal from wastewater.J. Braz. Chem. Soc.2020312342235010.21577/0103‑5053.20200097
    [Google Scholar]
  66. OliveiraL.C.A. PetkowiczD.I. SmaniottoA. PergherS.B.C. Magnetic zeolites: A new adsorbent for removal of metallic contaminants from water.Water Res.200438173699370410.1016/j.watres.2004.06.008 15350421
    [Google Scholar]
  67. DoulaM.K. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form.Water Res.200943153659367210.1016/j.watres.2009.05.037 19576609
    [Google Scholar]
  68. YuanM.L. YuL. TaoJ.H. SongC. Preparation of magnetically modified zeolites and the application of metal ions adsorption.Adv. Mat. Res.2011299-30076476910.4028/www.scientific.net/AMR.299‑300.764
    [Google Scholar]
  69. JavanbakhtV. GhoreishiS.M. Application of response surface methodology for optimization of lead removal from an aqueous solution by a novel superparamagnetic nanocomposite.Adsorpt. Sci. Technol.2017351-224126010.1177/0263617416674474
    [Google Scholar]
  70. SuC. XuY. ZhangW. LiuY. LiJ. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water.Appl. Surf. Sci.201225872319232310.1016/j.apsusc.2011.10.005
    [Google Scholar]
  71. MalletteA.J. ShilpaK. RimerJ.D. The current understanding of mechanistic pathways in zeolite crystallization.Chem. Rev.202412463416349310.1021/acs.chemrev.3c00801 38484327
    [Google Scholar]
  72. LiaquatI. MunirR. AbbasiN.A. SadiaB. MuneerA. YounasF. SardarM.F. ZahidM. NoreenS. Exploring zeolite-based composites in adsorption and photocatalysis for toxic wastewater treatment: Preparation, mechanisms, and future perspectives.Environ. Pollut.202434912392210.1016/j.envpol.2024.123922 38580064
    [Google Scholar]
  73. KumariS. ChowdhryJ. KumarM. Chandra GargM. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects.Environ. Res.202426011978210.1016/j.envres.2024.119782 39142462
    [Google Scholar]
  74. RadoorS. KarayilJ. JayakumarA. ParameswaranpillaiJ. SiengchinS. Efficient removal of methyl orange from aqueous solution using mesoporous ZSM-5 zeolite: Synthesis, kinetics and isotherm studies.Colloids Surf. A Physicochem. Eng. Asp.202161112585210.1016/j.colsurfa.2020.125852
    [Google Scholar]
  75. GadoreV. MishraS.R. YadavN. YadavG. AhmaruzzamanM. Advances in zeolite-based materials for dye removal: Current trends and future prospects.Inorg. Chem. Commun.202416611260610.1016/j.inoche.2024.112606
    [Google Scholar]
  76. KordalaN. WyszkowskiM. Zeolite properties, methods of synthesis, and selected applications.Molecules2024295106910.3390/molecules29051069 38474578
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137360904250103053003
Loading
/content/journals/cnano/10.2174/0115734137360904250103053003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test