Skip to content
2000
image of Zeolite Nanoparticles: The Eco-Friendly Solutions for Environmental Contamination

Abstract

This review highlighted the innovative utilization of zeolite Nanoparticles (NPs) in various environmental applications, emphasizing their role in transforming waste materials into valuable resources. Zeolite-confined metal NPs, particularly Palladium (Pd), exhibit enhanced catalytic performance in the deep oxidation of light alkanes due to their unique interfaces and protective zeolite structures. Developing electrospun membranes incorporating cellulose acetate and nano-zeolites demonstrates promising potential for effective oil removal from wastewater, achieving up to 97% separation efficiency. The synthesis of silver NPs from Tilapia fish waste and their valorization within natural zeolites showcases an eco-friendly approach for ammonia removal and antimicrobial applications. Integrating nano-silicon and nano-zeolite treatments in combating salinity stress in medicinal plants highlights sustainable agricultural practices. This review emphasizes the multifaceted benefits of zeolite NPs in addressing urgent environmental challenges and promotes future research directions to optimize their applications in pollution control and resource recovery. Prospects include scaling up production methods, exploring novel composite materials, and investigating the long-term environmental impacts of these nanomaterials to enhance their practical applicability in diverse settings.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137360904250103053003
2025-01-23
2025-04-07
Loading full text...

Full text loading...

References

  1. Laniyan T.A. Morakinyo O.M. Environmental sustainability and prevention of heavy metal pollution of some geo-materials within a city in southwestern Nigeria. Heliyon 2021 7 4 e06796 10.1016/j.heliyon.2021.e06796 33948515
    [Google Scholar]
  2. Zhao Y. Zhan L. Xue Z. Yusef K.K. Hu H. Wu M. Adsorption of Cu (II) and Cd (II) from Wastewater by sodium alginate modified materials. J. Chem. 2020 2020 1 13 10.1155/2020/5496712
    [Google Scholar]
  3. Kunecki P. Wdowin M. Hanc E. Fly ash-derived zeolites and their sorption abilities in relation to elemental mercury in a simulated gas stream. J. Clean. Prod. 2023 391 136181 10.1016/j.jclepro.2023.136181
    [Google Scholar]
  4. Belviso C. Lucini P. Mancinelli M. Abdolrahimi M. Martucci A. Peddis D. Maraschi F. Cavalcante F. Sturini M. Lead, zinc, nickel and chromium ions removal from polluted waters using zeolite formed from bauxite, obsidian and their combination with red mud: Behaviour and mechanisms. J. Clean. Prod. 2023 415 137814 10.1016/j.jclepro.2023.137814
    [Google Scholar]
  5. Li J. Fan M. Yuan Z. Liu F. Li M. One-pot synthesis of lamellar fe-cu bimetal-decorated reduced graphene oxide and its enhanced removal of Cr(VI) from water. Nanomaterials 2023 13 20 2745 10.3390/nano13202745 37887896
    [Google Scholar]
  6. Feng Y. Jiang J. Xu Y. Wang S. An W. Chai Q. Prova U.H. Wang C. Huang G. Biomass derived diverse carbon nanostructure for electrocatalysis, energy conversion and storage. Carbon 2023 211 118105 10.1016/j.carbon.2023.118105
    [Google Scholar]
  7. Ziejewska C. Grela A. Łach M. Marczyk J. Hordyńska N. Szechyńska-Hebda M. Hebda M. Eco-friendly zeolites for innovative purification of water from cationic dye and heavy metal ions. J. Clean. Prod. 2023 406 136947 10.1016/j.jclepro.2023.136947
    [Google Scholar]
  8. García-Chirino J. Dáder Jiménez A. Van der Bruggen B. Hybrid Na-A zeolite/oxycut residue thin film composite nanofiltration membrane for Cr (III) removal. J. Environ. Chem. Eng. 2023 11 2 109351 10.1016/j.jece.2023.109351
    [Google Scholar]
  9. Natsuki J. Natsuki T. Silver nanoparticle/carbon nanotube hybrid nanocomposites: One-step green synthesis, properties, and applications. Nanomaterials 2023 13 8 1297 10.3390/nano13081297 37110882
    [Google Scholar]
  10. Shi J. Yang Z. Dai H. Lu X. Peng L. Tan X. Shi L. Fahim R. Preparation and application of modified zeolites as adsorbents in wastewater treatment. Water Sci. Technol. 2018 2017 3 621 635 10.2166/wst.2018.249 30016280
    [Google Scholar]
  11. Wang S. Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010 156 1 11 24 10.1016/j.cej.2009.10.029
    [Google Scholar]
  12. Hudcova B. Osacký M. Vítkova M. Mitzia A. Komarek M. Investigation of zinc binding properties onto natural and synthetic zeolites: Implications for soil remediation. Micropor. Mesopor. Mat. 2021 317 111022 10.1016/j.micromeso.2021.111022
    [Google Scholar]
  13. Senila M. Neag E. Cadar O. Hoaghia M.A. Roman M. Moldovan A. Hosu A. Lupas A. Kovacs E.D. Characteristics of volcanic tuff from Macicasu (Romania) and its capacity to remove ammonia from contaminated air. Molecules 2022 a 27 11 3503 10.3390/molecules27113503 35684443
    [Google Scholar]
  14. Adamovich S.N. Filatova E.G. Pozhidaev Y.N. Ushakov I.A. Chugunov A.D. Oborina E.N. Rozentsveig I.B. Verpoort F. Natural zeolite modified with 4-(3-triethoxysilylpropyl) thiosemicarbazide as an effective adsorbent for Cu(II), Co(II) and Ni(II). J. Taiwan Inst. Chem. Eng. 2021 129 396 409 10.1016/j.jtice.2021.09.014
    [Google Scholar]
  15. Cadar O. Vagner I. Miu I. Scurtu D. Senila M. Preparation, characterization, and performance of natural zeolites as alternative materials for beer filtration. Materials 2023 16 5 1914 10.3390/ma16051914 36903029
    [Google Scholar]
  16. Shirendev N. Bat-Amgalan M. Kano N. Kim H.J. Gunchin B. Ganbat B. Yunden G. A Natural zeolite developed with 3-aminopropyltriethoxysilane and adsorption of Cu (II) from aqueous media. Appl. Sci. 2022 12 22 11344 10.3390/app122211344
    [Google Scholar]
  17. Senila L. Emilia N. Cadar O. Becze A. Scurtu D.A. Tomoiag C.H. Senila M. Removal of methylene blue on thermally treated natural zeolites. Anal. Lett. 2022 b 55 2 226 236 10.1080/00032719.2021.1922431
    [Google Scholar]
  18. Dinari S. Eslami F. Effect of clinoptilolite natural zeolite particles on the destabilization of the oil-in-water emulsion. Colloid Interface Sci. Commun. 2020 37 100297 10.1016/j.colcom.2020.100297
    [Google Scholar]
  19. Hoaghia M.A. Aschilean I. Babalau-Fuss V. Becze A. Cadar O. Roman C. Roman M. Senila M. Kovacs E. Activated natural zeolites for petroleum hydrocarbons adsorption. Stud. Univ. Babes-Bolyai Chem. 2021 66 2 95 104 10.24193/subbchem.2021.02.08
    [Google Scholar]
  20. Senila L. Neag E. Scurtu D.A. Cadar O. Becze A. Tomoiag C.H. Senila M. Removal of rhodamine from aqueous solutions using natural zeolite. Stud. Univ. Babes-Bolyai Chem. 2021 66 2 171 180 10.24193/subbchem.2021.02.15
    [Google Scholar]
  21. Doğaroğlu Z.G. Uysal Y. Demir A. Makas M.N. Çaylalı Z. Synthesis, characterization and optimization of PVA/SA hydrogel functionalized with zeolite (clinoptilolite): Efficient and rapid color removal from complex textile effluents. Mater. Chem. Phys. 2023 295 127090 10.1016/j.matchemphys.2022.127090
    [Google Scholar]
  22. Belova T.P. Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite. Heliyon 2019 5 9 e02320 10.1016/j.heliyon.2019.e02320 31517110
    [Google Scholar]
  23. de Pietre M.K. Freitas J.C.C. Fundamental studies on zeolite–adsorbate interactions: Designing a better aluminosilicate adsorbent for pollutants’ removal. Environ. Earth Sci. 2022 81 1 17 10.1007/s12665‑021‑10130‑w
    [Google Scholar]
  24. Damian F. Damian G. Lacatusu R. Postolache C. Iepure G. Jelea M. Nasui D. The heavy metals immobilization in polluted soils from Romania by the natural zeolites use. Carpath. J. Earth Environ. Sci. 2013 8 4 231 250
    [Google Scholar]
  25. Arunkumar D. Krishnani K.K. Kumar N. Sarkar B. Upadhyay A.K. Sawant P.B. Chadha N.K. Abisha R. Mitigating abiotic stresses using natural and modified stilbites synergizing with changes in oxidative stress markers in aquaculture. Environ. Geochem. Health 2023 45 7 4565 4581 10.1007/s10653‑023‑01507‑w 36882549
    [Google Scholar]
  26. Senila M. Coldea T.E. Senila L. Mudura E. Cadar O. Activated natural zeolites for beer filtration: A pilot scale approach. Heliyon 2023 9 9 e20031 10.1016/j.heliyon.2023.e20031 37809938
    [Google Scholar]
  27. Mahmoud A.W.M. Swaefy H.M. Comparison between commercial and nano NPK in presence of nano zeolite on sage plant yield and its components under water stress. Agriculture 2020 66 24 39
    [Google Scholar]
  28. Hassan A.Z.A. Mahmoud A.W.M. Strategy for boosting rock phosphate efficiency and conversion into nano zeolite. Am. J. Nanomater 2016 4 27 38
    [Google Scholar]
  29. Karhu M. Lagerbom J. Solismaa S. Honkanen M. Ismailov A. Ismailov A. Räisänen M. Karhu M. Lagerbom J. Solismaa S. Honkanen M. Ismailov A. Räisänen M-L. Huttunen-Saarivirta E. Levänen E. Kivikytö-Reponen P. Mining tailings as raw materials for reaction-sintered aluminosilicate ceramics: Effect of mineralogical composition on microstructure and properties. Ceram. Int. 2019 45 4 4840 4848 10.1016/j.ceramint.2018.11.180
    [Google Scholar]
  30. Ma D. Wang Z. Guo M. Zhang M. Liu J. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application. Waste Manag. 2014 34 11 2365 2372 10.1016/j.wasman.2014.07.012 25153822
    [Google Scholar]
  31. Izidoro J.C. Kim M.C. Bellelli V.F. Pane M.C. Botelho Junior A.B. Espinosa D.C.R. Tenório J.A.S. Synthesis of zeolite A using the waste of iron mine tailings dam and its application for industrial effluent treatment. J. Sustain. Min. 2019 18 277 286 10.1016/j.jsm.2019.11.001
    [Google Scholar]
  32. Guaya D. Valderrama C. Farran A. Armijos C. Cortina J.L. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chem. Eng. J. 2015 271 204 213 10.1016/j.cej.2015.03.003
    [Google Scholar]
  33. Król M. Natural vs. Synthetic Zeolites. Crystals 2020 10 7 622 10.3390/cryst10070622
    [Google Scholar]
  34. Loiola A.R. Bessa R.A. Oliveira C.P. Freitas A.D.L. Soares S.A. Bohn F. Pergher S.B.C. Magnetic zeolite composites: Classification, synthesis routes, and technological applications. J. Magn. Magn. Mater. 2022 560 169651 10.1016/j.jmmm.2022.169651
    [Google Scholar]
  35. Lim W.R. Lee C.H. Hamm S.Y. Synthesis and characteristics of Na-A zeolite from natural kaolin in Korea. Mater. Chem. Phys. 2021 261 124230 10.1016/j.matchemphys.2021.124230
    [Google Scholar]
  36. Senthil Rathi B. Senthil Kumar P. Natanya Ida Susana J. Francia Virgin J. Dharani R. Sanjay S. Rangasamy G. Recent research progress on the removal of heavy metals from wastewater using modified zeolites: A critical review. Desalination Water Treat. 2024 319 100573 10.1016/j.dwt.2024.100573
    [Google Scholar]
  37. Rehan M. Montaser A.S. El-Shahat M. Abdelhameed R.M. Decoration of viscose fibers with silver nanoparticle-based titanium-organic framework for use in environmental applications. Environ. Sci. Pollut. Res. Int. 2024 31 9 13185 13206 10.1007/s11356‑024‑31858‑5 38240971
    [Google Scholar]
  38. Sisubalan N. Shalini R. Ramya S. Sivamaruthi B.S. Chaiyasut C. Recent advances in nanomaterials for neural applications: Opportunities and challenges. Nanomedicine 2023 18 26 1979 1994 10.2217/nnm‑2023‑0261 38078433
    [Google Scholar]
  39. Sisubalan N. Karthikeyan C. Senthil Kumar V. Varaprasad K. Haja Hameed A.S. Vanajothi R. Sadiku R. Biocidal activity of Ba 2+ -doped CeO 2 NPs against Streptococcus mutans and Staphylococcus aureus bacterial strains. RSC Advances 2021 11 49 30623 30634 10.1039/D1RA05948C 35479864
    [Google Scholar]
  40. Prakashkumar N. Sivamaruthi B.S. Chaiyasut C. Suganthy N. Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta amyloid-induced oxidative stress-mediated apoptosis: An in vitro study. Pharmaceutics 2021 13 3 299 10.3390/pharmaceutics13030299 33668877
    [Google Scholar]
  41. Sivamaruthi B.S. Ramkumar V.S. Archunan G. Chaiyasut C. Suganthy N. Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebulaIn vitro evaluation of anticancer and antimicrobial activity. J. Drug Deliv. Sci. Technol. 2019 51 139 151 10.1016/j.jddst.2019.02.024
    [Google Scholar]
  42. Sivamaruthi B. Thangaleela S. Kesika P. Suganthy N. Chaiyasut C. Mesoporous silica-based nanoplatforms are theranostic agents for the treatment of inflammatory disorders. Pharmaceutics 2023 15 2 439 10.3390/pharmaceutics15020439 36839761
    [Google Scholar]
  43. Chaiyasut C. Sivamaruthi B.S. Jungsinyatam P. Tansrisook C. Jinarat D. Chaiyasut K. Peerajan S. Rungseevijitprapa W. Development and evaluation of Elaeagnus rhamnoides (L.) A. Nelson oil-loaded nanostructured lipid carrier for improved skin hydration. Appl. Sci. 2022 12 16 8324 10.3390/app12168324
    [Google Scholar]
  44. Aminzai M.T. Yildirim M. Yabalak E. Metallic nanoparticles unveiled: Synthesis, characterization, and their environmental, medicinal, and agricultural applications. Talanta 2024 280 126790 10.1016/j.talanta.2024.126790 39217711
    [Google Scholar]
  45. Ghobashy M.M. Alkhursani S.A. Alqahtani H.A. El-damhougy T.K. Madani M. Gold nanoparticles in microelectronics advancements and biomedical applications. Mater. Sci. Eng. B 2024 301 117191 10.1016/j.mseb.2024.117191
    [Google Scholar]
  46. Chakroborty S. Nath N. Soren S. Barik A. Kaur K. Plasmonic-based TiO2 and TiO2 nanoparticles for photocatalytic CO2 to methanol conversion in energy applications: Current status and future prospects. Top. Catal. 2024 67 1-4 232 245 10.1007/s11244‑023‑01816‑5
    [Google Scholar]
  47. Zhang W. Zhang T. Lv Y. Jing T. Gao X. Gu Z. Li S. Ao H. Fang D. Recent progress on the synthesis and applications of zeolites from industrial solid wastes. Catalysts 2024 14 10 734 10.3390/catal14100734
    [Google Scholar]
  48. Peng H. Dong T. Yang S. Chen H. Yang Z. Liu W. He C. Wu P. Tian J. Peng Y. Chu X. Wu D. An T. Wang Y. Dai S. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes. Nat. Commun. 2022 13 1 295 10.1038/s41467‑021‑27828‑x 35027532
    [Google Scholar]
  49. Sultana N. Rahman R. Electrospun nanofiber composite membranes based on cellulose acetate/nano-zeolite for the removal of oil from oily wastewater. Emergent Materials 2022 5 1 145 153 10.1007/s42247‑021‑00326‑y
    [Google Scholar]
  50. Das K. Krishnani K.K. Upadhyay A.K. Shukla S.P. Prasad K.P. Chakraborty P. Sarkar B. Fish waste capped and colloidal nanosilver and its valorization as natural zeolite conjugates for application in aquaculture. J. Dispers. Sci. Technol. 2024 45 7 1281 1295 10.1080/01932691.2023.2204980
    [Google Scholar]
  51. Othman E.Z. El-Attar A.B. El-Bahbohy R.M. Abd El-Khalek S.N. Morgan S.H. Mahmoud A.W.M. Exogenous appliance of nano-zeolite and nano-silicon elevate solidago canadensis invasive plant tolerance to water deficiency. Horticulturae 2023 9 2 172 10.3390/horticulturae9020172
    [Google Scholar]
  52. Liu J. Zhong X. Gao L. Zhang Y. Wang Z. Zhang X. Zhang B. Hierarchical porous Pd/HS-1 zeolite as an efficient and reusable catalysts for Suzuki-Miyaura reaction. Appl. Surf. Sci. 2024 659 159904 10.1016/j.apsusc.2024.159904
    [Google Scholar]
  53. Mohammadi H. Parviz L. Beyrami A. Anosheh-Bonab F. Ghorbanpour M. Exposure to TiO2 nanoparticles (NPs) and zeolite stimulates growth, physiology, and phytochemical characteristics and elevates Mentha piperita L. tolerance to salinity stress. Ind. Crops Prod. 2024 211 118228 10.1016/j.indcrop.2024.118228
    [Google Scholar]
  54. Ribeiro A.C. de Oliveira A.M. Beltran L.B. Diório A. Magalhães-Ghiotto G.A.V. de Abreu Filho B.A. de Almeida Duarte E.C.N.F. Bergamasco R. Antibacterial activity of functionalized natural zeolites (NZ-AgNPs) and its application in bacteriological water treatment and commercial paints. Environ. Nanotechnol. Monit. Manag. 2024 22 101001 10.1016/j.enmm.2024.101001
    [Google Scholar]
  55. Abdel-Gawad S.A. Fekry A.M. A novel environmental nano-catalyst of zeolite amended with carbon nanotube/silver nanoparticles decorated carbon paste electrode for electro-oxidation of propylene glycol. Sci. Rep. 2022 12 1 9136 10.1038/s41598‑022‑12268‑4 35650287
    [Google Scholar]
  56. Torbina V.V. Ivanchikova I.D. Kholdeeva O.A. Skobelev I.Y. Vodyankina O.V. Propylene glycol oxidation with tert -butyl hydroperoxide over Cr-containing metal-organic frameworks MIL-101 and MIL-100. Catal. Today 2016 278 97 103 10.1016/j.cattod.2016.04.008
    [Google Scholar]
  57. Jafari B. Rezaei E. Abbasi M. Hashemifard S.A. khosravi A. Sillanpää M. Application of mullite-zeolite-alumina microfiltration membranes coated by SiO2 nanoparticles for separation of oil-in-water emulsions. J. Eur. Ceram. Soc. 2022 42 13 6005 6014 10.1016/j.jeurceramsoc.2022.06.060
    [Google Scholar]
  58. Campoverde J. Guaya D. From waste to added-value product: synthesis of highly crystalline LTA zeolite from ore mining tailings. Nanomaterials 2023 13 8 1295 10.3390/nano13081295 37110881
    [Google Scholar]
  59. Alzahrani H.K. Katowah D.F. Chitosan and ferrite nanoparticles modified zeolite (ZSM-5) as adsorbent for the removal of acid red dye from water. Int. J. Polym. Sci. 2024 2024 1 1 15 10.1155/2024/1899137
    [Google Scholar]
  60. Ruíz-Baltazar Á.J. Reyes-López S.Y. Méndez-Lozano N. Medellín-Castillo N.A. Pérez R. Sustainable zeolite–silver nanocomposites via green methods for water contaminant mitigation and modeling approaches. Nanomaterials 2024 14 3 258 10.3390/nano14030258 38334529
    [Google Scholar]
  61. Zhang Y. Wang W. Zhou L. Zhang Y. An active and stable catalyst of Zn modified Pt nanoparticles encapsulated within silicalite-1 zeolite for dehydrogenation of ethane. Appl. Surf. Sci. 2024 648 159099 10.1016/j.apsusc.2023.159099
    [Google Scholar]
  62. Faghihian H. Moayed M. Firooz A. Iravani M. Evaluation of a new magnetic zeolite composite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium and thermodynamic studies. C. R. Chim. 2013 17 2 108 117 10.1016/j.crci.2013.02.006
    [Google Scholar]
  63. Kozera-Sucharda B. Gworek B. Kondzielski I. The simultaneous removal of zinc and cadmium from multicomponent aqueous solutions by their sorption onto selected natural and synthetic zeolites. Minerals 2020 10 4 343 10.3390/min10040343
    [Google Scholar]
  64. Paris E.C. Malafatti J.O.D. Musetti H.C. Manzoli A. Zenatti A. Escote M.T. Faujasite zeolite decorated with cobalt ferrite nanoparticles for improving removal and reuse in Pb2+ ions adsorption. Chin. J. Chem. Eng. 2020 28 7 1884 1890 10.1016/j.cjche.2020.04.019
    [Google Scholar]
  65. Nogueira H. Toma S. Silveira A. Jr Araki K. Zeolite-SPION nanocomposite for ammonium and heavy metals removal from wastewater. J. Braz. Chem. Soc. 2020 31 2342 2350 10.21577/0103‑5053.20200097
    [Google Scholar]
  66. Oliveira L.C.A. Petkowicz D.I. Smaniotto A. Pergher S.B.C. Magnetic zeolites: A new adsorbent for removal of metallic contaminants from water. Water Res. 2004 38 17 3699 3704 10.1016/j.watres.2004.06.008 15350421
    [Google Scholar]
  67. Doula M.K. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res. 2009 43 15 3659 3672 10.1016/j.watres.2009.05.037 19576609
    [Google Scholar]
  68. Yuan M.L. Yu L. Tao J.H. Song C. Preparation of magnetically modified zeolites and the application of metal ions adsorption. Adv. Mat. Res. 2011 299-300 764 769 10.4028/www.scientific.net/AMR.299‑300.764
    [Google Scholar]
  69. Javanbakht V. Ghoreishi S.M. Application of response surface methodology for optimization of lead removal from an aqueous solution by a novel superparamagnetic nanocomposite. Adsorpt. Sci. Technol. 2017 35 1-2 241 260 10.1177/0263617416674474
    [Google Scholar]
  70. Su C. Xu Y. Zhang W. Liu Y. Li J. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water. Appl. Surf. Sci. 2012 258 7 2319 2323 10.1016/j.apsusc.2011.10.005
    [Google Scholar]
  71. Mallette A.J. Shilpa K. Rimer J.D. The current understanding of mechanistic pathways in zeolite crystallization. Chem. Rev. 2024 124 6 3416 3493 10.1021/acs.chemrev.3c00801 38484327
    [Google Scholar]
  72. Liaquat I. Munir R. Abbasi N.A. Sadia B. Muneer A. Younas F. Sardar M.F. Zahid M. Noreen S. Exploring zeolite-based composites in adsorption and photocatalysis for toxic wastewater treatment: Preparation, mechanisms, and future perspectives. Environ. Pollut. 2024 349 123922 10.1016/j.envpol.2024.123922 38580064
    [Google Scholar]
  73. Kumari S. Chowdhry J. Kumar M. Chandra Garg M. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects. Environ. Res. 2024 260 119782 10.1016/j.envres.2024.119782 39142462
    [Google Scholar]
  74. Radoor S. Karayil J. Jayakumar A. Parameswaranpillai J. Siengchin S. Efficient removal of methyl orange from aqueous solution using mesoporous ZSM-5 zeolite: Synthesis, kinetics and isotherm studies. Colloids Surf. A Physicochem. Eng. Asp. 2021 611 125852 10.1016/j.colsurfa.2020.125852
    [Google Scholar]
  75. Gadore V. Mishra S.R. Yadav N. Yadav G. Ahmaruzzaman M. Advances in zeolite-based materials for dye removal: Current trends and future prospects. Inorg. Chem. Commun. 2024 166 112606 10.1016/j.inoche.2024.112606
    [Google Scholar]
  76. Kordala N. Wyszkowski M. Zeolite properties, methods of synthesis, and selected applications. Molecules 2024 29 5 1069 10.3390/molecules29051069 38474578
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137360904250103053003
Loading
/content/journals/cnano/10.2174/0115734137360904250103053003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test