Skip to content
2000
image of Advances on Highly Selective and Non-Invasive Screening of Cancer Biomarkers using Surface Enhanced Raman Scattering with Nanoparticles

Abstract

Cancer has long been the leading cause of death in many countries. This complex category of diseases is characterized by the uncontrolled growth and spread of abnormal cells. To reduce the cancer mortality rate, early detection of the disease is essential. As a result, extensive research is directed towards the early identification of the cancer disease by developing novel cancer cell detection technologies. One such novel technology is Surface Enhanced Raman Scattering [SERS]. This technique is highly sensitive because of the highly enhanced SERS signals due to metal nanoparticles, which allow the detection of ultra-low concentration [femto-molar] of several important cancer biomarkers. Moreover, metal nanoparticle-based SERS is found to be more sensitive and can be used for the detection of cancer cells or biomarkers over a longer period. The SERS is also useful for multiple biomarker detection. Compared to other fluorescence bands, Raman bands are narrower, which allows for the individual and simultaneous detection of multiple biomarkers. In this context, we have outlined the latest advancements in SERS for the effective detection of cancer biomarkers. Additionally, we discuss the current challenges and future potential of SERS in cancer cell detection.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137351673241121072348
2025-01-13
2025-04-26
Loading full text...

Full text loading...

References

  1. Siegel R. Ma J. Zou Z. Jemal A. Cancer statistics, 2014. CA Cancer J. Clin. 2014 64 1 9 29 10.3322/caac.21208 24399786
    [Google Scholar]
  2. Worldwide cancer data. 2022 Available from:https://www.wcrf.org/cancer-trends/worldwide-cancer-data/ (accessed on 4-11-2024).
  3. Bs A. P A. As S.G. A P. J V.P. Analysis of differentially expressed genes in dysplastic oral keratinocyte cell line and their role in the development of HNSCC. J. Stomatol. Oral Maxillofac. Surg. 2024 125 4 101928 10.1016/j.jormas.2024.101928 38815724
    [Google Scholar]
  4. Arumugam P. Targeting oncogenic protein arginine methyltransferase 5 as a treatment strategy for head and neck cancer. Oral Oncol. Rep. 2024 10 100334 100334 10.1016/j.oor.2024.100334
    [Google Scholar]
  5. Anitha P. Paramasivam A. Priyadharsini V.J. Evolution of CRISPR technology and its implications in oral cancer diagnosis. Oral Oncol. Rep. 2024 10 100403 100403 10.1016/j.oor.2024.100403
    [Google Scholar]
  6. Sridharan G. Ganapathy D. Ramadoss R. Atchudan R. Arya S. Sundramoorthy A.K. Biosensors for rapid and accurate determination of oral cancer. Oral Oncol. Rep. 2023 5 100021 100021 10.1016/j.oor.2023.100021
    [Google Scholar]
  7. Balu S. Sundramoorthy A.K. Label-free immunosensors for the ultrasensitive detection of cancer biomarkers. Oral Oncol. Rep. 2024 10 100273 100273 10.1016/j.oor.2024.100273
    [Google Scholar]
  8. Sundramoorthy A.K. Selection of best biomarker for the early detection of oral squamous cell carcinoma. Oral Oncol. Rep. 2024 9 100197 100197 10.1016/j.oor.2024.100197
    [Google Scholar]
  9. Sridharan G. Atchudan R. Magesh V. Arya S. Ganapathy D. Nallaswamy D. Sundramoorthy A.K. Advanced electrocatalytic materials based biosensors for cancer cell detection – A review. Electroanalysis 2023 35 9 e202300093 10.1002/elan.202300093
    [Google Scholar]
  10. Madhivanan K. Atchudan R. Arya S. Sundramoorthy A.K. Utilization of nanomaterials functionalized bio-field-effect transistors for detection of cancer biomarkers. Oral Oncol. Rep. 2024 10 100363 100363 10.1016/j.oor.2024.100363
    [Google Scholar]
  11. Tian M. Wu R. Xiang C. Niu G. Guan W. Recent advances in fluorescent probes for cancer biomarker detection. Molecules 2024 29 5 1168 10.3390/molecules29051168 38474680
    [Google Scholar]
  12. Wang H. Wu T. Li M. Tao Y. Recent advances in nanomaterials for colorimetric cancer detection. J. Mater. Chem. B Mater. Biol. Med. 2021 9 4 921 938 10.1039/D0TB02163F 33367450
    [Google Scholar]
  13. Madhivanan K. Ganapathy D. Sundramoorthy A.K. Molecularly imprinted polymers based sensors for identification of various cancer biomarkers. Oral Oncol. Rep. 2024 9 100211 100211 10.1016/j.oor.2024.100211
    [Google Scholar]
  14. Law W.C. Yong K.T. Baev A. Prasad P.N. Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano 2011 5 6 4858 4864 10.1021/nn2009485 21510685
    [Google Scholar]
  15. Sundramoorthy A.K. Atchudan R. Arya S. Utilization of Raman spectroscopy in biochemical fingerprint analysis for oral cancer screening and diagnosis. Oral Oncol. 2022 135 106192 106192 10.1016/j.oraloncology.2022.106192 36270203
    [Google Scholar]
  16. Issaq H.J. Veenstra T.D. The role of electrophoresis in disease biomarker discovery. Electrophoresis 2007 28 12 1980 1988 10.1002/elps.200600834 17503404
    [Google Scholar]
  17. Wu L. Qu X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 2015 44 10 2963 2997 10.1039/C4CS00370E 25739971
    [Google Scholar]
  18. Qian J. Zhao L. Huang Y. Zhao C. Liu H. Liu X. Cheng Z. Yu F. A microdroplet SERS-RCA biosensor with enhanced specificity and reproducibility for profiling dual miRNAs in idiopathic pulmonary fibrosis diagnosis and monitoring. Chem. Eng. J. 2024 482 149012 149012 10.1016/j.cej.2024.149012
    [Google Scholar]
  19. Chakraborty A. Ghosh A. Barui A. Advances in surface‐enhanced Raman spectroscopy for cancer diagnosis and staging. J. Raman Spectrosc. 2020 51 1 7 36 10.1002/jrs.5726
    [Google Scholar]
  20. Nargis H.F. Nawaz H. Bhatti H.N. Jilani K. Saleem M. Comparison of surface enhanced Raman spectroscopy and Raman spectroscopy for the detection of breast cancer based on serum samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 246 119034 119034 10.1016/j.saa.2020.119034 33049470
    [Google Scholar]
  21. Sridharan G. Murugan R.V. Atchudan R. Arya S. Sundramoorthy A.K. Electrochemical detection of dopamine using green synthesized gold nanoparticles from Strobilanthes kunthiana’s leaf extract. Nano Life 2024 2024 S1793984424500156 10.1142/S1793984424500156
    [Google Scholar]
  22. Koo K.M. Wee E.J.H. Mainwaring P.N. Wang Y. Trau M. Toward precision medicine: A cancer molecular subtyping nano‐strategy for RNA biomarkers in tumor and urine. Small 2016 12 45 6233 6242 10.1002/smll.201602161 27717152
    [Google Scholar]
  23. Chang H. Kang H. Ko E. Jun B.H. Lee H.Y. Lee Y.S. Jeong D.H. PSA detection with femtomolar sensitivity and a broad dynamic range using SERS nanoprobes and an area-scanning method. ACS Sens. 2016 1 6 645 649 10.1021/acssensors.6b00053
    [Google Scholar]
  24. Wang J. Koo K.M. Wee E.J.H. Wang Y. Trau M. A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples. Nanoscale 2017 9 10 3496 3503 10.1039/C6NR09928A 28240336
    [Google Scholar]
  25. Li X. Zhang Y. Xue B. Kong X. Liu X. Tu L. Chang Y. Zhang H. A SERS nano-tag-based fiber-optic strategy for in situ immunoassay in unprocessed whole blood. Biosens. Bioelectron. 2017 92 517 522 10.1016/j.bios.2016.10.070 27836611
    [Google Scholar]
  26. Yang K. Hu Y. Dong N. Zhu G. Zhu T. Jiang N. A novel SERS-based magnetic aptasensor for prostate specific antigen assay with high sensitivity. Biosens. Bioelectron. 2017 94 286 291 10.1016/j.bios.2017.02.048 28292735
    [Google Scholar]
  27. Yang L. Gao M.X. Zhan L. Gong M. Zhen S.J. Huang C.Z. An enzyme-induced Au@Ag core–shell nanoStructure used for an ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarkers. Nanoscale 2017 9 7 2640 2645 10.1039/C6NR07979B 28155925
    [Google Scholar]
  28. Granger J.H. Granger M.C. Firpo M.A. Mulvihill S.J. Porter M.D. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel. Analyst (Lond.) 2013 138 2 410 416 10.1039/C2AN36128K 23150876
    [Google Scholar]
  29. Ma H. Sun X. Chen L. Han X.X. Zhao B. Lu H. He C. Antibody-free discrimination of protein biomarkers in human serum based on surface-enhanced Raman spectroscopy. Anal. Chem. 2018 90 21 12342 12346 10.1021/acs.analchem.8b03701 30338981
    [Google Scholar]
  30. Lu Z. Huang Y. Cao M. Electrochemical surface-enhanced Raman spectroscopy for structure analysis of 1, 4-benzenedithiol assembled on gold nanoparticles. Int. J. Electrochem. Sci. 2022 17 9 220970 10.20964/2022.09.64
    [Google Scholar]
  31. Li M. Cushing S.K. Zhang J. Suri S. Evans R. Petros W.P. Gibson L.F. Ma D. Liu Y. Wu N. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 2013 7 6 4967 4976 10.1021/nn4018284 23659430
    [Google Scholar]
  32. Fleischmann M. Hendra P.J. McQuillan A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974 26 2 163 166 10.1016/0009‑2614(74)85388‑1
    [Google Scholar]
  33. Boujday S. Chapelle M. Srajer J. Knoll W. Enhanced vibrational spectroscopies as tools for small molecule biosensing. Sensors (Basel) 2015 15 9 21239 21264 10.3390/s150921239 26343666
    [Google Scholar]
  34. Subash R. Sridharan G. Nallaswamy D. Atchudan R. Arya S. Sundramoorthy A.K. Electrochemical detection of nitrofurantoin using green synthesized silver-doped palladium nanocluster-modified sensor. Nanosci. Nanotechnol. Asia 2024 14 3 e250324228304 10.2174/0122106812282033240320102203
    [Google Scholar]
  35. Ito T. Okazaki S. Pushing the limits of lithography. Nature 2000 406 6799 1027 1031 10.1038/35023233 10984061
    [Google Scholar]
  36. Chen Y. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015 135 57 72 10.1016/j.mee.2015.02.042
    [Google Scholar]
  37. Colson P. Henrist C. Cloots R. Nanosphere lithography: A powerful method for the controlled manufacturing of nanomaterials. J. Nanomater. 2013 2013 1 948510 10.1155/2013/948510
    [Google Scholar]
  38. Guo L.J. Recent progress in nanoimprint technology and its applications. J. Phys. D Appl. Phys. 2004 37 11 R123 R141 10.1088/0022‑3727/37/11/R01
    [Google Scholar]
  39. Smith C.J. Osborn A.M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 2009 67 1 6 20 10.1111/j.1574‑6941.2008.00629.x 19120456
    [Google Scholar]
  40. Teymouri M. Mollazadeh S. Mortazavi H. Naderi Ghale-noie Z. Keyvani V. Aghababaei F. Hamblin M.R. Abbaszadeh-Goudarzi G. Pourghadamyari H. Hashemian S.M.R. Mirzaei H. Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathol. Res. Pract. 2021 221 153443 153443 10.1016/j.prp.2021.153443 33930607
    [Google Scholar]
  41. Arya S.K. Estrela P. Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection. Sensors (Basel) 2018 18 7 2010 10.3390/s18072010 29932161
    [Google Scholar]
  42. Nimse S.B. Sonawane M.D. Song K.S. Kim T. Biomarker detection technologies and future directions. Analyst (Lond.) 2016 141 3 740 755 10.1039/C5AN01790D 26583164
    [Google Scholar]
  43. Cheng Z. Choi N. Wang R. Lee S. Moon K.C. Yoon S.Y. Chen L. Choo J. Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 2017 11 5 4926 4933 10.1021/acsnano.7b01536 28441008
    [Google Scholar]
  44. Schlücker S. SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 2009 10 9-10 1344 1354 10.1002/cphc.200900119 19565576
    [Google Scholar]
  45. Xu K. Zhou R. Takei K. Hong M. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. (Weinh.) 2019 6 16 1900925 10.1002/advs.201900925 31453071
    [Google Scholar]
  46. Connolly J.M. Davies K. Kazakeviciute A. Wheatley A.M. Dockery P. Keogh I. Olivo M. Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-enhanced Raman spectroscopy and multivariate analysis. Nanomedicine 2016 12 6 1593 1601 10.1016/j.nano.2016.02.021 27015768
    [Google Scholar]
  47. Tan Y. Yan B. Xue L. Li Y. Luo X. Ji P. Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma. Lipids Health Dis. 2017 16 1 73 10.1186/s12944‑017‑0465‑y 28388900
    [Google Scholar]
  48. Clarke O.J.R. Goodall B.L. Hui H.P. Vats N. Brosseau C.L. Development of a SERS-based rapid vertical flow assay for point-of-care diagnostics. Anal. Chem. 2017 89 3 1405 1410 10.1021/acs.analchem.6b04710 28208248
    [Google Scholar]
  49. Dixon K. Bonon R. Ivander F. Ale Ebrahim S. Namdar K. Shayegannia M. Khalvati F. Kherani N.P. Zavodni A. Matsuura N. Using machine learning and silver nanoparticle-based surface-enhanced Raman spectroscopy for classification of cardiovascular disease biomarkers. ACS Appl. Nano Mater. 2023 6 17 15385 15396 10.1021/acsanm.3c01442 37706067
    [Google Scholar]
  50. Choi N. Dang H. Das A. Sim M.S. Chung I.Y. Choo J. SERS biosensors for ultrasensitive detection of multiple biomarkers expressed in cancer cells. Biosens. Bioelectron. 2020 164 112326 112326 10.1016/j.bios.2020.112326 32553352
    [Google Scholar]
  51. Balu S. Atchudan R. Arya S. Sundramoorthy A.K. The role of gold nanostructures in the development of detection devices for oral squamous cell carcinoma. Oral Oncol. Rep. 2024 9 100146 100146 10.1016/j.oor.2023.100146
    [Google Scholar]
  52. Qian X. Peng X.H. Ansari D.O. Yin-Goen Q. Chen G.Z. Shin D.M. Yang L. Young A.N. Wang M.D. Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008 26 1 83 90 10.1038/nbt1377 18157119
    [Google Scholar]
  53. Lussier F. Thibault V. Charron B. Wallace G.Q. Masson J.F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. Trends Analyt. Chem. 2020 124 115796 115796 10.1016/j.trac.2019.115796
    [Google Scholar]
  54. Guo S. Dong S. Metal nanomaterial-based self-assembly: Development, electrochemical sensing and SERS applications. J. Mater. Chem. 2011 21 42 16704 10.1039/c1jm11382h
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137351673241121072348
Loading
/content/journals/cnano/10.2174/0115734137351673241121072348
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Ag and Au nanoparticles ; Surface enhanced raman scattering ; biomarkers ; cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test