Skip to content
2000
image of Biosynthesized Silver Nanoparticles Generated from Eucalyptus camaldulensis Show Synergistic Efficacy Against Multidrug-resistant Bacteria

Abstract

Background

The use of plant extracts as both reducing and capping agents in the biosynthesis of silver nanoparticles (AgNPs) has a wide range of potential applications in addressing diverse biological challenges.

Objectives

The objective of this research was to broaden the scope of AgNPs by the use of a new phytochemical approach characterized by low toxicity and production cost.

Method

This method included the manufacture of nanoparticles using aqueous leaf extracts derived from .

Results

The biosynthesis of AgNPs was subjected to characterization using many analytical techniques. The findings from the transmission electron microscopy (TEM) analysis revealed the presence of mostly spherical-shaped silver nanoparticles (AgNPs). The size distribution of these AgNPs was shown to be influenced by the kind of plant leaf extract used. Specifically, AgNPs derived from extract exhibited lower sizes, ranging from 16 nm to 22 nm.

Conclusion

Silver nanoparticles (AgNPs) exhibit significantly enhanced antibacterial efficacy against a wide range of Gram-positive and Gram-negative bacterial strains, surpassing the potency of the plant extracts used in their production.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137347286241212141949
2025-01-02
2025-01-30
Loading full text...

Full text loading...

References

  1. Alabdallah N.M. Hasan M.M. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J. Biol. Sci. 2021 28 10 5631 5639 10.1016/j.sjbs.2021.05.081 34588874
    [Google Scholar]
  2. Chan Y.Y. Pang Y.L. Lim S. Chong W.C. Facile green synthesis of ZnO nanoparticles using natural-based materials: Properties, mechanism, surface modification and application. J. Environ. Chem. Eng. 2021 9 4 105417 10.1016/j.jece.2021.105417
    [Google Scholar]
  3. Makky E.A. Ali M.J. Microbial fermentation biotechnology of cooked chicken bone novel substrate for l -asparaginase production. Karbala Int. J. Modern Sci. 2017 3 4 202 211 10.1016/j.kijoms.2017.08.007
    [Google Scholar]
  4. Naikoo G.A. Mustaqeem M. Hassan I.U. Awan T. Arshad F. Salim H. Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. J. Saudi Chem. Soc. 2021 25 9 101304 10.1016/j.jscs.2021.101304
    [Google Scholar]
  5. Gour A. Jain N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019 47 1 844 851 10.1080/21691401.2019.1577878 30879351
    [Google Scholar]
  6. Dhand V. Soumya L. Bharadwaj S. Chakra S. Bhatt D. Sreedhar B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C 2016 58 36 43 10.1016/j.msec.2015.08.018 26478284
    [Google Scholar]
  7. Iravani S. Korbekandi H. Mirmohammadi S.V. Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 2014 9 6 385 406 26339255
    [Google Scholar]
  8. Jalal Ali M. Makky E.A. Zareen S. Yusoff M.M. Identification of bioactive phytochemicals using GC–mass and TLC to the estimation of antimicrobial susceptibility of plant extracts. J. Phys. Conf. Ser. 2019 10.1088/1742‑6596/1294/6/062013
    [Google Scholar]
  9. AlMatar M. Makky E.A. Mahmood M.H. Wen K.X. Qi T.B.G. In vitro antioxidant and antimicrobial studies of ethanolic plant extracts of P. granatum, O. stamineus, A. bilimbi, M. nigra, and E. longifolia. Curr. Pharm. Biotechnol. 2022 23 10 1284 1312 10.2174/1389201022666210615113854 34132178
    [Google Scholar]
  10. Shivakumar M. Nagashree K.L. Yallappa S. Manjappa S. Manjunath K.S. Dharmaprakash M.S. Biosynthesis of silver nanoparticles using pre-hydrolysis liquor of Eucalyptus wood and its effective antimicrobial activity. Enzyme Microb. Technol. 2017 97 55 62 10.1016/j.enzmictec.2016.11.006 28010773
    [Google Scholar]
  11. Gonçalves S. Moreira E. Andrade P.B. Valentão P. Romano A. Effect of in vitro gastrointestinal digestion on the total phenolic contents and antioxidant activity of wild Mediterranean edible plant extracts. Eur. Food Res. Technol. 2019 245 3 753 762 10.1007/s00217‑018‑3197‑y
    [Google Scholar]
  12. Palma A. Díaz M.J. Ruiz-Montoya M. Morales E. Giráldez I. Ultrasound extraction optimization for bioactive molecules from Eucalyptus globulus leaves through antioxidant activity. Ultrason. Sonochem. 2021 76 105654 10.1016/j.ultsonch.2021.105654 34198128
    [Google Scholar]
  13. Makky E.A. AlMatar M. Mahmood M.H. Ting O.W. Qi W.Z. Evaluation of the antioxidant and antimicrobial activities of ethyl acetate extract of Saccharomyces cerevisiae. Food Technol. Biotechnol. 2021 59 2 127 136 10.17113/ftb.59.02.21.6658 34316274
    [Google Scholar]
  14. González-Burgos E. Liaudanskas M. Viškelis J. Žvikas V. Janulis V. Gómez-Serranillos M.P. Antioxidant activity, neuroprotective properties and bioactive constituents analysis of varying polarity extracts from Eucalyptus globulus leaves. Yao Wu Shi Pin Fen Xi 2018 26 4 1293 1302 30249328
    [Google Scholar]
  15. Bello M. Jiddah-kazeem B. Fatoki T.H. Ibukun E.O. Akinmoladun A.C. Antioxidant property of Eucalyptus globulus Labill. Extracts and inhibitory activities on carbohydrate metabolizing enzymes related to type-2 diabetes. Biocatal. Agric. Biotechnol. 2021 36 102111 10.1016/j.bcab.2021.102111
    [Google Scholar]
  16. Aarthye P. Sureshkumar M. Green synthesis of nanomaterials: An overview. Mater. Today Proc. 2021 47 907 913 10.1016/j.matpr.2021.04.564
    [Google Scholar]
  17. Hirsch T. Zharnikov M. Shaporenko A. Stahl J. Weiss D. Wolfbeis O.S. Mirsky V.M. Size-controlled electrochemical synthesis of metal nanoparticles on monomolecular templates. Angew. Chem. Int. Ed. 2005 44 41 6775 6778 10.1002/anie.200500912 16187366
    [Google Scholar]
  18. Korotchenkov O.A. Cantarero A. Shpak A.P. Kunitskii Y.A. Senkevich A.I. Borovoy M.O. Nadtochii A.B. Doped ZnS:Mn nanoparticles obtained by sonochemical synthesis. Nanotechnology 2005 16 10 2033 2038 10.1088/0957‑4484/16/10/008 20817966
    [Google Scholar]
  19. Nadagouda M.N. Speth T.F. Varma R.S. Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res. 2011 44 7 469 478 10.1021/ar1001457 21526846
    [Google Scholar]
  20. Panda S.K. Sen S. Roy S. Moyez A. Synthesis of colloidal silver nanoparticles by reducing aqueous AgNO3 using green reducing agents. Mater. Today Proc. 2018 5 3 10054 10061 10.1016/j.matpr.2017.10.206
    [Google Scholar]
  21. Corciova A. Ivanescu B. Biosynthesis, characterisation and therapeutic applications of plant-mediated silver nanoparticles. J. Serb. Chem. Soc. 2018 83 5 515 538 10.2298/JSC170731021C
    [Google Scholar]
  22. Yin I.X. Zhang J. Zhao I.S. Mei M.L. Li Q. Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine 2020 15 2555 2562 10.2147/IJN.S246764 32368040
    [Google Scholar]
  23. Jankauskaitė V. Balčiūnaitienė A. Alexandrova R. Buškuvienė N. Žukienė K. Effect of cellulose microfiber silylation procedures on the properties and antibacterial activity of polydimethylsiloxane. Coatings 2020 10 6 567 10.3390/coatings10060567
    [Google Scholar]
  24. Zhang D. Xia J. Xu Y. Gong M. Zhou Y. Xie L. Fang X. Biological features of biofilm-forming ability of Acinetobacter baumannii strains derived from 121 elderly patients with hospital-acquired pneumonia. Clin. Exp. Med. 2016 16 1 73 80 10.1007/s10238‑014‑0333‑2 25543268
    [Google Scholar]
  25. Mathur T. Singhal S. Khan S. Upadhyay D.J. Fatma T. Rattan A. Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods. Indian J. Med. Microbiol. 2006 24 1 25 29 10.1016/S0255‑0857(21)02466‑X 16505551
    [Google Scholar]
  26. Lewus C.B. Kaiser A. Montville T.J. Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl. Environ. Microbiol. 1991 57 6 1683 1688 10.1128/aem.57.6.1683‑1688.1991 1908209
    [Google Scholar]
  27. Ohikhena F.U. Wintola O.A. Afolayan A.J. Evaluation of the antibacterial and antifungal properties of Phragmanthera capitata (sprengel) balle (loranthaceae), a mistletoe growing on rubber tree, using the dilution techniques. Sci. World J. 2017 2017 9658598
    [Google Scholar]
  28. Balčiūnaitienė A. Liaudanskas M. Puzerytė V. Viškelis J. Janulis V. Viškelis P. Eucalyptus globulus and Salvia officinalis extracts mediated green synthesis of silver nanoparticles and their application as an antioxidant and antimicrobial agent. Plants (Basel) 2022 11 8 1085
    [Google Scholar]
  29. Jeon H.B. Tsalu P.V. Ha J.W. Shape effect on the refractive index sensitivity at localized surface plasmon resonance inflection points of single gold nanocubes with vertices. Sci. Rep. 2019 9 1 13635 10.1038/s41598‑019‑50032‑3 31541135
    [Google Scholar]
  30. Amirjani A. Firouzi F. Haghshenas D.F. Predicting the size of silver nanoparticles from their optical properties. Plasmonics 2020 15 4 1077 1082 10.1007/s11468‑020‑01121‑x
    [Google Scholar]
  31. De Oliveira D.M.P. Forde B.M. Kidd T.J. Harris P.N.A. Schembri M.A. Beatson S.A. Paterson D.L. Walker M.J. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020 33 3 e00181-19 10.1128/CMR.00181‑19 32404435
    [Google Scholar]
  32. Khameneh B. Iranshahy M. Soheili V. Fazly Bazzaz B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control 2019 8 1 118 10.1186/s13756‑019‑0559‑6 31346459
    [Google Scholar]
  33. Alavi M. Karimi N. Antibacterial, hemoglobin/albumin-interaction, and molecular docking properties of phytogenic AgNPs functionalized by three antibiotics of penicillin, amoxicillin, and tetracycline. Microb. Pathog. 2022 164 105427 10.1016/j.micpath.2022.105427 35114351
    [Google Scholar]
  34. Aziz S.B. Abdullah O.G. Saber D.R. Rasheed M.A. Ahmed H.M. Investigation of metallic silver nanoparticles through UV-Vis and optical micrograph techniques. Int. J. Electrochem. Sci. 2017 12 1 363 373 10.20964/2017.01.22
    [Google Scholar]
  35. Rodrigues A.S. Batista J.G.S. Rodrigues M.Á.V. Thipe V.C. Minarini L.A.R. Lopes P.S. Lugão A.B. Advances in silver nanoparticles: A comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front. Microbiol. 2024 15 1440065 10.3389/fmicb.2024.1440065 39149204
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137347286241212141949
Loading
/content/journals/cnano/10.2174/0115734137347286241212141949
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: AgNPs ; Green synthesis ; MDR ; Antibacterial activity ; E. camaldulensis ; Biofilm
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test