Skip to content
2000
image of Low-Power Design of Fully Digital BPSK Modulator and Demodulator Utilizing Nanoscale FinFET for Smart Implants

Abstract

This study aims to create a high-speed, low-power data transmission solution for implantable medical devices based on cutting-edge FinFET technology. The work examines the application of Binary Phase Shift Keying (BPSK) modulation through a transmission gate design, which provides an optimal blend of low resistance, high-speed performance, and minimal power consumption. Additionally, the work includes the design of a sine-to-square wave converter and a modulating signal generator. FinFET is employed owing to its high switching speed, low power consumption, low leakage current, and excellent tolerance of short channel effects. The design exhibits a steady electric field at the source end, a high electrostatic potential, and an improved ON current at low work function values using Sentaurus TCAD simulations of a 20nm FinFET, allowing high-speed data modulation in smart implants. A non-overlapping phase generator, a low-power, current-starved gated ring oscillator, a frequency divider utilizing a True Single Phase Clock D-Flip-flop, and an XOR gate serving as a pulse counter are all featured in the design of the BPSK demodulator. This work is significant for its ability to drastically reduce power consumption to 1.75µW while retaining high data transmission speeds, making it perfect for next-generation implantable medical devices. With a 0.9 V power supply, this FinFET-based BPSK modulator and demodulator achieve a far lower power consumption than conventional CMOS-based designs, which increases device longevity and efficiency in settings with limited resources.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137343365241122102200
2024-12-03
2024-12-27
Loading full text...

Full text loading...

References

  1. Abyzova E. Dogadina E. Rodriguez R.D. Petrov I. Kolesnikova Y. Zhou M. Liu C. Sheremet E. Beyond tissue replacement: The emerging role of smart implants in healthcare. Mater. Today Bio 2023 22 100784 10.1016/j.mtbio.2023.100784 37731959
    [Google Scholar]
  2. Gaobotse G. Mbunge E. Batani J. Muchemwa B. Non-invasive smart implants in healthcare: Redefining healthcare services delivery through sensors and emerging digital health technologies. Sens. Int. 2022 3 100156 10.1016/j.sintl.2022.100156
    [Google Scholar]
  3. Javaid M. Haleem A. Singh R.P. Rab S. Suman R. Exploring the potential of nanosensors: A brief overview. Sens. Int. 2021 2 100130 10.1016/j.sintl.2021.100130
    [Google Scholar]
  4. Sharma R.K. Dimitriadis C.A. Bucher M. A comprehensive analysis of nanoscale single and multi-gate MOSFETs. Microelectronics J. 2016 52 66 72 10.1016/j.mejo.2016.03.004
    [Google Scholar]
  5. Scholl M. Saalfeld T. Mueller J.H. Zhang Y. Bonehi V. Beyerstedt C. Speicher F. Schrey M. Wunderlich R. Heinen S.A. Multistandard, triple band wireless transceiver in a 130 nm CMOS technology with integrated PAs for IoT applications. 2018 IEEE Radio and Wireless Symposium (RWS) 2018 88 90
    [Google Scholar]
  6. Mansour M. Mansour I. DC-10 GHz broadband linear power amplifier for 5G applications using 180 nm CMOS technology. AEU Int. J. Electron. Commun. 2023 160 154518 10.1016/j.aeue.2022.154518
    [Google Scholar]
  7. Alzaher H.A. Novel Schmitt trigger and square-wave generator using single current amplifier. IEEE Access 2019 7 186175 186181 10.1109/ACCESS.2019.2961640
    [Google Scholar]
  8. Kim D. Kih J. Kim W. A new waveform-reshaping circuit: An alternative approach to schmitt trigger. IEEE J. Solid-State Circuits 1993 28 2 162 164 10.1109/4.192048
    [Google Scholar]
  9. Kytonaki E-S.A. Papananos Y. A low-voltage differentially tuned current-adjusted 5.5-GHz quadrature VCO in 65-nm CMOS technology. IEEE Trans. Circuits Syst. II Express Briefs 2011 58 5 254 258 10.1109/TCSII.2011.2149010
    [Google Scholar]
  10. Collaert N. Dixit A. Goodwin M. Anil K.G. Rooyackers R. Degroote B. Leunissen L.H.A. Veloso A. Jonckheere R. DeMeyer K. Jurczak M. Biesemans S. A functional 41-stage ring oscillator using scaled FinFET devices with 25-nm gate lengths and 10-nm fin widths applicable for the 45-nm CMOS node. IEEE Electron Device Lett. 2004 25 8 568 570 10.1109/LED.2004.831585
    [Google Scholar]
  11. Jang S-L. Huang S-S. Lee C-F. Juang M-H. CMOS quadrature VCO implemented with two first-harmonic injection-locked oscillators. IEEE Microw. Wirel. Compon. Lett. 2008 18 10 695 697 10.1109/LMWC.2008.2003476
    [Google Scholar]
  12. Maier J. Steininger A. Najvirt R. The Hidden Behavior of a D-Latch. IEEE Trans. Circuits Syst. I Regul. Pap. 2023 70 4 1660 1670 10.1109/TCSI.2023.3237283
    [Google Scholar]
  13. Arafa E. Zekry A. Shawkey H. Ali M. A CMOS RF Transmitter For LTE Applications: Implementation and Simulation. 2019 Novel Intelligent and Leading Emerging Sciences Conference NILES 2019 1 55 58
    [Google Scholar]
  14. Lin J. Wang L. Lu Y. Zhan C. A nano-watt dual-output subthreshold CMOS voltage reference. IEEE Open J. Circuits Syst. 2020 1 100 106 10.1109/OJCAS.2020.3005546
    [Google Scholar]
  15. Liu X. Jin J. Wang X. Zhou J.A. 2.4 GHz receiver with a current-reused inductor-less noise-canceling balun LNA in 40 nm CMOS. Microelectronics J. 2021 113 105065 10.1016/j.mejo.2021.105065
    [Google Scholar]
  16. Erol As D. Yelten M.B.A. Highly-Linear, Sub-MW LNA at 2.4 GHz in 40 nm CMOS Process. Integration (Amst.) 2023 88 278 285 10.1016/j.vlsi.2022.09.010
    [Google Scholar]
  17. Ramos J. Ausín J.L. Torelli G. Duque-Carrillo J.F. Design tradeoffs for Sub-MW CMOS biomedical limiting amplifiers. Microelectronics J. 2013 44 10 904 911 10.1016/j.mejo.2012.12.011
    [Google Scholar]
  18. Póvoa R. Canelas A. Martins R. Horta N. Lourenço N. Goes J. A new family of CMOS Inverter-Based OTAs for biomedical and healthcare applications. Integration (Amst.) 2020 71 38 48 10.1016/j.vlsi.2019.12.004
    [Google Scholar]
  19. Masius A.A. Wong Y.C. On-chip miniaturized antenna in CMOS technology for biomedical implant. AEU Int. J. Electron. Commun. 2020 115 153025 10.1016/j.aeue.2019.153025
    [Google Scholar]
  20. Sharma D. Nath V. CMOS operational amplifier design for industrial and biopotential applications: Comprehensive review and circuit implementation. RINENG 2024 22 102357 10.1016/j.rineng.2024.102357
    [Google Scholar]
  21. Rosner W. Landgraf E. Kretz J. Dreeskornfeld L. Schafer H. Stadele M. Schulz T. Hofmann F. Luyken R.J. Specht M. Hartwich J. Pamler W. Risch L. Nanoscale FinFETs for Low Power Applications. International Semiconductor Device Research Symposium 2003 452 453
    [Google Scholar]
  22. Razavieh A. Zeitzoff P. Nowak E.J. Challenges and Limitations of CMOS Scaling for FinFET and Beyond Architectures. IEEE Trans. Nanotechnol. 2019 18 999 1004 10.1109/TNANO.2019.2942456
    [Google Scholar]
  23. Subramanian V. Parvais B. Borremans J. Mercha A. Linten D. Wambacq P. Loo J. Dehan M. Gustin C. Collaert N. Kubicek S. Lander R. Hooker J. Cubaynes F. Donnay S. Jurczak M. Groeseneken G. Sansen W. Decoutere S. Planar bulk MOSFETs versus FinFETs: An Analog/RF perspective. IEEE Trans. Electron Dev. 2006 53 12 3071 3079 10.1109/TED.2006.885649
    [Google Scholar]
  24. Colinge J.-P. FinFETs and Other Multi-Gate Transistors Springer : New York 2008
    [Google Scholar]
  25. Endo K. Ishikawa Y. Liu Y. Ishii K. Matsukawa T. O’uchi S. Masahara M. Sugimata E. Tsukada J. Yamauchi H. Suzuki E. Four-terminal FinFETs fabricated using an etch-back gate separation. IEEE Trans. Nanotechnol. 2007 6 2 201 205 10.1109/TNANO.2007.891830
    [Google Scholar]
  26. Umayia M. FinFET: A Revolution in Nanometer Regime. Emerging Electronics and Automation Springer Nature Singapore: Singapore 2022 403 417
    [Google Scholar]
  27. Sharma V.K. FinFET: A Beginning of Non-Planar Transistor Era. Nanoscale VLSI: Devices, Circuits and Applications Springer Singapore: Singapore 2020 139 159
    [Google Scholar]
  28. Reddy M.N. Kumar Panda D. A comprehensive review on FinFET in terms of its device structure and performance matrices. Silicon 2022 14 12015 12030 10.1007/s12633‑022‑01929‑8
    [Google Scholar]
  29. Maurya R.K. Bhowmick B. Review of FinFET devices and perspective on circuit design challenges. Silicon 2022 5783 5791
    [Google Scholar]
  30. Manoj C.R. Nagpal M. Varghese D. Rao V.R. Device design and optimization considerations for bulk FinFETs. IEEE Trans. Electron Dev. 2008 55 2 609 615 10.1109/TED.2007.912996
    [Google Scholar]
  31. King T-J. FinFETs for nanoscale CMOS digital integrated circuits. ICCAD-2005 IEEE/ACM International Conference on Computer-Aided Design 2005 2005 207 210 10.1109/ICCAD.2005.1560065
    [Google Scholar]
  32. Boukortt N.E.I. Lenka T.R. Patanè S. Crupi G. Effects of varying the fin width, fin height, gate dielectric material, and gate length on the DC and RF performance of a 14-nm SOI FINFET structure. Electronics 2022 11 1 10.3390/electronics11010091
    [Google Scholar]
  33. Yanambaka V.P. Mohanty S.P. Kougianos E. Ghai D. Ghai G. Process variation analysis and optimization of a FinFET-Based VCO. IEEE Trans. Semicond. Manuf. 2017 30 2 126 134 10.1109/TSM.2017.2669314
    [Google Scholar]
  34. Wood B.S. Khaja F.A. Colombeau B.P. Sun S. Waite A. Jin M. Chen H. Chan O. Thanigaivelan T. Pradhan N. Gossmann H-J.L. Sharma S. Chavva V.R. Cai M-P. Okazaki M. Munnangi S.S. Ni C-N. Suen W. Chang C-P. Mayur A. Variam N. Brand A.D. Fin doping by hot implant for 14nm FinFET technology and beyond. ECS Trans. 2013 58 9 249 10.1149/05809.0249ecst
    [Google Scholar]
  35. Dixit A. Kori P.K. Rajan C. Samajdar D.P. Design principles of 22-nm SOI LDD-FinFETs for ultra-low-power analog circuits. J. Electron. Mater. 2022 51 3 1029 1040 10.1007/s11664‑021‑09337‑1
    [Google Scholar]
  36. Kori P.K. Dixit A. Rajan C. Samajdar D.P. 22 nm LDD FinFET based novel mixed signal application: Design and investigation. Silicon 2022 14 15 9453 9465 10.1007/s12633‑021‑01535‑0
    [Google Scholar]
  37. Priydarshi A. Chattopadhyay M.K. Low-power and high-speed technique for logic gates in 20nm double-gate FinFET technology. J. Phys. Conf. Ser. 2016 755
    [Google Scholar]
  38. Karimi Fa. Orouji A.A. A new nanoscale fin field effect transistor with embedded intrinsic region for high temperature applications. Superlattices Microstruct. 2016 96 47 58 10.1016/j.spmi.2016.05.006
    [Google Scholar]
  39. Sonkusare R. Joshi O. Rathod S.S. SOI FinFET based instrumentation amplifier for biomedical applications. Microelectronics J. 2019 91 1 10 10.1016/j.mejo.2019.07.005
    [Google Scholar]
  40. Santhosh Rani M. Vinothkumar K. Krishnamoorthy R. Jayasankar T. Prakash N.B. Bharatiraja C. Design of low power VCO using FinFET technology for biomedical applications. Mater. Today Proc. 2021 45 2145 2151 10.1016/j.matpr.2020.09.736
    [Google Scholar]
  41. Vijaya P. Lorenzo R. Performance analysis of gate engineered High-K gate oxide stack SOI Fin-FET for 5 nm technology. Nanosci. Nanotechnol. Asia 2022 13 1 10.2174/2210681213666221221141546
    [Google Scholar]
  42. Jena J. Jena D. Mohapatra E. Das S. Dash T.P. FinFET-based inverter design and optimization at 7 nm technology node. Silicon 2022 14 16 10781 10794 10.1007/s12633‑022‑01812‑6
    [Google Scholar]
  43. Walunj R.A. Kharate G.K. Design of DG FinFET based driver circuits for energy efficient sub threshold global interconnects. Analog Integr. Circuits Signal Process. 2022 113 1 41 60 10.1007/s10470‑022‑02051‑w
    [Google Scholar]
  44. Ul Haq S. Sharma V.K. Energy-efficient design for logic circuits using a leakage control configuration in FinFET technology. JTEIE(I):SB 2024 105 4 903 911
    [Google Scholar]
  45. Suruchi S. Effect of Various Structure Parameters on Electrical Characteristics of Double Gate FinFET. Mobile Radio Communications and 5G Networks Springer Nature Singapore: Singapore 2024 337 345
    [Google Scholar]
  46. Sivasankaran K. Mallick P.S. Radio Frequency Stability Performance of FinFET. Multigate Transistors for High Frequency Applications. Singapore Springer Nature Singapore 2023 49 60
    [Google Scholar]
  47. Lalruatfela M. Panchanan S. Maity R. Maity N.P. Metal gate work function engineering for nano-scaled trigate FinFET. Microsyst. Technol. 2024 2024 10.1007/s00542‑024‑05706‑y
    [Google Scholar]
  48. Suman J.V. Cheepurupalli K.K. Allasi H.L. Design of polymer-based trigate nanoscale FinFET for the implementation of two-stage operational amplifier. Int. J. Polym. Sci. 2022 2022 10.1155/2022/3963188
    [Google Scholar]
  49. Sunani S. Mahato S.S. Jena K. Swain R. Comparative analysis of single and triple material 10 nm Tri-Gate FinFET. J. Korean Phys. Soc. 2024 2024 10.1007/s40042‑024‑01169‑6
    [Google Scholar]
  50. Verma S. Tripathi S.L. Design and analysis of heterojunction inverted-T P-FinFET on 14nm technology node for use in low-power digital circuits. Silicon 2023 15 8 3725 3736 10.1007/s12633‑023‑02294‑w
    [Google Scholar]
  51. Bharath Sreenivasulu V. Narendar V. A comprehensive analysis of junctionless Tri-Gate (TG) FinFET towards low-power and high-frequency applications at 5-nm gate length. Silicon 2022 14 2009 2021 10.1007/s12633‑021‑00987‑8
    [Google Scholar]
  52. Kusuma R. Talari V.K.H.R. Dimensional effect on Analog/RF performance of dual material gate junctionless FinFET at 7 nm technology node. Transactions on Electrical and Electronic Materials 2023 24 3 178 187 10.1007/s42341‑023‑00440‑0
    [Google Scholar]
  53. Vijaya P. Lorenzo R. Performance investigation of Junction-Less (JL) High-K Vertical Stack Oxide (VSO) Ga2O3-FinFET for RF and linear applications. Microsyst. Technol. 2024 2024 10.1007/s00542‑024‑05784‑y
    [Google Scholar]
  54. Manmari A. Design and Analysis of 10-nm FD-SOI FinFET by Dual-Dielectric Spacers for High-Speed Switching. Advances in Microelectronics, Embedded Systems and IoT Springer Nature Singapore: Singapore 2024 209 218
    [Google Scholar]
  55. Amani M. Panigrahy A.K. Choubey A. Choubey S.B. Sreenivasulu V.B. Nair D.V. Swain R. Design and comparative analysis of FD-SOI FinFET with dual-dielectric spacers for high speed switching applications. Silicon 2024 16 4 1525 1534 10.1007/s12633‑023‑02767‑y
    [Google Scholar]
  56. Sentaurus Device User Guide, Version U-2022.12. Mountain View, California Synopsys, Inc. 2022
    [Google Scholar]
  57. Khalilov R. Future prospects of biomaterials in nanomedicine. AB&ES 2024 9 5 10 10.62476/abes.9s5
    [Google Scholar]
  58. Salahshour P. Nanobiomaterials/bioinks based scaffolds in 3D bioprinting for tissue engineering and artificial human organs. AB&ES 2024 9 97 104 10.62476/abes9s97
    [Google Scholar]
  59. Ullah N. Hasnain S.Z.U. Baloch R. Amin A. Nasibova A. Selakovic D. Rosic G.L. Islamov S. Naraliyeva N. Jaradat N. Mammadova A.O. Exploring essential oil-based bio-composites: molecular docking and in vitro analysis for oral bacterial biofilm inhibition. Front Chem. 2024 12 1383620 10.3389/fchem.2024.1383620 39086984
    [Google Scholar]
  60. Kesherwani S. Daga M. Mishra G.P. Design of Sub-40nm FinFET based label free biosensor. Silicon 2022 14 12459 12465 10.1007/s12633‑022‑01936‑9
    [Google Scholar]
  61. Madhavi K.B. Tripathi S.L. Saxena S. Ghai D. Raj B. Design and analysis of 18 nm multichannel FinFET as biosensor for detection of biological species. Silicon 2023 15 14 6313 6322 10.1007/s12633‑023‑02519‑y
    [Google Scholar]
  62. Mansour M. Zekry A. Ali M.K. Shawkey H. Analysis and design of a reconfigurable wideband I/Q modulator and ultra-wideband I/Q demodulator for multi-standard applications. Microelectronics J. 2020 102 104830 10.1016/j.mejo.2020.104830
    [Google Scholar]
  63. Maragowdanahalli Shivalingaiah N. Anamanahalli Mariyappa V.P. Performance analysis of FinFET-Based LVDS I/O receiver architecture. SN Comput Sci 2023 4 2 145 10.1007/s42979‑022‑01571‑6
    [Google Scholar]
  64. Gulhane S.V. Mishra G.P. Effect of temperature on RF and linearity performance of inverted-T FinFET. Trans. Electr. Electron. Mater. 2024 25 5 549 558 10.1007/s42341‑024‑00534‑3
    [Google Scholar]
  65. Sarangam K. Kumar A.S. Reddy B.N.K. Design and Investigation of the 22 nm FinFET Based Dynamic Latched Comparator for Low Power Applications. Trans. Electr. Electron. Mater. 2024 25 2 218 231 10.1007/s42341‑023‑00503‑2
    [Google Scholar]
  66. Udit K. FinFET Fractional Order Injection Locked Oscillator. Advances in Energy and Control Systems Singapore 2024 183 194
    [Google Scholar]
  67. Ghazi M. Maghami M.H. Amiri P. Hamedi-Hagh S. An ultra-low-power area-efficient non-coherent binary phase-shift keying demodulator for implantable biomedical microsystems. Electronics (Basel) 2020 9 7 1123 10.3390/electronics9071123
    [Google Scholar]
  68. Hosseinnejad M. Erfanian A. Karami M.A. A fully digital BPSK demodulator for biomedical application. Microelectronics J. 2018 81 76 83 10.1016/j.mejo.2018.09.009
    [Google Scholar]
  69. Best R.E. Kuznetsov N.V. Leonov G.A. Yuldashev M.V. Yuldashev R.V. Tutorial on dynamic analysis of the costas loop. Annu. Rev. Contr. 2016 42 27 49 10.1016/j.arcontrol.2016.08.003
    [Google Scholar]
  70. Luo Z. Sonkusale S. A Novel BPSK Demodulator for Biological Implants. IEEE Trans. Circuits Syst. I Regul. Pap. 2008 55 6 1478 1484 10.1109/TCSI.2008.918174
    [Google Scholar]
  71. Xu W. Luo Z. Sonkusale S. Fully Digital BPSK Demodulator and Multilevel LSK Back Telemetry for Biomedical Implant Transceivers. IEEE Trans. Circuits Syst. II Express Briefs 2009 56 9 714 718 10.1109/TCSII.2009.2027968
    [Google Scholar]
  72. Cho H. Lee H. Bae J. Yoo H-J.A. 5.2 MW IEEE 802.15.6 HBC Standard Compatible Transceiver With Power Efficient Delay-Locked-Loop Based BPSK Demodulator. IEEE J. Solid-State Circuits 2015 50 11 2549 2559 10.1109/JSSC.2015.2475179
    [Google Scholar]
  73. Pan L. Chen M. Chen Y. Zhu S. Liu Y. An energy-autonomous power-and-data telemetry circuit with digital-assisted-PLL-based bpsk demodulator for implantable flexible electronics applications. IEEE Open J. Circuits Syst. 2021 2 721 731 10.1109/OJCAS.2021.3119931
    [Google Scholar]
  74. Zhu Q. Xu Y.A. 228 µW 750 MHz BPSK demodulator based on injection locking. IEEE J. Solid-State Circuits 2011 46 2 416 423 10.1109/JSSC.2010.2090611
    [Google Scholar]
  75. Yasir U. Li X. Cao C. Low Power ASK modulator based on direct injection-locked current reuse VCO in 130-nm CMOS technology for high data rate RFID applications. Int. J. Circuit Theory Appl. 2022 50 1 56 71
    [Google Scholar]
  76. Wang Z. Chiang P-Y. Nazari P. Wang C-C. Chen Z. Heydari P.A. CMOS 210-GHz fundamental transceiver with OOK modulation. IEEE J. Solid-State Circuits 2014 49 3 564 580 10.1109/JSSC.2013.2297415
    [Google Scholar]
  77. Shahroury F.R. The design methodology of fully digital pulse width modulation. JLPEA 2021 11 4 10.3390/jlpea11040041
    [Google Scholar]
  78. Karim M.N. Istiaque Hossain S.M. Saha P.K. A Low Power, High Data Rate Ir-Uwb Pulse Generator with BPSK Modulation in 90nm CMOS Technology for on-Chip Wireless Interconnects. 2012 International Conference on Informatics, Electronics & Vision (ICIEV) 2012 87 90
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137343365241122102200
Loading
/content/journals/cnano/10.2174/0115734137343365241122102200
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: BPSK ; CMOS ; FinFET ; modulator ; implantable medical devices ; smart implants ; demodulator
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test