Skip to content
2000
image of Scaled-up Processes for the Preparation of Enhanced Antibacterial ZnO-Menthol, ZnO-Chitosan, and ZnO-Triclosan Flake/Spine-like Nanocomposites, and their Biocompatibility and Toxicity Studies

Abstract

Introduction

Nanomaterials, especially their biocompatibilities and toxicities, have not been studied and their integration in real applications is still limited.

Method

This paper addresses this gap by focusing on the development of antibacterial nanomaterials by combining flake/spinal ZnO nanostructures with organic antibacterial agents (menthol, chitosan, and triclosan). We systematically study their biocompatibility and toxicity, intending to apply them practically on fabric surfaces.

Result

Based on the known photocatalytic and antibacterial properties of ZnO, our hypothesis suggests that the unique flake/spine ZnO nanostructures can further improve the antibacterial efficacy through induced mechanistic approaches. The synergistic effect achieved by combining ZnO with menthol, chitosan, and triclosan improves the overall bactericidal ability. XRD, XRF, FTIR, SEM, and UV-visible spectroscopy are used to characterize the nanocomposites. The antibacterial properties of the modified fabrics are tested using standard spread plate techniques. Biocompatibility and toxicity studies using a mouse model provide a comprehensive picture of the safety profile.

Conclusion

This work advances the understanding of antibacterial nanomaterials, and paves the way for their wider manufacturing and practical use in textiles, meeting the industrial needs of antimicrobial clothing and wound dressings.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137325025241031151832
2024-11-11
2024-12-28
Loading full text...

Full text loading...

References

  1. Cook M.A. Wright G.D. The past, present, and future of antibiotics. Sci. Transl. Med. 2022 14 657 eabo7793 10.1126/scitranslmed.abo7793 35947678
    [Google Scholar]
  2. Mohammadi M. Karimi L. Mirjalili M. Simultaneous synthesis of nano ZnO and surface modification of polyester fabric. Fibers Polym. 2016 17 9 1371 1377 10.1007/s12221‑016‑6497‑5
    [Google Scholar]
  3. Muteeb G. Rehman M.T. Shahwan M. Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals (Basel) 2023 16 11 1615 10.3390/ph16111615 38004480
    [Google Scholar]
  4. Pino F. Fermo P. La Russa M. Ruffolo S. Comite V. Baghdachi J. Pecchioni E. Fratini F. Cappelletti G. Advanced mortar coatings for cultural heritage protection. Durability towards prolonged UV and outdoor exposure. Environ. Sci. Pollut. Res. Int. 2017 24 14 12608 12617 10.1007/s11356‑016‑7611‑3 27696194
    [Google Scholar]
  5. Saini S. Antimicrobial resistance associated with infectious diseases. Handbook on Antimicrobial Resistance Springer Singapore Mothadaka M.P. Vaiyapuri M. Rao Badireddy M. Nagarajrao Ravishankar C. Bhatia R. Jena J. 2023 1 29 10.1007/978‑981‑16‑9723‑4_49‑1
    [Google Scholar]
  6. Wallace M.J. Fishbein S.R.S. Dantas G. Antimicrobial resistance in enteric bacteria: Current state and next-generation solutions. Gut Microbes 2020 12 1 1799654 10.1080/19490976.2020.1799654 32772817
    [Google Scholar]
  7. Akhtar M.J. Ahamed M. Kumar S. Khan M.M. Ahmad J. Alrokayan S.A. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomedicine 2012 7 845 857 22393286
    [Google Scholar]
  8. Jones N. Ray B. Ranjit K.T. Manna A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008 279 1 71 76 10.1111/j.1574‑6968.2007.01012.x 18081843
    [Google Scholar]
  9. Nguyen V. Vu V. Nguyen T. Nguyen T. Tran V. Nguyen-Tri P. Antibacterial activity of TiO2-and ZnO-decorated with silver nanoparticles. J. Compos. Sci. 2019 3 2 61 10.3390/jcs3020061
    [Google Scholar]
  10. Sirelkhatim A. Mahmud S. Seeni A. Kaus N.H.M. Ann L.C. Bakhori S.K.M. Hasan H. Mohamad D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015 7 3 219 242 10.1007/s40820‑015‑0040‑x 30464967
    [Google Scholar]
  11. Sun X. Yin L. Zhu H. Zhu J. Hu J. Luo X. Huang H. Fu Y. Enhanced antimicrobial cellulose/chitosan/ZnO biodegradable composite membrane. Membranes (Basel) 2022 12 2 239 10.3390/membranes12020239 35207160
    [Google Scholar]
  12. Xie Y. He Y. Irwin P.L. Jin T. Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011 77 7 2325 2331 10.1128/AEM.02149‑10 21296935
    [Google Scholar]
  13. Lü H. Wang S. Deng C. Ren W. Guo B. Oxidative desulfurization of model diesel via dual activation by a protic ionic liquid. J. Hazard. Mater. 2014 279 220 225 10.1016/j.jhazmat.2014.07.005 25064259
    [Google Scholar]
  14. Raghupathi K.R. Koodali R.T. Manna A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011 27 7 4020 4028 10.1021/la104825u 21401066
    [Google Scholar]
  15. Shi L.E. Li Z.H. Zheng W. Zhao Y.F. Jin Y.F. Tang Z.X. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014 31 2 173 186 10.1080/19440049.2013.865147 24219062
    [Google Scholar]
  16. Venkatasubbu G.D. Baskar R. Anusuya T. Seshan C.A. Chelliah R. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids Surf. B Biointerfaces 2016 148 600 606 10.1016/j.colsurfb.2016.09.042 27694049
    [Google Scholar]
  17. Lee K.M. Lai C.W. Ngai K.S. Juan J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016 88 428 448 10.1016/j.watres.2015.09.045 26519627
    [Google Scholar]
  18. Yu J. Yu X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ. Sci. Technol. 2008 42 13 4902 4907 10.1021/es800036n 18678024
    [Google Scholar]
  19. Chen X. Li Y. Pan X. Cortie D. Huang X. Yi Z. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016 7 1 12273 10.1038/ncomms12273 27435112
    [Google Scholar]
  20. Kadiyala U. Kotov N.A. VanEpps J.S. Antibacterial metal oxide nanoparticles: Challenges in interpreting the literature. Curr. Pharm. Des. 2018 24 8 896 903 10.2174/1381612824666180219130659 29468956
    [Google Scholar]
  21. Mukherjee D. Sil M. Goswami A. Lahiri D. Nag M. Effectiveness of metal and metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations. J. Basic Microbiol. 2023 63 9 971 985 10.1002/jobm.202300013 37154193
    [Google Scholar]
  22. Rezaei M. Pirsa S. Chavoshizadeh S. Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J. Inorg. Organomet. Polym. Mater. 2020 30 7 2654 2665 10.1007/s10904‑019‑01407‑6
    [Google Scholar]
  23. Guo B. Zhao J. Xu Y. Wen X. Ren X. Huang X. Niu S. Dai Y. Gao R. Xu P. Li S. Noble metal phosphides supported on coni metaphosphate for efficient overall water splitting. ACS Appl. Mater. Interfaces 2024 16 7 8939 8948 10.1021/acsami.3c19077 38334369
    [Google Scholar]
  24. He X. Xiong Z. Lei C. Shen Z. Ni A. Xie Y. Liu C. Excellent microwave absorption performance of LaFeO3/Fe3O4/C perovskite composites with optimized structure and impedance matching. Carbon 2023 213 118200 10.1016/j.carbon.2023.118200
    [Google Scholar]
  25. Singh V. Singh N. Rai S.N. Chaturvedi V.K. Singh S.K. Kumar A. Vamanu E. Mishra V. Chitosan functionalized recyclable and eco-friendly nanoadsorbent for Pb(II) adsorption from water. Nanocomposites 2024 10 1 214 226 10.1080/20550324.2024.2347804
    [Google Scholar]
  26. Singh V. Mishra V. Sustainable reduction of Cr (VI) and its elemental mapping on chitosan coated Citrus limetta peels biomass in synthetic wastewater. Sep. Sci. Technol. 2022 57 10 1609 1626 10.1080/01496395.2021.1993921
    [Google Scholar]
  27. Lallo da Silva B. Abuçafy M.P. Berbel Manaia E. Oshiro Junior J.A. Chiari-Andréo B.G. Pietro R.C.L.R. Chiavacci L.A. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. Int. J. Nanomedicine 2019 14 9395 9410 10.2147/IJN.S216204 31819439
    [Google Scholar]
  28. Shinde S.S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. Sci. Med. Central 2015 3 1033
    [Google Scholar]
  29. Li Y. Liao C. Tjong S.C. Recent advances in zinc oxide nanostructures with antimicrobial activities. Int. J. Mol. Sci. 2020 21 22 8836 10.3390/ijms21228836 33266476
    [Google Scholar]
  30. Oprea O. Andronescu E. Ficai D. Ficai A. Oktar F. Yetmez M. ZnO applications and challenges. Curr. Org. Chem. 2014 18 2 192 203 10.2174/13852728113176660143
    [Google Scholar]
  31. Verma R. Pathak S. Srivastava A.K. Prawer S. Tomljenovic-Hanic S. ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. J. Alloys Compd. 2021 876 160175 10.1016/j.jallcom.2021.160175
    [Google Scholar]
  32. Zheng Y. Li R. Wang Y. In vitro and in vivo biocompatibility studies of ZnO nanoparticles. Int. J. Mod. Phys. B 2009 23 06n07 1566 1571 10.1142/S0217979209061275
    [Google Scholar]
  33. Nasr G. Greige-Gerges H. Elaissari A. Khreich N. Liposome permeability to essential oil components: A focus on cholesterol content. J. Membr. Biol. 2021 254 4 381 395 10.1007/s00232‑021‑00180‑3 33939003
    [Google Scholar]
  34. Zygadlo J.A. Antibacterial and anti-biofilm activities of essential oils and their components including modes of action. Essential Oils and Nanotechnology for Treatment of Microbial Diseases CRC Press 2017 1st ed 99 126 10.1201/9781315209241‑4
    [Google Scholar]
  35. Heath R.J. Rubin J.R. Holland D.R. Zhang E. Snow M.E. Rock C.O. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem. 1999 274 16 11110 11114 10.1074/jbc.274.16.11110 10196195
    [Google Scholar]
  36. Sadowski M.C. Pouwer R.H. Gunter J.H. Lubik A.A. Quinn R.J. Nelson C.C. The fatty acid synthase inhibitor triclosan: Repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget 2014 5 19 9362 9381 10.18632/oncotarget.2433 25313139
    [Google Scholar]
  37. Ke C.L. Deng F.S. Chuang C.Y. Lin C.H. Antimicrobial actions and applications of chitosan. Polymers (Basel) 2021 13 6 904 10.3390/polym13060904 33804268
    [Google Scholar]
  38. Tanasa F. Teaca C-A. Nechifor M. Ignat M. Duceac I.A. Ignat L. Highly specialized textiles with antimicrobial functionality — Advances and challenges. Textiles 2023 3 2 219 245 10.3390/textiles3020015
    [Google Scholar]
  39. Basavegowda N. Baek K.H. Combination strategies of different antimicrobials: An efficient and alternative tool for pathogen inactivation. Biomedicines 2022 10 9 2219 10.3390/biomedicines10092219 36140320
    [Google Scholar]
  40. Choudhury A.K.R. Principles of Textile Finishing. Woodhead Publishing 2017 1st ed
    [Google Scholar]
  41. Wilmer Parra Llanos J. Mailde Santos R. Bastos Quadri M. Oliveira Martins I. Phenomenological modeling and simulation of a textile stenter. Text. Res. J. 2022 92 13-14 2205 2222 10.1177/0040517520918231
    [Google Scholar]
  42. Reda A.T. Park J.Y. Park Y.T. Zinc oxide-based nanomaterials for microbiostatic activities: A review. J. Funct. Biomater. 2024 15 4 103 10.3390/jfb15040103 38667560
    [Google Scholar]
  43. Yu H.L. Zhou Y.W. Xue X.L. Liu L.Q. Hong J.Q. Liu Z.Q. Chen H.M. Shen Y.G. Zheng B. Wang J. Ag-modified ZnO nanorod array fabricated on polyester fabric and its enhanced visible-light photocatalytic performance by a built-in electric field and plasmonic effect. ACS Omega 2021 6 22 14078 14089 10.1021/acsomega.1c00460 34124431
    [Google Scholar]
  44. Rajendra R. Use of zinc oxide nano particles for production of antimicrobial textiles. Int. J. Eng. Sci. Technol. 2010 2 1 202 208
    [Google Scholar]
  45. Brindha R. Kandeeban R. Swarna Kamal K. Manojkumar K. Nithya V. Saminathan K. Andrographis paniculata absorbed ZnO nanofibers as a potential antimicrobial agent for biomedical applications. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2021 12 4 045002 10.1088/2043‑6262/ac389e
    [Google Scholar]
  46. Saleem H. Zaidi S. Sustainable use of nanomaterials in textiles and their environmental impact. Materials (Basel) 2020 13 22 5134 10.3390/ma13225134 33203051
    [Google Scholar]
  47. Ghassan A.A. Mijan N.A. Taufiq-Yap Y.H. Nanomaterials: An overview of nanorods synthesis and optimization. Nanorods and Nanocomposites IntechOpen London, UK Ghamsari M.S. Dhara S. 2019 8 33
    [Google Scholar]
  48. Kumar R. Umar A. Kumar G. Nalwa H.S. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 2017 43 5 3940 3961 10.1016/j.ceramint.2016.12.062
    [Google Scholar]
  49. Xu X. Chen D. Yi Z. Jiang M. Wang L. Zhou Z. Fan X. Wang Y. Hui D. Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 2013 29 18 5573 5580 10.1021/la400378t 23570415
    [Google Scholar]
  50. Jin S.E. Jin H.E. Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: From physicochemical characteristics to pharmacological aspects. Nanomaterials (Basel) 2021 11 2 263 10.3390/nano11020263 33498491
    [Google Scholar]
  51. Khurana N. Arora P. Pente A.S. Pancholi K.C. Kumar V. Kaushik C.P. Rattan S. Surface modification of zinc oxide nanoparticles by vinyltriethoxy silane (VTES). Inorg. Chem. Commun. 2021 124 108347 10.1016/j.inoche.2020.108347
    [Google Scholar]
  52. Seth A. Raval M. Mandal B. Hitaishi P. Mandal P. Singh S.P. Ghosh S.K. Nanostructured antimicrobial ZnO surfaces coated with an imidazolium-based ionic liquid. Mater. Adv. 2024 5 8 3186 3197 10.1039/D3MA00374D
    [Google Scholar]
  53. Suo Z. Avci R. Deliorman M. Yang X. Pascual D.W. Bacteria survive multiple puncturings of their cell walls. Langmuir 2009 25 8 4588 4594 10.1021/la8033319 19260649
    [Google Scholar]
  54. De Luca I. Pedram P. Moeini A. Cerruti P. Peluso G. Di Salle A. Germann N. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review. Appl. Sci. (Basel) 2021 11 4 1713 10.3390/app11041713
    [Google Scholar]
  55. Rajapakshe R. Multi-functional cotton fabrics with self-assembled TiO2 nanoparticle seed/TiO2 Nanorod/ZnO nanoparticle/stearic acid nanotechnological architectures. J. Nanomater. Mol. Nanotechnol. 2018 7 2 10.4172/2324‑8777.1000244
    [Google Scholar]
  56. Jiang L. Han Y. Xu J. Wang T. Preparation and study of cellulose-based ZnO NPs@HEC/C-β-CD/Menthol hydrogel as wound dressing. Biochem. Eng. J. 2022 184 108488 10.1016/j.bej.2022.108488
    [Google Scholar]
  57. Bajpai S.K. Thomas V. Bajpai M. Novel strategy for synthesis of ZnO microparticles loaded cotton fabrics and investigation of their antibacterial properties. J. Eng. Fibers Fabrics 2011 6 3 10.1177/155892501100600310
    [Google Scholar]
  58. Ibrahim N.A. Eid B.M. El-Aziz E.A. Elmaaty T.M.A. Ramadan S.M. Loading of chitosan – Nano metal oxide hybrids onto cotton/polyester fabrics to impart permanent and effective multifunctions. Int. J. Biol. Macromol. 2017 105 Pt 1 769 776 10.1016/j.ijbiomac.2017.07.099 28743573
    [Google Scholar]
  59. Tan L.Y. Sin L.T. Bee S.T. Tee T.T. Ratnam C.T. Woo K.K. Rahmat A.R. Funtionalization and mechanical propeties of cotton fabric with ZnO nanoparticles for antibacterial textile application. Solid State Phenom. 2019 290 292 297 10.4028/www.scientific.net/SSP.290.292
    [Google Scholar]
  60. Gao D. Li X. Li Y. Lyu B. Ren J. Ma J. Long-acting antibacterial activity on the cotton fabric. Cellulose 2021 28 3 1221 1240 10.1007/s10570‑020‑03560‑5
    [Google Scholar]
  61. Sibiya A. Jeyavani J. Santhanam P. Preetham E. Freitas R. Vaseeharan B. Comparative evaluation on the toxic effect of silver (Ag) and zinc oxide (ZnO) nanoparticles on different trophic levels in aquatic ecosystems: A review. J. Appl. Toxicol. 2022 42 12 1890 1900 10.1002/jat.4310 35212001
    [Google Scholar]
  62. Ma H. Williams P.L. Diamond S.A. Ecotoxicity of manufactured ZnO nanoparticles – A review. Environ. Pollut. 2013 172 76 85 10.1016/j.envpol.2012.08.011 22995930
    [Google Scholar]
  63. Wasim M. Shi F. Liu J. Farooq A. Khan S.U. Salam A. Hassan T. Zhao X. An overview of Zn/ZnO modified cellulosic nanocomposites and their potential applications. J. Polym. Res. 2021 28 9 338 10.1007/s10965‑021‑02689‑6
    [Google Scholar]
  64. Rahman T.U. Roy H. Shoronika A.Z. Fariha A. Hasan M. Islam M.S. Marwani H.M. Islam A. Hasan M.M. Alsukaibi A.K.D. Rahman M.M. Awual M.R. Sustainable toxic dye removal and degradation from wastewater using novel chitosan-modified TiO2 and ZnO nanocomposites. J. Mol. Liq. 2023 388 122764 10.1016/j.molliq.2023.122764
    [Google Scholar]
  65. Raha S. Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Adv. 2022 4 8 1868 1925 10.1039/D1NA00880C 36133407
    [Google Scholar]
  66. Shen Z. Chen Z. Hou Z. Li T. Lu X. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front. Environ. Sci. Eng. 2015 9 5 912 918 10.1007/s11783‑015‑0789‑7
    [Google Scholar]
  67. Montazer M. Harifi T. Nanofinishing of Textile Materials. Woodhead Publishing 2018 1st ed
    [Google Scholar]
  68. Moussavi G. Mahmoudi M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J. Hazard. Mater. 2009 168 2-3 806 812 10.1016/j.jhazmat.2009.02.097 19303210
    [Google Scholar]
  69. Qiu H. Lv L. Pan B. Zhang Q. Zhang W. Zhang Q. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A 2009 10 5 716 724 10.1631/jzus.A0820524
    [Google Scholar]
  70. Sud D. Mahajan G. Kaur M. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresour. Technol. 2008 99 14 6017 6027 10.1016/j.biortech.2007.11.064 18280151
    [Google Scholar]
  71. Kumar S. Mukherjee A. Dutta J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 2020 97 196 209 10.1016/j.tifs.2020.01.002
    [Google Scholar]
  72. Tsai S-J.C. Ashter A. Ada E. Mead J.L. Barry C.F. Ellenbecker M.J. Control of airborne nanoparticles release during compounding of polymer nanocomposites. Nano 2008 3 4 301 309 10.1142/S179329200800112X
    [Google Scholar]
  73. Raynor P.C. Controlling nanoparticle exposures. Assessing Nanoparticle Risks to Human Health. William Andrew 2011 167 193 10.1016/B978‑1‑4377‑7863‑2.00007‑8
    [Google Scholar]
  74. Papadaki D. Foteinis S. Mhlongo G.H. Nkosi S.S. Motaung D.E. Ray S.S. Tsoutsos T. Kiriakidis G. Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures. Sci. Total Environ. 2017 586 566 575 10.1016/j.scitotenv.2017.02.019 28209407
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137325025241031151832
Loading
/content/journals/cnano/10.2174/0115734137325025241031151832
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test