Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

Nanomaterials, especially their biocompatibilities and toxicities, have not been studied and their integration in real applications is still limited.

Methods

This paper addresses this gap by focusing on the development of antibacterial nanomaterials by combining flake/spinal ZnO nanostructures with organic antibacterial agents (menthol, chitosan, and triclosan). We systematically study their biocompatibility and toxicity, intending to apply them practically on fabric surfaces.

Results

Based on the known photocatalytic and antibacterial properties of ZnO, our hypothesis suggests that the unique flake/spine ZnO nanostructures can further improve the antibacterial efficacy through induced mechanistic approaches. The synergistic effect achieved by combining ZnO with menthol, chitosan, and triclosan improves the overall bactericidal ability. XRD, XRF, FTIR, SEM, and UV-visible spectroscopy are used to characterize the nanocomposites. The antibacterial properties of the modified fabrics are tested using standard spread plate techniques. Biocompatibility and toxicity studies using a mouse model provide a comprehensive picture of the safety profile.

Conclusion

This work advances the understanding of antibacterial nanomaterials, and paves the way for their wider manufacturing and practical use in textiles, meeting the industrial needs of antimicrobial clothing and wound dressings.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137325025241031151832
2024-11-11
2025-08-03
Loading full text...

Full text loading...

References

  1. CookM.A. WrightG.D. The past, present, and future of antibiotics.Sci. Transl. Med.202214657eabo779310.1126/scitranslmed.abo779335947678
    [Google Scholar]
  2. MohammadiM. KarimiL. MirjaliliM. Simultaneous synthesis of nano ZnO and surface modification of polyester fabric.Fibers Polym.20161791371137710.1007/s12221‑016‑6497‑5
    [Google Scholar]
  3. MuteebG. RehmanM.T. ShahwanM. AatifM. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review.Pharmaceuticals (Basel)20231611161510.3390/ph1611161538004480
    [Google Scholar]
  4. PinoF. FermoP. La RussaM. RuffoloS. ComiteV. BaghdachiJ. PecchioniE. FratiniF. CappellettiG. Advanced mortar coatings for cultural heritage protection. Durability towards prolonged UV and outdoor exposure.Environ. Sci. Pollut. Res. Int.20172414126081261710.1007/s11356‑016‑7611‑327696194
    [Google Scholar]
  5. SainiS. Antimicrobial resistance associated with infectious diseases.Handbook on Antimicrobial ResistanceSpringerSingapore MothadakaM.P. VaiyapuriM. Rao BadireddyM. Nagarajrao RavishankarC. BhatiaR. JenaJ. 202312910.1007/978‑981‑16‑9723‑4_49‑1
    [Google Scholar]
  6. WallaceM.J. FishbeinS.R.S. DantasG. Antimicrobial resistance in enteric bacteria: Current state and next-generation solutions.Gut Microbes2020121179965410.1080/19490976.2020.179965432772817
    [Google Scholar]
  7. AkhtarM.J. AhamedM. KumarS. KhanM.M. AhmadJ. AlrokayanS.A. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species.Int. J. Nanomedicine2012784585722393286
    [Google Scholar]
  8. JonesN. RayB. RanjitK.T. MannaA.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms.FEMS Microbiol. Lett.20082791717610.1111/j.1574‑6968.2007.01012.x18081843
    [Google Scholar]
  9. NguyenV. VuV. NguyenT. NguyenT. TranV. Nguyen-TriP. Antibacterial activity of TiO2-and ZnO-decorated with silver nanoparticles.J. Compos. Sci.2019326110.3390/jcs3020061
    [Google Scholar]
  10. SirelkhatimA. MahmudS. SeeniA. KausN.H.M. AnnL.C. BakhoriS.K.M. HasanH. MohamadD. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism.Nano-Micro Lett.20157321924210.1007/s40820‑015‑0040‑x30464967
    [Google Scholar]
  11. SunX. YinL. ZhuH. ZhuJ. HuJ. LuoX. HuangH. FuY. Enhanced antimicrobial cellulose/chitosan/ZnO biodegradable composite membrane.Membranes (Basel)202212223910.3390/membranes1202023935207160
    [Google Scholar]
  12. XieY. HeY. IrwinP.L. JinT. ShiX. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni.Appl. Environ. Microbiol.20117772325233110.1128/AEM.02149‑1021296935
    [Google Scholar]
  13. LüH. WangS. DengC. RenW. GuoB. Oxidative desulfurization of model diesel via dual activation by a protic ionic liquid.J. Hazard. Mater.201427922022510.1016/j.jhazmat.2014.07.00525064259
    [Google Scholar]
  14. RaghupathiK.R. KoodaliR.T. MannaA.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles.Langmuir20112774020402810.1021/la104825u21401066
    [Google Scholar]
  15. ShiL.E. LiZ.H. ZhengW. ZhaoY.F. JinY.F. TangZ.X. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: A review.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201431217318610.1080/19440049.2013.86514724219062
    [Google Scholar]
  16. VenkatasubbuG.D. BaskarR. AnusuyaT. SeshanC.A. ChelliahR. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens.Colloids Surf. B Biointerfaces201614860060610.1016/j.colsurfb.2016.09.04227694049
    [Google Scholar]
  17. LeeK.M. LaiC.W. NgaiK.S. JuanJ.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review.Water Res.20168842844810.1016/j.watres.2015.09.04526519627
    [Google Scholar]
  18. YuJ. YuX. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres.Environ. Sci. Technol.200842134902490710.1021/es800036n18678024
    [Google Scholar]
  19. ChenX. LiY. PanX. CortieD. HuangX. YiZ. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts.Nat. Commun.2016711227310.1038/ncomms1227327435112
    [Google Scholar]
  20. KadiyalaU. KotovN.A. VanEppsJ.S. Antibacterial metal oxide nanoparticles: Challenges in interpreting the literature.Curr. Pharm. Des.201824889690310.2174/138161282466618021913065929468956
    [Google Scholar]
  21. MukherjeeD. SilM. GoswamiA. LahiriD. NagM. Effectiveness of metal and metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations.J. Basic Microbiol.202363997198510.1002/jobm.20230001337154193
    [Google Scholar]
  22. RezaeiM. PirsaS. ChavoshizadehS. Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles.J. Inorg. Organomet. Polym. Mater.20203072654266510.1007/s10904‑019‑01407‑6
    [Google Scholar]
  23. GuoB. ZhaoJ. XuY. WenX. RenX. HuangX. NiuS. DaiY. GaoR. XuP. LiS. Noble metal phosphides supported on coni metaphosphate for efficient overall water splitting.ACS Appl. Mater. Interfaces20241678939894810.1021/acsami.3c1907738334369
    [Google Scholar]
  24. HeX. XiongZ. LeiC. ShenZ. NiA. XieY. LiuC. Excellent microwave absorption performance of LaFeO3/Fe3O4/C perovskite composites with optimized structure and impedance matching.Carbon202321311820010.1016/j.carbon.2023.118200
    [Google Scholar]
  25. SinghV. SinghN. RaiS.N. ChaturvediV.K. SinghS.K. KumarA. VamanuE. MishraV. Chitosan functionalized recyclable and eco-friendly nanoadsorbent for Pb(II) adsorption from water.Nanocomposites202410121422610.1080/20550324.2024.2347804
    [Google Scholar]
  26. SinghV. MishraV. Sustainable reduction of Cr (VI) and its elemental mapping on chitosan coated Citrus limetta peels biomass in synthetic wastewater.Sep. Sci. Technol.202257101609162610.1080/01496395.2021.1993921
    [Google Scholar]
  27. Lallo da SilvaB. AbuçafyM.P. Berbel M.E. Oshiro Jr.J.A. Chiari-AndréoB.G. PietroR.C.L.R. ChiavacciL.A. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview.Int. J. Nanomedicine2019149395941010.2147/IJN.S21620431819439
    [Google Scholar]
  28. ShindeS.S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi.Sci. Med. Central201531033
    [Google Scholar]
  29. LiY. LiaoC. TjongS.C. Recent advances in zinc oxide nanostructures with antimicrobial activities.Int. J. Mol. Sci.20202122883610.3390/ijms2122883633266476
    [Google Scholar]
  30. OpreaO. AndronescuE. FicaiD. FicaiA. OktarF. YetmezM. ZnO applications and challenges.Curr. Org. Chem.201418219220310.2174/13852728113176660143
    [Google Scholar]
  31. VermaR. PathakS. SrivastavaA.K. PrawerS. Tomljenovic-HanicS. ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications.J. Alloys Compd.202187616017510.1016/j.jallcom.2021.160175
    [Google Scholar]
  32. ZhengY. LiR. WangY. In vitro and in vivo biocompatibility studies of ZnO nanoparticles.Int. J. Mod. Phys. B20092306n071566157110.1142/S0217979209061275
    [Google Scholar]
  33. NasrG. Greige-GergesH. ElaissariA. KhreichN. Liposome permeability to essential oil components: A focus on cholesterol content.J. Membr. Biol.2021254438139510.1007/s00232‑021‑00180‑333939003
    [Google Scholar]
  34. ZygadloJ.A. Antibacterial and anti-biofilm activities of essential oils and their components including modes of action.Essential Oils and Nanotechnology for Treatment of Microbial DiseasesCRC Press20171st ed9912610.1201/9781315209241‑4
    [Google Scholar]
  35. HeathR.J. RubinJ.R. HollandD.R. ZhangE. SnowM.E. RockC.O. Mechanism of triclosan inhibition of bacterial fatty acid synthesis.J. Biol. Chem.199927416111101111410.1074/jbc.274.16.1111010196195
    [Google Scholar]
  36. SadowskiM.C. PouwerR.H. GunterJ.H. LubikA.A. QuinnR.J. NelsonC.C. The fatty acid synthase inhibitor triclosan: Repurposing an anti-microbial agent for targeting prostate cancer.Oncotarget20145199362938110.18632/oncotarget.243325313139
    [Google Scholar]
  37. KeC.L. DengF.S. ChuangC.Y. LinC.H. Antimicrobial actions and applications of chitosan.Polymers (Basel)202113690410.3390/polym1306090433804268
    [Google Scholar]
  38. TanasaF. TeacaC-A. NechiforM. IgnatM. DuceacI.A. IgnatL. Highly specialized textiles with antimicrobial functionality — Advances and challenges.Textiles20233221924510.3390/textiles3020015
    [Google Scholar]
  39. BasavegowdaN. BaekK.H. Combination strategies of different antimicrobials: An efficient and alternative tool for pathogen inactivation.Biomedicines2022109221910.3390/biomedicines1009221936140320
    [Google Scholar]
  40. ChoudhuryA.K.R. Principles of Textile Finishing.Woodhead Publishing20171st ed
    [Google Scholar]
  41. Wilmer Parra LlanosJ. Mailde SantosR. Bastos QuadriM. Oliveira MartinsI. Phenomenological modeling and simulation of a textile stenter.Text. Res. J.20229213-142205222210.1177/0040517520918231
    [Google Scholar]
  42. RedaA.T. ParkJ.Y. ParkY.T. Zinc oxide-based nanomaterials for microbiostatic activities: A review.J. Funct. Biomater.202415410310.3390/jfb1504010338667560
    [Google Scholar]
  43. YuH.L. ZhouY.W. XueX.L. LiuL.Q. HongJ.Q. LiuZ.Q. ChenH.M. ShenY.G. ZhengB. WangJ. Ag-modified ZnO nanorod array fabricated on polyester fabric and its enhanced visible-light photocatalytic performance by a built-in electric field and plasmonic effect.ACS Omega2021622140781408910.1021/acsomega.1c0046034124431
    [Google Scholar]
  44. RajendraR. Use of zinc oxide nano particles for production of antimicrobial textiles.Int. J. Eng. Sci. Technol.201021202208
    [Google Scholar]
  45. BrindhaR. KandeebanR. Swarna K.K. ManojkumarK. NithyaV. SaminathanK. Andrographis paniculata absorbed ZnO nanofibers as a potential antimicrobial agent for biomedical applications.Adv. Nat. Sci.: Nanosci. Nanotechnol.202112404500210.1088/2043‑6262/ac389e
    [Google Scholar]
  46. SaleemH. ZaidiS. Sustainable use of nanomaterials in textiles and their environmental impact.Materials (Basel)20201322513410.3390/ma1322513433203051
    [Google Scholar]
  47. GhassanA.A. MijanN.A. Taufiq-YapY.H. Nanomaterials: An overview of nanorods synthesis and optimization.Nanorods and NanocompositesIntechOpenLondon, UK GhamsariM.S. DharaS. 2019833
    [Google Scholar]
  48. KumarR. UmarA. KumarG. NalwaH.S. Antimicrobial properties of ZnO nanomaterials: A review.Ceram. Int.20174353940396110.1016/j.ceramint.2016.12.062
    [Google Scholar]
  49. XuX. ChenD. YiZ. JiangM. WangL. ZhouZ. FanX. WangY. HuiD. Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals.Langmuir201329185573558010.1021/la400378t23570415
    [Google Scholar]
  50. JinS.E. JinH.E. Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: From physicochemical characteristics to pharmacological aspects.Nanomaterials (Basel)202111226310.3390/nano1102026333498491
    [Google Scholar]
  51. KhuranaN. AroraP. PenteA.S. PancholiK.C. KumarV. KaushikC.P. RattanS. Surface modification of zinc oxide nanoparticles by vinyltriethoxy silane (VTES).Inorg. Chem. Commun.202112410834710.1016/j.inoche.2020.108347
    [Google Scholar]
  52. SethA. RavalM. MandalB. HitaishiP. MandalP. SinghS.P. GhoshS.K. Nanostructured antimicrobial ZnO surfaces coated with an imidazolium-based ionic liquid.Mater. Adv.2024583186319710.1039/D3MA00374D
    [Google Scholar]
  53. SuoZ. AvciR. DeliormanM. YangX. PascualD.W. Bacteria survive multiple puncturings of their cell walls.Langmuir20092584588459410.1021/la803331919260649
    [Google Scholar]
  54. De LucaI. PedramP. MoeiniA. CerrutiP. PelusoG. Di SalleA. GermannN. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review.Appl. Sci. (Basel)2021114171310.3390/app11041713
    [Google Scholar]
  55. RajapaksheR. Multi-functional cotton fabrics with self-assembled TiO2 nanoparticle seed/TiO2 Nanorod/ZnO nanoparticle/stearic acid nanotechnological architectures.J. Nanomater. Mol. Nanotechnol.20187210.4172/2324‑8777.1000244
    [Google Scholar]
  56. JiangL. HanY. XuJ. WangT. Preparation and study of cellulose-based ZnO NPs@HEC/C-β-CD/Menthol hydrogel as wound dressing.Biochem. Eng. J.202218410848810.1016/j.bej.2022.108488
    [Google Scholar]
  57. BajpaiS.K. ThomasV. BajpaiM. Novel strategy for synthesis of ZnO microparticles loaded cotton fabrics and investigation of their antibacterial properties.J. Eng. Fibers Fabrics20116310.1177/155892501100600310
    [Google Scholar]
  58. IbrahimN.A. EidB.M. El-AzizE.A. ElmaatyT.M.A. RamadanS.M. Loading of chitosan – Nano metal oxide hybrids onto cotton/polyester fabrics to impart permanent and effective multifunctions.Int. J. Biol. Macromol.2017105Pt 176977610.1016/j.ijbiomac.2017.07.09928743573
    [Google Scholar]
  59. TanL.Y. SinL.T. BeeS.T. TeeT.T. RatnamC.T. WooK.K. RahmatA.R. Funtionalization and mechanical propeties of cotton fabric with ZnO nanoparticles for antibacterial textile application.Solid State Phenom.201929029229710.4028/www.scientific.net/SSP.290.292
    [Google Scholar]
  60. GaoD. LiX. LiY. LyuB. RenJ. MaJ. Long-acting antibacterial activity on the cotton fabric.Cellulose20212831221124010.1007/s10570‑020‑03560‑5
    [Google Scholar]
  61. SibiyaA. JeyavaniJ. SanthanamP. PreethamE. FreitasR. VaseeharanB. Comparative evaluation on the toxic effect of silver (Ag) and zinc oxide (ZnO) nanoparticles on different trophic levels in aquatic ecosystems: A review.J. Appl. Toxicol.202242121890190010.1002/jat.431035212001
    [Google Scholar]
  62. MaH. WilliamsP.L. DiamondS.A. Ecotoxicity of manufactured ZnO nanoparticles – A review.Environ. Pollut.2013172768510.1016/j.envpol.2012.08.01122995930
    [Google Scholar]
  63. WasimM. ShiF. LiuJ. FarooqA. KhanS.U. SalamA. HassanT. ZhaoX. An overview of Zn/ZnO modified cellulosic nanocomposites and their potential applications.J. Polym. Res.202128933810.1007/s10965‑021‑02689‑6
    [Google Scholar]
  64. RahmanT.U. RoyH. ShoronikaA.Z. FarihaA. HasanM. IslamM.S. MarwaniH.M. IslamA. HasanM.M. AlsukaibiA.K.D. RahmanM.M. AwualM.R. Sustainable toxic dye removal and degradation from wastewater using novel chitosan-modified TiO2 and ZnO nanocomposites.J. Mol. Liq.202338812276410.1016/j.molliq.2023.122764
    [Google Scholar]
  65. RahaS. AhmaruzzamanM. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives.Nanoscale Adv.2022481868192510.1039/D1NA00880C36133407
    [Google Scholar]
  66. ShenZ. ChenZ. HouZ. LiT. LuX. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms.Front. Environ. Sci. Eng.20159591291810.1007/s11783‑015‑0789‑7
    [Google Scholar]
  67. MontazerM. HarifiT. Nanofinishing of Textile Materials.Woodhead Publishing20181st ed
    [Google Scholar]
  68. MoussaviG. MahmoudiM. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles.J. Hazard. Mater.20091682-380681210.1016/j.jhazmat.2009.02.09719303210
    [Google Scholar]
  69. QiuH. LvL. PanB. ZhangQ. ZhangW. ZhangQ. Critical review in adsorption kinetic models.J. Zhejiang Univ. Sci. A200910571672410.1631/jzus.A0820524
    [Google Scholar]
  70. SudD. MahajanG. KaurM. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review.Bioresour. Technol.200899146017602710.1016/j.biortech.2007.11.06418280151
    [Google Scholar]
  71. KumarS. MukherjeeA. DuttaJ. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives.Trends Food Sci. Technol.20209719620910.1016/j.tifs.2020.01.002
    [Google Scholar]
  72. TsaiS-J.C. AshterA. AdaE. MeadJ.L. BarryC.F. EllenbeckerM.J. Control of airborne nanoparticles release during compounding of polymer nanocomposites.Nano20083430130910.1142/S179329200800112X
    [Google Scholar]
  73. RaynorP.C. Controlling nanoparticle exposures.Assessing Nanoparticle Risks to Human Health.William Andrew201116719310.1016/B978‑1‑4377‑7863‑2.00007‑8
    [Google Scholar]
  74. PapadakiD. FoteinisS. MhlongoG.H. NkosiS.S. MotaungD.E. RayS.S. TsoutsosT. KiriakidisG. Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures.Sci. Total Environ.201758656657510.1016/j.scitotenv.2017.02.01928209407
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137325025241031151832
Loading
/content/journals/cnano/10.2174/0115734137325025241031151832
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test