Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Numerous lung conditions, including lung cancer, influenza, acute respiratory distress syndrome, chronic obstructive pulmonary disease (COPD), asthma, and pneumonia, present a great threat to people all over the world. A range of pharmaceutical drugs, peptides, antibodies, and genetic therapies have all been used to treat chronic lung illnesses. Unfortunately, the majority of chronic lung disorders cannot be fully cured by medication alone. At the moment, managing the symptoms is the only asthma treatment. This article provides a brief overview of the state-of-the-art understanding of the function of natural polymeric materials and emphasises recent developments in innovative drug delivery systems that may help treat a variety of lung diseases. Furthermore, the paper also discusses the latest application of natural polymeric materials for targeting gene delivery through different approaches.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137301850240904223605
2024-09-19
2025-07-08
Loading full text...

Full text loading...

References

  1. YheeJ. ImJ. NhoR. Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery.J. Clin. Med.2016598210.3390/jcm509008227657144
    [Google Scholar]
  2. AlsaffarM. AlshammariG. AlshammariA. AljaloudS. AlmurayziqT.S. HamadA.A. KumarV. BelayA. Detection of tuberculosis disease using image processing technique.Mob. Inf. Syst.202120211710.1155/2021/7424836
    [Google Scholar]
  3. SgallaG. IoveneB. CalvelloM. OriM. VaroneF. RicheldiL. Idiopathic pulmonary fibrosis: Pathogenesis and management.Respir. Res.20181913210.1186/s12931‑018‑0730‑229471816
    [Google Scholar]
  4. RagelleH. DanhierF. PréatV. LangerR. AndersonD.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures.Expert Opin. Drug Deliv.201714785186410.1080/17425247.2016.124418727730820
    [Google Scholar]
  5. TanS.Y. Mei WongJ.L. SimY.J. WongS.S. Mohamed ElhassanS.A. TanS.H. Ling LimG.P. Rong TayN.W. AnnanN.C. BhattamisraS.K. CandasamyM. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention.Diabetes Metab. Syndr.201913136437210.1016/j.dsx.2018.10.00830641727
    [Google Scholar]
  6. KhanN.H. MirM. QianL. BalochM. AliK.M.F. RehmanA. NgowiE.E. WuD.D. JiX.Y. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures.J. Adv. Res.20223622324710.1016/j.jare.2021.06.01435127174
    [Google Scholar]
  7. van der SarI.G. WijbengaN. NakshbandiG. AertsJ.G. ManintveldO.C. WijsenbeekM.S. HellemonsM.E. MoorC.C. The smell of lung disease: A review of the current status of electronic nose technology.Respir. Res.202122124610.1186/s12931‑021‑01835‑434535144
    [Google Scholar]
  8. RahmanM.M. BibiS. RahamanM.S. RahmanF. IslamF. KhanM.S. HasanM.M. ParvezA. HossainM.A. MaeesaS.K. IslamM.R. NajdaA. Al-malkyH.S. MohamedH.R. AlGwaizH.I. AwajiA.A. GermoushM.O. KensaraO.A. Abdel-DaimM.M. SaeedM. KamalM.A. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology.Biomed. Pharmacother.202215011304110.1016/j.biopha.2022.11304135658211
    [Google Scholar]
  9. PrasherP. SharmaM. MehtaM. PaudelK.R. SatijaS. ChellappanD.K. DurejaH. GuptaG. TambuwalaM.M. NegiP. WichP.R. HansbroN.G. HansbroP.M. DuaK. Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective.Chem. Biol. Interact.202032510912510.1016/j.cbi.2020.10912532376238
    [Google Scholar]
  10. GundryS. COPD 1: Pathophysiology, diagnosis and prognosis.Nurs. Times20191162730
    [Google Scholar]
  11. TorresA. CillonizC. NiedermanM.S. MenéndezR. ChalmersJ.D. WunderinkR.G. Van der PollT. Pneumonia.Nat. Rev. Dis. Primers2021712510.1038/s41572‑021‑00259‑033833230
    [Google Scholar]
  12. ZhengM. Classification and pathology of lung cancer.Surgical Oncol. Clin.201625344746827261908
    [Google Scholar]
  13. PanchalS.S. VasavaD.V. Biodegradable polymeric materials: Synthetic approach.ACS Omega2020594370437910.1021/acsomega.9b0442232175484
    [Google Scholar]
  14. LiL. ZhangX. GuX. MaoS. Applications of natural polymeric materials in solid oral modified-release dosage forms.Curr. Pharm. Des.201521405854586710.2174/138161282166615100815030626446465
    [Google Scholar]
  15. SongR. MurphyM. LiC. TingK. SooC. ZhengZ. Current development of biodegradable polymeric materials for biomedical applications.Drug Des. Devel. Ther.2018123117314510.2147/DDDT.S16544030288019
    [Google Scholar]
  16. GanewattaM.S. WangZ. TangC. Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials.Nat. Rev. Chem.202151175377210.1038/s41570‑021‑00325‑x36238089
    [Google Scholar]
  17. AdewoleJ.K. MuritalaK.B. Some applications of natural polymeric materials in oilfield operations: A review.J. Pet. Explor. Prod. Technol.2019932297230710.1007/s13202‑019‑0626‑9
    [Google Scholar]
  18. AcquaviaM. PascaleR. MartelliG. BondoniM. BiancoG. Natural polymeric materials: A solution to plastic pollution from the agro-food sector.Polymers202113115810.3390/polym1301015833406618
    [Google Scholar]
  19. GuY. HuangJ. Fabrication of natural cellulose substance derived hierarchical polymeric materials.J. Mater. Chem.200919223764377010.1039/b900450p
    [Google Scholar]
  20. ChielliniE. SolaroR. Biodegradable polymers: A promising solution for green energy devices.Eur. Polym. J.2024204112696
    [Google Scholar]
  21. IoveneA. ZhaoY. WangS. AmoakoK. Bioactive polymeric materials for the advancement of regenerative medicine.J. Funct. Biomater.20211211410.3390/jfb1201001433672492
    [Google Scholar]
  22. AbasianP. GhanavatiS. RahebiS. NouriK.S. KhaliliS. Polymeric nanocarriers in targeted drug delivery systems: A review.Polym. Adv. Technol.202031122939295410.1002/pat.5031
    [Google Scholar]
  23. SrivastavaA. YadavT. SharmaS. NayakA. AkankshaK.A. MishraN. Polymers in drug delivery.J. Biosci. Med.201641698410.4236/jbm.2016.4100926605422
    [Google Scholar]
  24. KitanoS. KoyamaY. KataokaK. OkanoT. SakuraiY. A novel drug delivery system utilizing a glucose responsive polymer complex between poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety.J. Control. Release1992191-316117010.1016/0168‑3659(92)90073‑Z
    [Google Scholar]
  25. RebelloS. SaliS. JishaM.S. ReshmyR. PugazhendhiA. MadhavanA. BinodP. AwasthiM.K. PandeyA. SindhuR. Chitosan a versatile adsorbent in environmental remediation in the era of circular economy-a mini review.Sustain. Chem. Pharm.20233210100410.1016/j.scp.2023.101004
    [Google Scholar]
  26. HaS. LaY. KimK.T. Polymer cubosomes: Infinite cubic mazes and possibilities.Acc. Chem. Res.202053362063110.1021/acs.accounts.9b0056331920073
    [Google Scholar]
  27. ChenH. LiM.H. Recent progress in polymer cubosomes and hexosomes.Macromol. Rapid Commun.20214215210019410.1002/marc.20210019434145688
    [Google Scholar]
  28. YihT.C. Al-FandiM. Engineered nanoparticles as precise drug delivery systems.J. Cell. Biochem.20069761184119010.1002/jcb.2079616440317
    [Google Scholar]
  29. DashA. CudworthG. Therapeutic applications of implantable drug delivery systems.J. Pharmacol. Toxicol. Methods199840111210.1016/S1056‑8719(98)00027‑69920528
    [Google Scholar]
  30. NanjwadeB.K. BechraH.M. DerkarG.K. ManviF.V. NanjwadeV.K. Dendrimers: Emerging polymers for drug-delivery systems.Eur. J. Pharm. Sci.200938318519610.1016/j.ejps.2009.07.00819646528
    [Google Scholar]
  31. O’RiordanT.G. Formulations and nebulizer performance.Respir. Care200247111305131212425745
    [Google Scholar]
  32. ChenL. OkudaT. LuX.Y. ChanH.K. Amorphous powders for inhalation drug delivery.Adv. Drug Deliv. Rev.201610010211510.1016/j.addr.2016.01.00226780404
    [Google Scholar]
  33. ShettyN. ParkH. ZemlyanovD. MangalS. BhujbalS. ZhouQ.T. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation.Int. J. Pharm.2018544122223410.1016/j.ijpharm.2018.04.03429678544
    [Google Scholar]
  34. TangP. ChanH.K. RaperJ.A. Prediction of aerodynamic diameter of particles with rough surfaces.Powder Technol.20041471-3647810.1016/j.powtec.2004.09.036
    [Google Scholar]
  35. ZengX.M. MartinG.P. MarriottC. PritchardJ. The influence of carrier morphology on drug delivery by dry powder inhalers.Int. J. Pharm.200020019310610.1016/S0378‑5173(00)00347‑110845690
    [Google Scholar]
  36. GuoX. HuangL. Recent advances in nonviral vectors for gene delivery.Acc. Chem. Res.201245797197910.1021/ar200151m21870813
    [Google Scholar]
  37. NamK. JungS. NamJ.P. KimS.W. Poly(ethylenimine) conjugated bioreducible dendrimer for efficient gene delivery.J. Control. Release2015220Pt A44745510.1016/j.jconrel.2015.11.00526551343
    [Google Scholar]
  38. SungY.K. KimS.W. Recent advances in the development of gene delivery systems.Biomater. Res.201923181210.1186/s40824‑019‑0156‑z30915230
    [Google Scholar]
  39. ZhongZ. FeijenJ. LokM.C. HenninkW.E. ChristensenL.V. YockmanJ.W. KimY.H. KimS.W. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties.Biomacromolecules200563440344810.1021/bm050505n16283777
    [Google Scholar]
  40. ParkM.R. HanK.O. HanI.K. ChoM.H. NahJ.W. ChoiY.J. ChoC.S. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers.J. Control. Release2005105336738010.1016/j.jconrel.2005.04.00815936108
    [Google Scholar]
  41. WenY. PanS. LuoX. ZhangX. ZhangW. FengM. A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector.Bioconjug. Chem.200920232233210.1021/bc800428y19152330
    [Google Scholar]
  42. WenY. PanS. LuoX. ZhangW. ShenY. FengM. PEG- and PDMAEG-graft-modified branched PEI as novel gene vector: synthesis, characterization and gene transfection.J. Biomater. Sci. Polym. Ed.2010218-91103112610.1163/092050609X1245929575031620507711
    [Google Scholar]
  43. KimS. NamJ.P. KimS. SungY.K. Recent development of bio-reducible polymers for efficient gene delivery system.J. Cancer Treatment Diagn.201825172310.29245/2578‑2967/2018/5.1145
    [Google Scholar]
  44. NamJ.P. ParkJ.K. SonD.H. KimT.H. ParkS.J. ParkS.C. ChoiC. JangM.K. NahJ.W. Evaluation of polyethylene glycol-conjugated novel polymeric anti-tumor drug for cancer therapy.Colloids Surf. B Biointerfaces201412016817510.1016/j.colsurfb.2014.04.01324918700
    [Google Scholar]
  45. NamJ.P. KimS. KimS.W. Design of PEI-conjugated bio-reducible polymer for efficient gene delivery.Int. J. Pharm.20185451-229530510.1016/j.ijpharm.2018.04.05129698820
    [Google Scholar]
  46. LeeY.S. KimS.W. Bioreducible polymers for therapeutic gene delivery.J. Control. Release201419042443910.1016/j.jconrel.2014.04.01224746626
    [Google Scholar]
  47. RaiR. AlwaniS. BadeaI. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications.Polymers201911474574910.3390/polym1104074531027272
    [Google Scholar]
  48. KimT. KimS.W. Bioreducible polymers for gene delivery.React. Funct. Polym.201171334434910.1016/j.reactfunctpolym.2010.11.01621516195
    [Google Scholar]
  49. SungY.K. KimS.W. The practical application of gene vectors in cancer therapy.Integr. Cancer Ther.2018515
    [Google Scholar]
  50. IbraheemD. ElaissariA. FessiH. Gene therapy and DNA delivery systems.J. Pharmaceu.201445918310.1016/j.ijpharm.2013.11.041
    [Google Scholar]
  51. RobbinsP.D. GhivizzaniS.C. Viral vectors for gene therapy.Pharmacol. Ther.1998801354710.1016/S0163‑7258(98)00020‑59804053
    [Google Scholar]
  52. SegoviaN. DostaP. CascanteA. RamosV. BorrósS. Oligopeptide-terminated poly(β-amino ester)s for highly efficient gene delivery and intracellular localization.Acta Biomater.20141052147215810.1016/j.actbio.2013.12.05424406199
    [Google Scholar]
  53. UsmanW.M. PhamT.C. KwokY.Y. VuL.T. MaV. PengB. ChanY.S. WeiL. ChinS.M. AzadA. HeA.B. LeungA.Y. YangM. Shyh-ChangN. ChoW.C. ShiJ. LeM.T. Efficient RNA drug delivery using red blood cell extracellular vesicles.Nat. Commun.201891235910.1038/s41467‑018‑04791‑829907766
    [Google Scholar]
  54. MartinA.R. FinlayW.H. Nebulizers for drug delivery to the lungs.Expert Opin. Drug Deliv.201512688990010.1517/17425247.2015.99508725534396
    [Google Scholar]
  55. MishraB. SinghJ. Novel drug delivery systems and significance in respiratory diseases.Nat. Comm.2020579510.1016/B978‑0‑12‑820658‑4.00004‑2
    [Google Scholar]
  56. VirmaniT. KumarG. VirmaniR. SharmaA. PathakK. Nanocarrier-based approaches to combat chronic obstructive pulmonary disease.Nanomedicine202217241833185410.2217/nnm‑2021‑040335856251
    [Google Scholar]
  57. SmołaM. VandammeT. SokołowskiA. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases.Int. J. Nanomed.20083111918488412
    [Google Scholar]
  58. TrapaniA. GioiaS. CastellaniS. CarboneA. CavallaroG. TrapaniG. ConeseM. Nanocarriers for respiratory diseases treatment: Recent advances and current challenges.Curr. Top. Med. Chem.20141491133114710.2174/156802661466614032922581724678708
    [Google Scholar]
  59. Moreno-SastreM. PastorM. SalomonC.J. EsquisabelA. PedrazJ.L. Pulmonary drug delivery: A review on nanocarriers for antibacterial chemotherapy.J. Antimicrob. Chemother.201570112945295510.1093/jac/dkv19226203182
    [Google Scholar]
  60. SantonocitoD. PugliaC. Nanotechnological systems and lung: A perfect combination for lung pharmaceutical applications.Curr. Med. Chem.202229672574336043745
    [Google Scholar]
  61. MansourH. WuX. Nanomedicine in pulmonary delivery.Int. J. Nanomed.2009429931910.2147/IJN.S493720054434
    [Google Scholar]
  62. GadS. YousryA. HassanT.H. AidyS. Nanocarriers as pulmonary drug delivery systems.Rec. Pharm. Biomed. Sci.20226311311910.21608/rpbs.2022.143936.1150
    [Google Scholar]
  63. BeyerleA. BraunA. BanerjeeA. ErcalN. EickelbergO. KisselT.H. StoegerT. Inflammatory responses to pulmonary application of PEI-based siRNA nanocarriers in mice.Biomaterials201132338694870110.1016/j.biomaterials.2011.07.08221855131
    [Google Scholar]
  64. RyttingE. NguyenJ. WangX. KisselT. Biodegradable polymeric nanocarriers for pulmonary drug delivery.Expert Opin. Drug Deliv.20085662963910.1517/17425247.5.6.62918532919
    [Google Scholar]
  65. ZhangG. MoS. FangB. ZengR. WangJ. TuM. ZhaoJ. Pulmonary delivery of therapeutic proteins based on zwitterionic chitosan-based nanocarriers for treatment on bleomycin-induced pulmonary fibrosis.Int. J. Biol. Macromol.2019133586610.1016/j.ijbiomac.2019.04.06630981773
    [Google Scholar]
  66. WangG. WangZ. LiC. DuanG. WangK. LiQ. TaoT. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy.Biomed. Pharmacother.201810627528410.1016/j.biopha.2018.06.137
    [Google Scholar]
  67. AmreddyN. BabuA. MuralidharanR. MunshiA. RameshR. Polymeric nanoparticle-mediated gene delivery for lung cancer treatment. topics in current chemistry.Topic Curr. Chem.2017375235
    [Google Scholar]
  68. Landesman-MiloD. RamishettiS. PeerD. Nanomedicine as an emerging platform for metastatic lung cancer therapy.Cancer Metastasis Rev.201534229130110.1007/s10555‑015‑9554‑425948376
    [Google Scholar]
  69. BhatA.A. GuptaG. AlharbiK.S. AfzalO. AltamimiA.S. AlmalkiW.H. KazmiI. Al-AbbasiF.A. AlzareaS.I. ChellappanD.K. SinghS.K. MacLoughlinR. OliverB.G. DuaK. Polysaccharide-based nanomedicines targeting lung cancer.Pharmaceutics20221412278810.3390/pharmaceutics1412278836559281
    [Google Scholar]
  70. WangW. HaoY. LiuY. LiR. HuangD.B. PanY.Y. Nanomedicine in lung cancer: Current states of overcoming drug resistance and improving cancer immunotherapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021131e165410.1002/wnan.165432700465
    [Google Scholar]
  71. Yee KuenC. MasarudinM.J. Chitosan nanoparticle-based system: A new insight into the promising controlled release system for lung cancer treatment.Molecules202227247310.3390/molecules2702047335056788
    [Google Scholar]
  72. ParkJ.H. LeeS. KimJ.H. ParkK. KimK. KwonI.C. Polymeric nanomedicine for cancer therapy.Prog. Polym. Sci.200833111313710.1016/j.progpolymsci.2007.09.003
    [Google Scholar]
  73. ChenQ. BaiH. WuW. HuangG. LiY. WuM. TangG. PingY. Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention.Nano Lett.2019201112131858807
    [Google Scholar]
  74. CrinteaA. DuțuA.G. SamașcaG. FlorianI.A. LupanI. CrăciunA.M. The nanosystems involved in treating lung cancer.Life202111768210.3390/life1107068234357054
    [Google Scholar]
  75. GuthiJ.S. YangS.G. HuangG. LiS. KhemtongC. KessingerC.W. PeytonM. MinnaJ.D. BrownK.C. GaoJ. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells.Mol. Pharm.201071324010.1021/mp900139319708690
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137301850240904223605
Loading
/content/journals/cnano/10.2174/0115734137301850240904223605
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): gene delivery; lung disease; natural excipients; Natural polymers; solubility; targeting
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test