Skip to content
2000
image of Prospects of Natural Polymers based Nano-drug Delivery Systems in the Treatment of Pulmonary Disorders

Abstract

Numerous lung conditions, including lung cancer, influenza, acute respiratory distress syndrome, chronic obstructive pulmonary disease [COPD], asthma, and pneumonia, present a great threat to people all over the world. A range of pharmaceutical drugs, peptides, antibodies, and genetic therapies have all been used to treat chronic lung illnesses. Unfortunately, the majority of chronic lung disorders cannot be fully cured by medication alone. At the moment, managing the symptoms is the only asthma treatment. This article provides a brief overview of the state-of-the-art understanding of the function of natural polymeric materials and emphasises recent developments in innovative drug delivery systems that may help treat a variety of lung diseases. Furthermore, the paper also discusses the latest application of natural polymeric materials for targeting gene delivery through different approaches.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137301850240904223605
2024-09-19
2024-12-26
Loading full text...

Full text loading...

References

  1. Yhee J. Im J. Nho R. Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery. J. Clin. Med. 2016 5 9 82 10.3390/jcm5090082 27657144
    [Google Scholar]
  2. Alsaffar M. Alshammari G. Alshammari A. Aljaloud S. Almurayziq T.S. Hamad A.A. Kumar V. Belay A. Detection of tuberculosis disease using image processing technique. Mob. Inf. Syst. 2021 2021 1 7 10.1155/2021/7424836
    [Google Scholar]
  3. Sgalla G. Iovene B. Calvello M. Ori M. Varone F. Richeldi L. Idiopathic pulmonary fibrosis: Pathogenesis and management. Respir. Res. 2018 19 1 32 10.1186/s12931‑018‑0730‑2 29471816
    [Google Scholar]
  4. Ragelle H. Danhier F. Préat V. Langer R. Anderson D.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv. 2017 14 7 851 864 10.1080/17425247.2016.1244187 27730820
    [Google Scholar]
  5. Tan S.Y. Mei Wong J.L. Sim Y.J. Wong S.S. Mohamed Elhassan S.A. Tan S.H. Ling Lim G.P. Rong Tay N.W. Annan N.C. Bhattamisra S.K. Candasamy M. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab. Syndr. 2019 13 1 364 372 10.1016/j.dsx.2018.10.008 30641727
    [Google Scholar]
  6. Khan N.H. Mir M. Qian L. Baloch M. Ali Khan M.F. Rehman A. Ngowi E.E. Wu D.D. Ji X.Y. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J. Adv. Res. 2022 36 223 247 10.1016/j.jare.2021.06.014 35127174
    [Google Scholar]
  7. van der Sar I.G. Wijbenga N. Nakshbandi G. Aerts J.G. Manintveld O.C. Wijsenbeek M.S. Hellemons M.E. Moor C.C. The smell of lung disease: A review of the current status of electronic nose technology. Respir. Res. 2021 22 1 246 10.1186/s12931‑021‑01835‑4 34535144
    [Google Scholar]
  8. Rahman M.M. Bibi S. Rahaman M.S. Rahman F. Islam F. Khan M.S. Hasan M.M. Parvez A. Hossain M.A. Maeesa S.K. Islam M.R. Najda A. Al-malky H.S. Mohamed H.R. AlGwaiz H.I. Awaji A.A. Germoush M.O. Kensara O.A. Abdel-Daim M.M. Saeed M. Kamal M.A. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed. Pharmacother. 2022 150 113041 10.1016/j.biopha.2022.113041 35658211
    [Google Scholar]
  9. Prasher P. Sharma M. Mehta M. Paudel K.R. Satija S. Chellappan D.K. Dureja H. Gupta G. Tambuwala M.M. Negi P. Wich P.R. Hansbro N.G. Hansbro P.M. Dua K. Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chem. Biol. Interact. 2020 325 109125 10.1016/j.cbi.2020.109125 32376238
    [Google Scholar]
  10. Gundry S. COPD 1: Pathophysiology, diagnosis and prognosis. Nurs. Times 2019 116 27 30
    [Google Scholar]
  11. Torres A. Cilloniz C. Niederman M.S. Menéndez R. Chalmers J.D. Wunderink R.G. Van der Poll T. Pneumonia. Nat. Rev. Dis. Primers 2021 7 1 25 10.1038/s41572‑021‑00259‑0 33833230
    [Google Scholar]
  12. Zheng M. Classification and pathology of lung cancer. Surgical Oncology Clinics. 2016 25 3 447 468 27261908
    [Google Scholar]
  13. Panchal S.S. Vasava D.V. Biodegradable polymeric materials: Synthetic approach. ACS Omega 2020 5 9 4370 4379 10.1021/acsomega.9b04422 32175484
    [Google Scholar]
  14. Li L. Zhang X. Gu X. Mao S. Applications of natural polymeric materials in solid oral modified-release dosage forms. Curr. Pharm. Des. 2015 21 40 5854 5867 10.2174/1381612821666151008150306 26446465
    [Google Scholar]
  15. Song R. Murphy M. Li C. Ting K. Soo C. Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Devel. Ther. 2018 12 3117 3145 10.2147/DDDT.S165440 30288019
    [Google Scholar]
  16. Ganewatta M.S. Wang Z. Tang C. Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials. Nat. Rev. Chem. 2021 5 11 753 772 10.1038/s41570‑021‑00325‑x 36238089
    [Google Scholar]
  17. Adewole J.K. Muritala K.B. Some applications of natural polymeric materials in oilfield operations: A review. J. Pet. Explor. Prod. Technol. 2019 9 3 2297 2307 10.1007/s13202‑019‑0626‑9
    [Google Scholar]
  18. Acquavia M. Pascale R. Martelli G. Bondoni M. Bianco G. Natural polymeric materials: A solution to plastic pollution from the agro-food sector. Polymers 2021 13 1 158 10.3390/polym13010158 33406618
    [Google Scholar]
  19. Gu Y. Huang J. Fabrication of natural cellulose substance derived hierarchical polymeric materials. J. Mater. Chem. 2009 19 22 3764 3770 10.1039/b900450p
    [Google Scholar]
  20. Chiellini E. Solaro R. Biodegradable polymers: A promising solution for green energy devices. Eur. Polym. J. 2024 204 112696
    [Google Scholar]
  21. Iovene A. Zhao Y. Wang S. Amoako K. Bioactive polymeric materials for the advancement of regenerative medicine. J. Funct. Biomater. 2021 12 1 14 10.3390/jfb12010014 33672492
    [Google Scholar]
  22. Abasian P. Ghanavati S. Rahebi S. Nouri Khorasani S. Khalili S. Polymeric nanocarriers in targeted drug delivery systems: A review. Polym. Adv. Technol. 2020 31 12 2939 2954 10.1002/pat.5031
    [Google Scholar]
  23. Srivastava A. Yadav T. Sharma S. Nayak A. Akanksha Kumari A. Mishra N. Polymers in drug delivery. J. Biosci. Med. 2016 4 1 69 84 10.4236/jbm.2016.41009 26605422
    [Google Scholar]
  24. Kitano S. Koyama Y. Kataoka K. Okano T. Sakurai Y. A novel drug delivery system utilizing a glucose responsive polymer complex between poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. J. Control. Release 1992 19 1-3 161 170 10.1016/0168‑3659(92)90073‑Z
    [Google Scholar]
  25. Rebello S. Sali S. Jisha M.S. Reshmy R. Pugazhendhi A. Madhavan A. Binod P. Awasthi M.K. Pandey A. Sindhu R. Chitosan a versatile adsorbent in environmental remediation in the era of circular economy-a mini review. Sustain. Chem. Pharm. 2023 32 101004 10.1016/j.scp.2023.101004
    [Google Scholar]
  26. Ha S. La Y. Kim K.T. Polymer cubosomes: Infinite cubic mazes and possibilities. Acc. Chem. Res. 2020 53 3 620 631 10.1021/acs.accounts.9b00563 31920073
    [Google Scholar]
  27. Chen H. Li M.H. Recent progress in polymer cubosomes and hexosomes. Macromol. Rapid Commun. 2021 42 15 2100194 10.1002/marc.202100194 34145688
    [Google Scholar]
  28. Yih T.C. Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 2006 97 6 1184 1190 10.1002/jcb.20796 16440317
    [Google Scholar]
  29. Dash A. Cudworth G. Therapeutic applications of implantable drug delivery systems. J. Pharmacol. Toxicol. Methods 1998 40 1 1 12 10.1016/S1056‑8719(98)00027‑6 9920528
    [Google Scholar]
  30. Nanjwade B.K. Bechra H.M. Derkar G.K. Manvi F.V. Nanjwade V.K. Dendrimers: Emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci. 2009 38 3 185 196 10.1016/j.ejps.2009.07.008 19646528
    [Google Scholar]
  31. O’Riordan T.G. Formulations and nebulizer performance. Respir. Care 2002 47 11 1305 1312 12425745
    [Google Scholar]
  32. Chen L. Okuda T. Lu X.Y. Chan H.K. Amorphous powders for inhalation drug delivery. Adv. Drug Deliv. Rev. 2016 100 102 115 10.1016/j.addr.2016.01.002 26780404
    [Google Scholar]
  33. Shetty N. Park H. Zemlyanov D. Mangal S. Bhujbal S. Zhou Q.T. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. Int. J. Pharm. 2018 544 1 222 234 10.1016/j.ijpharm.2018.04.034 29678544
    [Google Scholar]
  34. Tang P. Chan H.K. Raper J.A. Prediction of aerodynamic diameter of particles with rough surfaces. Powder Technol. 2004 147 1-3 64 78 10.1016/j.powtec.2004.09.036
    [Google Scholar]
  35. Zeng X.M. Martin G.P. Marriott C. Pritchard J. The influence of carrier morphology on drug delivery by dry powder inhalers. Int. J. Pharm. 2000 200 1 93 106 10.1016/S0378‑5173(00)00347‑1 10845690
    [Google Scholar]
  36. Guo X. Huang L. Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 2012 45 7 971 979 10.1021/ar200151m 21870813
    [Google Scholar]
  37. Nam K. Jung S. Nam J.P. Kim S.W. Poly(ethylenimine) conjugated bioreducible dendrimer for efficient gene delivery. J. Control. Release 2015 220 Pt A 447 455 10.1016/j.jconrel.2015.11.005 26551343
    [Google Scholar]
  38. Sung Y.K. Kim S.W. Recent advances in the development of gene delivery systems. Biomater. Res. 2019 23 1 8 12 10.1186/s40824‑019‑0156‑z 30915230
    [Google Scholar]
  39. Zhong Z. Feijen J. Lok M.C. Hennink W.E. Christensen L.V. Yockman J.W. Kim Y.H. Kim S.W. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties. Biomacromolecules 2005 6 3440 3448 10.1021/bm050505n 16283777
    [Google Scholar]
  40. Park M.R. Han K.O. Han I.K. Cho M.H. Nah J.W. Choi Y.J. Cho C.S. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J. Control. Release 2005 105 3 367 380 10.1016/j.jconrel.2005.04.008 15936108
    [Google Scholar]
  41. Wen Y. Pan S. Luo X. Zhang X. Zhang W. Feng M. A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector. Bioconjug. Chem. 2009 20 2 322 332 10.1021/bc800428y 19152330
    [Google Scholar]
  42. Wen Y. Pan S. Luo X. Zhang W. Shen Y. Feng M. PEG- and PDMAEG-graft-modified branched PEI as novel gene vector: synthesis, characterization and gene transfection. J. Biomater. Sci. Polym. Ed. 2010 21 8-9 1103 1126 10.1163/092050609X12459295750316 20507711
    [Google Scholar]
  43. Kim S. Nam J.P. Kim S. Sung Y.K. Recent development of bio-reducible polymers for efficient gene delivery system. J. Cancer Treatment Diagn. 2018 2 5 17 23 10.29245/2578‑2967/2018/5.1145
    [Google Scholar]
  44. Nam J.P. Park J.K. Son D.H. Kim T.H. Park S.J. Park S.C. Choi C. Jang M.K. Nah J.W. Evaluation of polyethylene glycol-conjugated novel polymeric anti-tumor drug for cancer therapy. Colloids Surf. B Biointerfaces 2014 120 168 175 10.1016/j.colsurfb.2014.04.013 24918700
    [Google Scholar]
  45. Nam J.P. Kim S. Kim S.W. Design of PEI-conjugated bio-reducible polymer for efficient gene delivery. Int. J. Pharm. 2018 545 1-2 295 305 10.1016/j.ijpharm.2018.04.051 29698820
    [Google Scholar]
  46. Lee Y.S. Kim S.W. Bioreducible polymers for therapeutic gene delivery. J. Control. Release 2014 190 424 439 10.1016/j.jconrel.2014.04.012 24746626
    [Google Scholar]
  47. Rai R. Alwani S. Badea I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers 2019 11 4 745 749 10.3390/polym11040745 31027272
    [Google Scholar]
  48. Kim T. Kim S.W. Bioreducible polymers for gene delivery. React. Funct. Polym. 2011 71 3 344 349 10.1016/j.reactfunctpolym.2010.11.016 21516195
    [Google Scholar]
  49. Sung Y.K. Kim S.W. The practical application of gene vectors in cancer therapy. Integr. Cancer Ther. 2018 5 1 5
    [Google Scholar]
  50. Ibraheem D. Elaissari A. Fessi H. Gene therapy and DNA delivery systems. J. Pharmaceu. 2014 459 1 83 10.1016/j.ijpharm.2013.11.041
    [Google Scholar]
  51. Robbins P.D. Ghivizzani S.C. Viral vectors for gene therapy. Pharmacol. Ther. 1998 80 1 35 47 10.1016/S0163‑7258(98)00020‑5 9804053
    [Google Scholar]
  52. Segovia N. Dosta P. Cascante A. Ramos V. Borrós S. Oligopeptide-terminated poly(β-amino ester)s for highly efficient gene delivery and intracellular localization. Acta Biomater. 2014 10 5 2147 2158 10.1016/j.actbio.2013.12.054 24406199
    [Google Scholar]
  53. Usman W.M. Pham T.C. Kwok Y.Y. Vu L.T. Ma V. Peng B. Chan Y.S. Wei L. Chin S.M. Azad A. He A.B. Leung A.Y. Yang M. Shyh-Chang N. Cho W.C. Shi J. Le M.T. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. 2018 9 1 2359 10.1038/s41467‑018‑04791‑8 29907766
    [Google Scholar]
  54. Martin A.R. Finlay W.H. Nebulizers for drug delivery to the lungs. Expert Opin. Drug Deliv. 2015 12 6 889 900 10.1517/17425247.2015.995087 25534396
    [Google Scholar]
  55. Mishra B. Singh J. Novel drug delivery systems and significance in respiratory diseases. Nat. Comm. 2020 57 95 10.1016/B978‑0‑12‑820658‑4.00004‑2
    [Google Scholar]
  56. Virmani T. Kumar G. Virmani R. Sharma A. Pathak K. Nanocarrier-based approaches to combat chronic obstructive pulmonary disease. Nanomedicine 2022 17 24 1833 1854 10.2217/nnm‑2021‑0403 35856251
    [Google Scholar]
  57. Smoła M. Vandamme T. Sokołowski A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int. J. Nanomedicine 2008 3 1 1 19 18488412
    [Google Scholar]
  58. Trapani A. Gioia S. Castellani S. Carbone A. Cavallaro G. Trapani G. Conese M. Nanocarriers for respiratory diseases treatment: Recent advances and current challenges. Curr. Top. Med. Chem. 2014 14 9 1133 1147 10.2174/1568026614666140329225817 24678708
    [Google Scholar]
  59. Moreno-Sastre M. Pastor M. Salomon C.J. Esquisabel A. Pedraz J.L. Pulmonary drug delivery: A review on nanocarriers for antibacterial chemotherapy. J. Antimicrob. Chemother. 2015 70 11 2945 2955 10.1093/jac/dkv192 26203182
    [Google Scholar]
  60. Santonocito D. Puglia C. Nanotechnological Systems and Lung: A Perfect Combination for Lung Pharmaceutical Applications. Curr. Med. Chem. 2022 29 6 36043745
    [Google Scholar]
  61. Mansour H. Wu X. Nanomedicine in pulmonary delivery. Int. J. Nanomedicine 2009 4 299 319 10.2147/IJN.S4937 20054434
    [Google Scholar]
  62. Gad S Yousry A Hassan TH Aidy S Nanocarriers as pulmonary drug delivery systems. Rec. Pharm. Biomedical Sci. 2022 6 3 113 119 10.21608/rpbs.2022.143936.1150
    [Google Scholar]
  63. Beyerle A. Braun A. Banerjee A. Ercal N. Eickelberg O. Kissel T.H. Stoeger T. Inflammatory responses to pulmonary application of PEI-based siRNA nanocarriers in mice. Biomaterials 2011 32 33 8694 8701 10.1016/j.biomaterials.2011.07.082 21855131
    [Google Scholar]
  64. Rytting E. Nguyen J. Wang X. Kissel T. Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin. Drug Deliv. 2008 5 6 629 639 10.1517/17425247.5.6.629 18532919
    [Google Scholar]
  65. Zhang G. Mo S. Fang B. Zeng R. Wang J. Tu M. Zhao J. Pulmonary delivery of therapeutic proteins based on zwitterionic chitosan-based nanocarriers for treatment on bleomycin-induced pulmonary fibrosis. Int. J. Biol. Macromol. 2019 133 58 66 10.1016/j.ijbiomac.2019.04.066 30981773
    [Google Scholar]
  66. Wang G. Wang Z. Li C. Duan G. Wang K. Li Q. Tao T. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed. Pharmacother. 2018 106 275 284 10.1016/j.biopha.2018.06.137
    [Google Scholar]
  67. Amreddy N. Babu A. Muralidharan R. Munshi A. Ramesh R. Polymeric nanoparticle-mediated gene delivery for lung cancer treatment. topics in current chemistry. Topic Curr. Chem. 2017 375 2 35
    [Google Scholar]
  68. Landesman-Milo D. Ramishetti S. Peer D. Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev. 2015 34 2 291 301 10.1007/s10555‑015‑9554‑4 25948376
    [Google Scholar]
  69. Bhat A.A. Gupta G. Alharbi K.S. Afzal O. Altamimi A.S. Almalki W.H. Kazmi I. Al-Abbasi F.A. Alzarea S.I. Chellappan D.K. Singh S.K. MacLoughlin R. Oliver B.G. Dua K. Polysaccharide-based nanomedicines targeting lung cancer. Pharmaceutics 2022 14 12 2788 10.3390/pharmaceutics14122788 36559281
    [Google Scholar]
  70. Wang W. Hao Y. Liu Y. Li R. Huang D.B. Pan Y.Y. Nanomedicine in lung cancer: Current states of overcoming drug resistance and improving cancer immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021 13 1 e1654 10.1002/wnan.1654 32700465
    [Google Scholar]
  71. Yee Kuen C. Masarudin M.J. Chitosan nanoparticle-based system: A new insight into the promising controlled release system for lung cancer treatment. Molecules 2022 27 2 473 10.3390/molecules27020473 35056788
    [Google Scholar]
  72. Park J.H. Lee S. Kim J.H. Park K. Kim K. Kwon I.C. Polymeric nanomedicine for cancer therapy. Prog. Polym. Sci. 2008 33 1 113 137 10.1016/j.progpolymsci.2007.09.003
    [Google Scholar]
  73. Chen Q. Bai H. Wu W. Huang G. Li Y. Wu M. Tang G. Ping Y. Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention. Nano Lett. 2019 20 1 11 21 31858807
    [Google Scholar]
  74. Crintea A. Duțu A.G. Samașca G. Florian I.A. Lupan I. Crăciun A.M. The nanosystems involved in treating lung cancer. Life 2021 11 7 682 10.3390/life11070682 34357054
    [Google Scholar]
  75. Guthi J.S. Yang S.G. Huang G. Li S. Khemtong C. Kessinger C.W. Peyton M. Minna J.D. Brown K.C. Gao J. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol. Pharm. 2010 7 1 32 40 10.1021/mp9001393 19708690
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137301850240904223605
Loading
/content/journals/cnano/10.2174/0115734137301850240904223605
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: natural excipients ; targeting ; lung disease ; solubility ; gene delivery ; Natural polymers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test