Skip to content
2000
image of Photocatalytic Degradation of Mancozeb Pesticide Residue using Nanoceria Doped Zinc Oxide Nanoparticles under Natural Solar Irradiation

Abstract

Introduction

Excessive applications of agrochemicals to meet the high food demand from ever-increasing populations are becoming a major issue for both health practitioners and environmental managers. Chemicals such as ethylene bis-dithiocarbamate pesticide mancozeb (MCZ) are known to have deleterious effects on the ecosystem. AIM: This study, aimed at assessing the suitability of cerium-doped zinc oxide (Ce-ZnO) for efficient degradation of MCZ fungicide.

Method

The photocatalysts were synthesized using the coprecipitation method with zinc nitrate hexahydrate, cerium nitrate hexahydrate, and sodium hydroxide. The synthesized nanocomposites were further characterized by Powder X-ray Diffraction (PXRD), Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectroscopy (EDAX). The average crystallite size of the as-synthesized particles was found to be 31.42 nm, with very sharp PXRD peaks revealing the pure crystal nature of the particles. The photocatalytic degradation activity was evaluated following a series of experiments under natural environmental conditions. The optimal conditions for the degradation of MCZ fungicide using Ce-ZnO were found to be 10 ppm initial concentration of MCZ, 20 mg dose of the Ce-ZnO photocatalyst, 180 minutes irradiation time, and 10-11 atmospheric UV index.

Result

At the optimum conditions, the degradation efficiency was found to be about 90% after 180 minutes. The reported photocatalytic degradation of MCZ using Ce-ZnO fits a pseudo-first-order kinetic model with an R2 value of 0. 9677. Similarly, the reusability of the as-synthesized photocatalyst was evaluated and found to be active for five rounds with little change in the activity.

Conclusion

Thus, the degradation method in the current study can be suitable for the degradation and removal of MCZ in agricultural runoff in the field.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137333494240923052334
2024-10-07
2024-12-26
Loading full text...

Full text loading...

References

  1. Cocco P. Time for re-evaluating the human carcinogenicity of ethylenedithiocarbamate fungicides? A systematic review. Int. J. Environ. Res. Public Health 2022 19 5 2632 10.3390/ijerph19052632 35270318
    [Google Scholar]
  2. Gullino M.L. Tinivella F. Garibaldi A. Kemmitt G.M. Bacci L. Sheppard B. Mancozeb: Past, present, and future. Plant Dis. 2010 94 9 1076 1087 10.1094/PDIS‑94‑9‑1076 30743728
    [Google Scholar]
  3. Quds R. Amiruddin Hashmi M. Iqbal Z. Mahmood R. Interaction of mancozeb with human hemoglobin: Spectroscopic, molecular docking and molecular dynamic simulation studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 280 121503 10.1016/j.saa.2022.121503 35717929
    [Google Scholar]
  4. Aprioku J.S. Amamina A.M. Nnabuenyi P.A. Nnabuenyi A. Mancozeb-induced hepatotoxicity: Protective role of curcumin in rat animal model. Toxicol. Res. (Camb.) 2023 12 1 107 116 10.1093/toxres/tfac085 36866214
    [Google Scholar]
  5. Banaee M. Sagvand S. Sureda A. Amini M. Haghi B.N. Sopjani M. Faggio C. Evaluation of single and combined effects of mancozeb and metalaxyl on the transcriptional and biochemical response of zebrafish (Danio rerio). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023 268 109597 10.1016/j.cbpc.2023.109597 36889533
    [Google Scholar]
  6. Costa C. Teodoro M. Giambò F. Catania S. Vivarelli S. Fenga C. Assessment of mancozeb exposure, absorbed dose, and oxidative damage in greenhouse farmers. Int. J. Environ. Res. Public Health 2022 19 17 10486 10.3390/ijerph191710486 36078202
    [Google Scholar]
  7. Lori G. Tassinari R. Narciso L. Udroiu I. Sgura A. Maranghi F. Tait S. Toxicological comparison of mancozeb and zoxamide fungicides at environmentally relevant concentrations by an in vitro approach. Int. J. Environ. Res. Public Health 2021 18 16 8591 10.3390/ijerph18168591 34444340
    [Google Scholar]
  8. Gök E. Deveci E. Histopathological, immunohistochemical and biochemical alterations in liver tissue after fungicide-mancozeb exposures in Wistar albino rats. Acta Cir. Bras. 2022 37 4 e370404 10.1590/acb370404 35766670
    [Google Scholar]
  9. Abdul Sattar A. Preparation of novel hybrid (almond shell and Pleurotus sajor-caju) biosorbent for the removal of heavy metals (nickel and lead) from wastewater. Water Conserv. Manag. 2020 5 1 1 7 10.26480/wcm.01.2021.01.07
    [Google Scholar]
  10. Nguyen X.P. Nguyen D.T. Pham V.V. Bui V.D. Evaluation of the synergistic effect in wastewater treatment from ships by the advanced combination system. Water Conserv. Manag. 2021 5 1 60 65 10.26480/wcm.01.2021.60.65
    [Google Scholar]
  11. Akhter P. Nawaz S. Shafiq I. Nazir A. Shafique S. Jamil F. Park Y.K. Hussain M. Efficient visible light assisted photocatalysis using ZnO/TiO2 nanocomposites. Molecular Catalysis 2023 535 112896 10.1016/j.mcat.2022.112896
    [Google Scholar]
  12. Bruckmann FS. Schnorr C. Oviedo LR. Adsorption and photocatalytic degradation of pesticides into nanocomposites: A review Molecules 2022 27 19 10.3390/molecules27196261
    [Google Scholar]
  13. Barzagan A. Bazargan A. Photocatalytic. Waste Wastewater Treat. 2022 April 10.2166/9781789061932
    [Google Scholar]
  14. Andronic L. Lelis M. Enesca A. Karazhanov S. Photocatalytic activity of defective black-titanium oxide photocatalysts towards pesticide degradation under UV/VIS irradiation. Surf. Interfaces 2022 32 102123 10.1016/j.surfin.2022.102123
    [Google Scholar]
  15. Sindhu M. Sharma A. Maan K.S. Patel V. Singh P.P. Nguyen V.H. Fabrication and characterization of novel V, S co-doped Ta3N5 protected with PANI composite materials for hydrogen generation from light-driven water splitting. J. Taiwan Inst. Chem. Eng. 2024 158 105024 10.1016/j.jtice.2023.105024
    [Google Scholar]
  16. Saljooqi A. Shamspur T. Mostafavi A. Synthesis and photocatalytic activity of porous ZnO stabilized by TiO2 and Fe3O4 nanoparticles: investigation of pesticide degradation reaction in water treatment. Environ. Sci. Pollut. Res. Int. 2021 28 8 9146 9156 10.1007/s11356‑020‑11122‑2 33131041
    [Google Scholar]
  17. Irfan F. Tanveer MU. Moiz MA. TiO2 as an effective photocatalyst mechanisms, applications, and dopants: A review Eur. Phys. J. B. 2022 95 11 10.1140/epjb/s10051‑022‑00440‑8
    [Google Scholar]
  18. Janoš P. Ederer J. Štastný M. Tolasz J. Henych J. Degradation of parathion methyl by reactive sorption on the cerium oxide surface: The effect of solvent on the degradation efficiency. Arab. J. Chem. 2022 15 6 103852 10.1016/j.arabjc.2022.103852
    [Google Scholar]
  19. Ahmad W. Kaur N. Joshi H.C. Photocatalytic behavior of NiO nanoparticles towards photocatalytic degradation of paracetamol. Mater. Today Proc. 2022 Sep 10.1016/j.matpr.2022.09.075
    [Google Scholar]
  20. Goel P. Arora M. Photocatalytic degradation efficiency of Cu/Cu2O core–shell structured nanoparticles for endosulfan mineralization. J. Nanopart. Res. 2022 24 3 56 10.1007/s11051‑022‑05436‑0
    [Google Scholar]
  21. Bibi I. Nazar N. Ata S. Sultan M. Ali A. Abbas A. Jilani K. Kamal S. Sarim F.M. Khan M.I. Jalal F. Iqbal M. Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. J. Mater. Res. Technol. 2019 8 6 6115 6124 10.1016/j.jmrt.2019.10.006
    [Google Scholar]
  22. Sani M.D. Kura N.U. Ameta S.K. Adamu A. Eco-friendly synthesis and characterization of iron nanoparticles using crude extract from Eucalyptus globulus leaves as reducing and capping agents. Nanochem. Res. 2022 7 2 135 142 10.22036/ncr.2022.02.008
    [Google Scholar]
  23. Mohammed R. Ali MEM. Gomaa E. Copper sulfide and zinc oxide hybrid nanocomposite for wastewater decontamination of pharmaceuticals and pesticides. Sci. Rep. 2022 12 1 18153 10.1038/s41598‑022‑22795‑9
    [Google Scholar]
  24. Adabavazeh H. Saljooqi A. Shamspur T. Mostafavi A. Synthesis of polyaniline decorated with ZnO and CoMoO4 nanoparticles for enhanced photocatalytic degradation of imidacloprid pesticide under visible light. Polyhedron 2021 198 115058 10.1016/j.poly.2021.115058
    [Google Scholar]
  25. Garg A. Photocatalytic degradation of bisphenol-A using N, co codoped TiO2 catalyst under solar light Sci. Rep. 2019 9 1 765 10.1038/s41598‑018‑38358‑w
    [Google Scholar]
  26. Sraw A. Kaur T. Thakur I. Verma A. Wanchoo R.K. Toor A.P. Photocatalytic degradation of pesticide monocrotophos in water using W-TiO2 in slurry and fixed bed recirculating reactor. J. Mol. Struct. 2022 1265 133392 10.1016/j.molstruc.2022.133392
    [Google Scholar]
  27. Chinnappa K. Karuna Ananthai P. Srinivasan P.P. Dharmaraj Glorybai C. Green synthesis of rGO-AgNP composite using Curcubita maxima extract for enhanced photocatalytic degradation of the organophosphate pesticide chlorpyrifos. Environ. Sci. Pollut. Res. Int. 2022 29 38 58121 58132 10.1007/s11356‑022‑19917‑1 35364789
    [Google Scholar]
  28. Purabgola A. Mayilswamy N. Kandasubramanian B. Graphene-based TiO2 composites for photocatalysis & environmental remediation: Synthesis and progress. Environ. Sci. Pollut. Res. Int. 2022 29 22 32305 32325 10.1007/s11356‑022‑18983‑9 35137316
    [Google Scholar]
  29. Shirzadi A. Nezamzadeh-Ejhieh A. Enhanced photocatalytic activity of supported CuO–ZnO semiconductors towards the photodegradation of mefenamic acid aqueous solution as a semi real sample. J. Mol. Catal. Chem. 2016 411 222 229 10.1016/j.molcata.2015.10.027
    [Google Scholar]
  30. Hannachi E. Slimani Y. Nawaz M. Trabelsi Z. Yasin G. Bilal M. Almessiere M.A. Baykal A. Thakur A. Thakur P. Synthesis, characterization, and evaluation of the photocatalytic properties of zinc oxide co-doped with lanthanides elements. J. Phys. Chem. Solids 2022 170 110910 10.1016/j.jpcs.2022.110910
    [Google Scholar]
  31. Rajendrachari S. Taslimi P. Karaoglanli A.C. Uzun O. Alp E. Jayaprakash G.K. Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method. Arab. J. Chem. 2021 14 6 103180 10.1016/j.arabjc.2021.103180
    [Google Scholar]
  32. Raghavendra V.B. Shankar S. Govindappa M. Pugazhendhi A. Sharma M. Nayaka S.C. Green synthesis of zinc oxide nanoparticles (zno nps) for effective degradation of dye, polyethylene and antibacterial performance in waste water treatment. J. Inorg. Organomet. Polym. Mater. 2022 32 2 614 630 10.1007/s10904‑021‑02142‑7
    [Google Scholar]
  33. Zinc oxide nanoparticles catalytic activity for the degradation of quinclorac herbicide residues in water. 2020 Available from: https://drive.google.com/file/d/1I_bfudY8yuLCuk30DUmICGAC5Lm3vaSe/view
  34. Rodwihok C. Wongratanaphisan D. Tam T.V. Choi W.M. Hur S.H. Chung J.S. Cerium-oxide-nanoparticle-decorated zinc oxide with enhanced photocatalytic degradation of methyl orange. Appl. Sci. 2020 10 5 1697 10.3390/app10051697
    [Google Scholar]
  35. Yadav J. Rani M. Zhang T.C. Shanker U. Efficient photo-adsorptive eradication of endocrine disrupting pesticides by chitosan co- decorated metal oxide bio-nanocomposite 2023 10.21203/rs.3.rs‑2518888/v1
  36. Carofiglio M. Barui S. Cauda V. Laurenti M. Doped zinc oxide nanoparticles: Synthesis, characterization and potential use in nanomedicine. Appl. Sci. 2020 10 15 5194 10.3390/app10155194
    [Google Scholar]
  37. Suresh R. Gnanasekaran L. Rajendran S. Moscoso M.S. Chen W.H. Show P.L. Khoo K.S. Application of nanocomposites in integrated photocatalytic techniques for water pollution remediation. Environ. Technol. Innov. Elsevier BV 2023 31 2260 103149 10.1016/j.eti.2023.103149
    [Google Scholar]
  38. Giahi M. Pathania D. Agarwal S. Gomaa A.M.A. Chong K.F. Gupta V.K. Preparation of Mg-doped TiO2 nanoparticles for photocatalytic degradation of some organic pollutants. Stud. Univ. Babes-Bolyai Chem. 2019 64 1 7 18 10.24193/subbchem.2019.1.01
    [Google Scholar]
  39. Karidas S. Veena B.K. Pujari N. Krishna P. Chunduru V. Photodegradation of methylene blue (MB) using cerium-doped zinc oxide nanoparticles. Sādhanā 2020 Springer Science and Business Media LLC 45 128 10.1007/S12046‑020‑01329‑X/TABLES/4
    [Google Scholar]
  40. Javan S. Rezaei Kahkha M.R. Moghaddam F. Faghihi-Zarandi M. Hejazi A. Photocatalytic degradation of methyl orange using Cerium doped zinc oxide nanoparticles supported bentonite clay. Anal. Methods Environ. Chem. J. 2022 5 4 87 95 10.24200/amecj.v5.i04.216
    [Google Scholar]
  41. Sani M.D. Kumar Abbaraju V.D.N. Venugopal N.V.S. Synthesis of cerium-doped zinc oxide nanocomposites and their application for photocatalytic degradation of lambda-cyhalothrin in agricultural runoff under natural solar irradiation. Int. J. Nanosci. 2024 2350089 2350089 10.1142/S0219581X23500898
    [Google Scholar]
  42. Zhang Y. Zhao M. Huang J. Zhao N. Controllable synthesis, photocatalytic property, and mechanism of a novel POM-based direct Z-scheme nano-heterojunction α-Fe2O3/P2Mo18. Molecules 28 18 6671 10.3390/molecules28186671
    [Google Scholar]
  43. Vakili B. Shahmoradi B. Maleki A. Safari M. Yang J. Pawar R.R. Lee S-M. Synthesis of immobilized cerium doped ZnO nanoparticles through the mild hydrothermal approach and their application in the photodegradation of synthetic wastewater. J. Mol. Liq. 2019 280 230 237 10.1016/j.molliq.2018.12.103
    [Google Scholar]
  44. Li H. Si S. Yang K. Mao Z. Sun Y. Cao X. Yu H. Zhang J. Ding C. Liang H. Wu L. Hexafluoroisopropanol based silk fibroin coatings on AZ31 biometals with enhanced adhesion, corrosion resistance and biocompatibility. Prog. Org. Coat. 2023 184 May 107881 10.1016/j.porgcoat.2023.107881
    [Google Scholar]
  45. Hammiche L. Slimi O. Djouadi D. Chelouche A. Touam T. Effect of supercritical organic solvent on structural and optical properties of cerium doped zinc oxide aerogel nanoparticles. Optik (Stuttg.) 2017 145 448 455 10.1016/j.ijleo.2017.08.029
    [Google Scholar]
  46. Zheng Y. Liu Y. Guo X. Chen Z. Zhang W. Wang Y. Tang X. Zhang Y. Zhao Y. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. J. Mater. Sci. Technol. 2020 41 117 126 10.1016/j.jmst.2019.09.018
    [Google Scholar]
  47. Paganini M.C. Dalmasso D. Gionco C. Polliotto V. Mantilleri L. Calza P. Beyond TiO 2 : Cerium-doped zinc oxide as a new photocatalyst for the photodegradation of persistent pollutants. ChemistrySelect 2016 1 12 3377 3383 10.1002/slct.201600645
    [Google Scholar]
  48. Tang T. Zhou M. Lv J. Cheng H. Wang H. Qin D. Hu G. Liu X. Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Colloids Surf. B Biointerfaces 2022 216 April 112538 10.1016/j.colsurfb.2022.112538 35526390
    [Google Scholar]
  49. Laouini S. E. Bouafia A. Soldatov A.V. Algarni H. Tedjani M.L. Ali G.A.M. Barhoum A. Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L. and their azo dye photodegradation Membrane 2021 11 7 10.3390/membranes11070468
    [Google Scholar]
  50. Ethiraj A.S. Uttam P. K. V. Chong K.F. Ali G.A.M. Photocatalytic performance of a novel semiconductor nanocatalyst: Copper doped nickel oxide for phenol degradation. Materials Chemistry and Physics 2020 Elsevier BV 122520 10.1016/j.matchemphys.2019.122520
    [Google Scholar]
  51. Abdelhameed R.M. Darwesh O.M. El-Shahat M. Titanium-based metal-organic framework capsulated with magnetic nanoparticles: Antimicrobial and photocatalytic degradation of pesticides. Microporous Mesoporous Mater. 2023 354 112543 10.1016/j.micromeso.2023.112543
    [Google Scholar]
  52. Ganie A.S. Bashar N. Bano S. Hijazi S. Sultana S. Sabir S. Khan M.Z. Development and application of redox active GO supported CeO2/In2O3 nanocomposite for photocatalytic degradation of toxic dyes and electrochemical detection of sulfamaxole. Surf. Interfaces 2023 38 February 102774 10.1016/j.surfin.2023.102774
    [Google Scholar]
  53. Pramanick B. Chawla M. Siril P.F. Photocatalytic degradation of aromatic pollutants using plasmonic Cu–Ag nanocomposites. Opt. Mater. 2023 137 113553 10.1016/j.optmat.2023.113553
    [Google Scholar]
  54. Dolatabadi M. Świergosz T. Wang C. Ahmadzadeh S. Accelerated degradation of groundwater-containing malathion using persulfate activated magnetic Fe3O4/graphene oxide nanocomposite for advanced water treatment. Arab. J. Chem. 2023 16 1 104424 10.1016/j.arabjc.2022.104424
    [Google Scholar]
  55. Ajiboye T. O. Kuvarega A. T. Onwudiwe D. C. Recent strategies for environmental remediation of organochlorine pesticides. Appl. Sci. 2020 10 18 6286 10.3390/app10186286
    [Google Scholar]
  56. Sani M. D. Abbaraju V. D. N. K. Venugopal V. S. N. Kura N.U. An overview of the degradation and removal of pesticide residues from water and agricultural runoff using nanoparticles and nanocomposites. Nanosci. Nanotechnol. - Asia 2024 14 3 19 10.2174/0122106812306532240607105242
    [Google Scholar]
  57. Premalatha N. Rose Miranda L. Surfactant modified ZnO–Bi2O3 nanocomposite for degradation of lambda- cyhalothrin pesticide in visible light: A study of reaction kinetics and intermediates. J. Environ. Manage. 2019 246 259 266 10.1016/j.jenvman.2019.05.155 31181474
    [Google Scholar]
  58. Nageswara Rao V. Gopal N.V.S.V. Patrudu T.B. Removal of diclosulam pesticide residues in water samples using Cu doped ZnO nanocatalyst. Int. J. Curr. Microbiol. Appl. Sci. 2020 9 11 910 921 10.20546/ijcmas.2020.911.109
    [Google Scholar]
  59. Farrukh M.A. Butt K.M. Chong K.K. Chang W.S. Photoluminescence emission behavior on the reduced band gap of Fe doping in CeO2-SiO2 nanocomposite and photophysical properties. J. Saudi Chem. Soc. 2019 23 5 561 575 10.1016/j.jscs.2018.10.002
    [Google Scholar]
  60. Ederer J. Šťastný M. Došek M. Henych J. Janoš P. Mesoporous cerium oxide for fast degradation of aryl organophosphate flame retardant triphenyl phosphate. RSC Adv. 2019 9 55 32058 32065 10.1039/C9RA06575J
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137333494240923052334
Loading
/content/journals/cnano/10.2174/0115734137333494240923052334
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: wastewater ; degradation ; Mancozeb ; nanoparticles ; photocatalyst
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test