Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

In recent years carbon dots (CDs) have attracted researchers due to their unique physicochemical and fluorescent (FL) features, which can be applied in many fields such as battery materials, fluorescence sensing, display, biological imaging and photocatalysis.

Methods

We prepared CDs by using a facile one-step sintering method. The fluorescent properties and the application of pH detection were measured and analyzed.

Results

The results show that CDs emit bright purplish-blue light centred at 425 nm excited by 355 nm UV light. FL intensity shows a linear relationship with pH values at 1~4 and 7~11, respectively. The reasonable mechanism of the tested effective pH sensitivity is discussed.

Conclusion

Our study shows that the CDs prepared by the one-step sintering method have great potential to be used as pH sensors for physiochemical measurements.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137331045241005171451
2024-10-15
2025-08-11
Loading full text...

Full text loading...

References

  1. LiuJ. LiR. YangB. Carbon Dots: A new type of carbon-based nanomaterial with wide applications.ACS Cent. Sci.20206122179219510.1021/acscentsci.0c0130633376780
    [Google Scholar]
  2. MahtoB. MahantyB. HaitS. HussainS. A review of coal-based carbon and graphene quantum dots: synthesis, properties, and applications.Mater. Sci. Eng. B202430411738610.1016/j.mseb.2024.117386
    [Google Scholar]
  3. ZhangT.T. ChenZ.H. ShiG.Y. ZhangM. Eu3+-doped bovine serum albumin-derived carbon dots for ratiometric fluorescent detection of tetracycline.J. Anal. Test.20226436537310.1007/s41664‑022‑00233‑z
    [Google Scholar]
  4. ShuklaD. DasM. KasadeD. PandeyM. DubeyA.K. YadavS.K. ParmarA.S. Sandalwood-derived carbon quantum dots as bioimaging tools to investigate the toxicological effects of malachite green in model organisms.Chemosphere202024812599810.1016/j.chemosphere.2020.12599832006833
    [Google Scholar]
  5. ShiZ. ChenX. ZhangL. DingS. WangX. LeiQ. FangW. FA-PEG decorated MOF nanoparticles as a targeted drug delivery system for controlled release of an autophagy inhibitor.Biomater. Sci.20186102582259010.1039/C8BM00625C30151542
    [Google Scholar]
  6. YangW. LiX. FeiL. LiuW. LiuX. XuH. LiuY. A review on sustainable synthetic approaches toward photoluminescent quantum dots.Green Chem.202224267570010.1039/D1GC02964A
    [Google Scholar]
  7. KaurA. PandeyK. KaurR. VashishatN. KaurM. Nanocomposites of carbon quantum dots and graphene quantum dots: Environmental applications as sensors.Chemosensors (Basel)202210936710.3390/chemosensors10090367
    [Google Scholar]
  8. MosconiD. MazzierD. SilvestriniS. PriviteraA. MaregaC. FrancoL. MorettoA. Synthesis and photochemical applications of processable polymers enclosing photoluminescent carbon quantum dots.ACS Nano2015944156416410.1021/acsnano.5b0031925772001
    [Google Scholar]
  9. LimS.Y. ShenW. GaoZ. Carbon quantum dots and their applications.Chem. Soc. Rev.201544136238110.1039/C4CS00269E25316556
    [Google Scholar]
  10. YangH.L. BaiL.F. GengZ.R. ChenH. XuL.T. XieY.C. WangD.J. GuH.W. WangX.M. Carbon quantum dots: Preparation, optical properties, and biomedical applications.Mater. Today Adv.20231810037610.1016/j.mtadv.2023.100376
    [Google Scholar]
  11. HuangC.C. HungY.S. WengY.M. ChenW. LaiY.S. Sustainable development of carbon nanodots technology: Natural products as a carbon source and applications to food safety.Trends Food Sci. Technol.20198614415210.1016/j.tifs.2019.02.016
    [Google Scholar]
  12. LiuL. MiZ. HuQ. LiC. LiX. FengF. Green synthesis of fluorescent carbon dots as an effective fluorescence probe for morin detection.Anal. Methods201911335335810.1039/C8AY02361A
    [Google Scholar]
  13. GuptaA. VermaN.C. KhanS. TiwariS. ChaudharyA. NandiC.K. Paper strip based and live cell ultrasensitive lead sensor using carbon dots synthesized from biological media.Sens. Actuators B Chem.201623210711410.1016/j.snb.2016.03.110
    [Google Scholar]
  14. WangC. YangM. ShiH. YaoZ. LiuE. HuX. GuoP. XueW. FanJ. Carbon quantum dots prepared by pyrolysis: Investigation of the luminescence mechanism and application as fluorescent probes.Dyes Pigments202220411043110.1016/j.dyepig.2022.110431
    [Google Scholar]
  15. LiuR. Facile synthesis of magneto-fluorescent carbon dots by one-step microwave-assisted pyrolysis.J. Alloys Compd.202185515745610.1016/j.jallcom.2020.157456
    [Google Scholar]
  16. ChernyakS. PodgornovaA. DorofeevS. MaksimovS. MaslakovK. SavilovS. LuninV. Synthesis and modification of pristine and nitrogen-doped carbon dots by combining template pyrolysis and oxidation.Appl. Surf. Sci.202050714502710.1016/j.apsusc.2019.145027
    [Google Scholar]
  17. LiY. ChenJ. WangY. LiH. YinJ. LiM. WangL. SunH. ChenL. Large-scale direct pyrolysis synthesis of excitation-independent carbon dots and analysis of ferric (III) ion sensing mechanism.Appl. Surf. Sci.202153814815110.1016/j.apsusc.2020.148151
    [Google Scholar]
  18. LiuY. YangH. HuangT. NiuL. LiuS. Recent advances of biomass-derived carbon dots with room temperature phosphorescence characteristics.Nano Today20245610225710.1016/j.nantod.2024.102257
    [Google Scholar]
  19. AkhilaM.J. SubodhG. SibiK.S. BijuV. Folic acid-derived luminescent carbon dots: Effect of Ag inclusion and switch ON sensing of sulfide ions.J. Mol. Liq.202338512239610.1016/j.molliq.2023.122396
    [Google Scholar]
  20. ZhangL. PengY. ZhouY. WuY. LeT. A novel fluorescent probe based on white pitaya peel‐derived carbon dots for highly selective and sensitive determination of sulfaquinoxaline in food.Int. J. Food Sci. Technol.202358263164510.1111/ijfs.16211
    [Google Scholar]
  21. AdaikalapandiS. ThangaduraiT.D. ManjubaashiniN. NatarajD. BabuT.G.S. KumarS.M. Bamboo stem biomass waste-derived excitation-dependent carbon dots for nanomolar detection of fungicide dodine in real samples and their pH-sensitive bacterial interaction studies.Diamond Relat. Mater.202414111069210.1016/j.diamond.2023.110692
    [Google Scholar]
  22. LuoK. LiW. LuoX. KangX. WenY. Solvent-free pyrolysis synthesis of solid-state fluorescent carbon dots: Optical properties and latent fingerprint imaging.Diamond Relat. Mater.202414211083710.1016/j.diamond.2024.110837
    [Google Scholar]
  23. LiJ. LiW. WangH. ZhaoX. GongX. Solid-state fluorescent carbon dots-based composite optical waveguide film enables transparent and high-performance luminescent solar concentrators.Appl. Energy202435812257110.1016/j.apenergy.2023.122571
    [Google Scholar]
  24. TaoS. ZhouC. KangC. ZhuS. FengT. ZhangS.T. DingZ. ZhengC. XiaC. YangB. Confined-domain crosslink-enhanced emission effect in carbonized polymer dots.Light Sci. Appl.20221115610.1038/s41377‑022‑00745‑435273150
    [Google Scholar]
  25. MiaoC. ZhouX. HuangX. HuangJ. ChenY. LiuY. HuX. ZengL. WengS. ChenH. Effectively synthesized functional Si-doped carbon dots with the applications in tyrosinase detection and lysosomal imaging.Anal. Chim. Acta2023127934178910.1016/j.aca.2023.34178937827683
    [Google Scholar]
  26. AhmadM.A. UlfaD.K. SaktiS.C.W. KhasanahM. WibriantoA. SugitoS.F.A. ChangJ. FahmiM.Z. A photoluminescence and colorimetric dual-active mode of copper-modified carbon dots for quantitative sensing of histamine.Phys. Scr.202499505593110.1088/1402‑4896/ad37ac
    [Google Scholar]
  27. ÇolakO.A.M. GüngörA. AkturkM.B. ErdemE. GençR. Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization.Nanoscale202416271973310.1039/D3NR04893D38086662
    [Google Scholar]
  28. DongH. ShangG. ZhangY. HuS. HeH. LiW. DengX. NieZ. ZhaoS. Nitrogen-doped carbon dots as green materials for sensitive and selective detection of isorhamnetin.Mater. Today Sustain.20242710088810.1016/j.mtsust.2024.100888
    [Google Scholar]
  29. YeQ. DaiT. ShenJ. XuQ. HuX. ShuY. Incorporation of fluorescent carbon quantum dots into metal–organic frameworks with peroxidase- mimicking activity for high-performance ratiometric fluorescent biosensing.J. Anal. Test.202371162410.1007/s41664‑022‑00246‑8
    [Google Scholar]
  30. RongM. WangD. LiY. ZhangY. HuangH. LiuR. DengX. Green-emitting carbon dots as fluorescent probe for nitrite detection.J. Anal. Test.202151515910.1007/s41664‑021‑00161‑4
    [Google Scholar]
  31. BogireddyN.K.R. Cruz SilvaR. ValenzuelaM.A. AgarwalV. 4-nitrophenol optical sensing with N doped oxidized carbon dots.J. Hazard. Mater.202038612164310.1016/j.jhazmat.2019.12164331780290
    [Google Scholar]
  32. ZhangH. HeJ. XiongY. MuH. DengY. ZhaoQ. Antibacterial mechanism analysis and structural design of amino acid-based carbon dots.J. Mater. Sci.202358114954496910.1007/s10853‑023‑08320‑x
    [Google Scholar]
  33. KorramJ. AnbalaganA.C. BanerjeeA. SawantS.N. Bio-conjugated carbon dots for the bimodal detection of prostate cancer biomarkers via sandwich fluorescence and electrochemical immunoassays.J. Mater. Chem. B Mater. Biol. Med.202412374275110.1039/D3TB02090H38165823
    [Google Scholar]
  34. KangC. ZhangC. ZhangY. ZhangG. ShuangS. Dual-emission ratio fluorescent probe based on carbon dots and copper-silver bimetallic nanoclusters for visual and fluorescent detection of ciprofloxacin.Microchem. J.202420211081010.1016/j.microc.2024.110810
    [Google Scholar]
  35. ChenX. GongF. CaoZ. ZouW. GuT. Highly cysteine-selective fluorescent nanoprobes based on ultrabright and directly synthesized carbon quantum dots.Anal. Bioanal. Chem.2018410122961297010.1007/s00216‑018‑0980‑329523940
    [Google Scholar]
  36. WangZ. XuC. LuY. ChenX. YuanH. WeiG. YeG. ChenJ. Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions.Sens. Actuators B Chem.2017241324133010.1016/j.snb.2016.09.186
    [Google Scholar]
  37. GaoG. JiangY.W. JiaH.R. YangJ. WuF.G. On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots.Carbon201813423224310.1016/j.carbon.2018.02.063
    [Google Scholar]
  38. LiC. LiuW. RenY. SunX. PanW. WangJ. The selectivity of the carboxylate groups terminated carbon dots switched by buffer solutions for the detection of multi-metal ions.Sens. Actuators B Chem.201724094194810.1016/j.snb.2016.09.068
    [Google Scholar]
  39. Vinod KumarV. RamanT. AnthonyS.P. Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn 2+ and turn-off sensing of Pb 2+ in aqueous medium and zebrafish eggs.New J. Chem.20174124151571516410.1039/C7NJ02831H
    [Google Scholar]
  40. YanX. SongY. ZhuC. LiH. DuD. SuX. LinY. MnO 2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides.Anal. Chem.20189042618262410.1021/acs.analchem.7b0419329237266
    [Google Scholar]
  41. YadavR. VikasV. A study on the photophysical properties of strong green-fluorescent N-doped carbon dots and application for pH sensing.Diamond Relat. Mater.202313911041110.1016/j.diamond.2023.110411
    [Google Scholar]
  42. WangR. HeS. LiuW. PeiH. LiuN. GuoR. MoZ. Long wavelength emission multicolor fluorescent carbon quantum dots for the detection of pH, amino acids, and metal ions. J Photochem. Photobio.Chem202344411496710.1016/j.jphotochem.2023.114967
    [Google Scholar]
  43. WangY. WuR. ZhangY. ChengS. WangB. ZhangY. ZhangY. One-step synthesis of N, S-doped carbon dots with green emission and their application in 4-NP detection, pH sensing, and cell imaging.Spectrochim. Acta A Mol. Biomol. Spectrosc.202430812370910.1016/j.saa.2023.12370938043293
    [Google Scholar]
  44. ZhangL. HaoY. LiuY. DongY. ChenZ. DongW. ZhaoZ. HuQ. DongC. GongX. Nickel doping: Improving the optical properties of carbon dots and increasing the sensitivity for detecting pH and water.J. Alloys Compd.202497617313110.1016/j.jallcom.2023.173131
    [Google Scholar]
  45. ChenS. LiuX. LiS. YuJ. TanY. FengJ. Eco-friendly and efficient synthesis of nitrogen-doped carbon quantum dots for pH sensing applications.Appl. Phys., A Mater. Sci. Process.2024130212110.1007/s00339‑024‑07279‑z
    [Google Scholar]
  46. SunY. WangQ. LiuJ. ZhaoZ. LiL. LiuZ. LuJ. JinL. ZhangS. Ratiometric sensing of intracellular pH based on dual emissive carbon dots.J. Fluoresc.202333265366110.1007/s10895‑022‑03107‑w36480126
    [Google Scholar]
  47. DurraniS. YangZ. ZhangJ. WangZ. WangH. DurraniF. WuF.G. LinF. LinF. Nucleus-targeting pH-Responsive carbon dots for fast nucleus pH detection.Talanta202325212385510.1016/j.talanta.2022.12385536029683
    [Google Scholar]
  48. LuoP.G. SahuS. YangS.T. SonkarS.K. WangJ. WangH. LeCroyG.E. CaoL. SunY.P. Carbon “quantum” dots for optical bioimaging.J. Mater. Chem. B Mater. Biol. Med.20131162116212710.1039/c3tb00018d32260843
    [Google Scholar]
  49. LiL. WuG. YangG. PengJ. ZhaoJ. ZhuJ.J. Focusing on luminescent graphenequantum dots: Current status and future perspectives.Nanoscale201354015403910.1039/C3NR33849E
    [Google Scholar]
  50. YangL. WenJ. LiK. LiuL. WangW. Carbon quantum dots: Comprehensively understanding of the internal quenching mechanism and application for catechol detection.Sens. Actuators B Chem.202133312955710.1016/j.snb.2021.129557
    [Google Scholar]
  51. LiH. HanS. LyuB. HongT. ZhiS. XuL. XueF. SaiL. YangJ. WangX. HeB. Tunable light emission from carbon dots by controlling surface defects.Chin. Chem. Lett.20213292887289210.1016/j.cclet.2021.03.051
    [Google Scholar]
  52. LiW. WuS. ZhangH. ZhangX. ZhuangJ. HuC. LiuY. LeiB. MaL. WangX. Enhanced biological photosynthetic efficiency using light‐harvesting engineering with dual‐emissive carbon dots.Adv. Funct. Mater.20182844180400410.1002/adfm.201804004
    [Google Scholar]
  53. YangW. ZhangH. LaiJ. PengX. HuY. GuW. YeL. Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging.Carbon2018128788510.1016/j.carbon.2017.11.069
    [Google Scholar]
  54. WangZ. YuanF. LiX. LiY. ZhongH. FanL. YangS. 53% efficient red Emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes.Adv. Mater.20172937170291010.1002/adma.20170291028758696
    [Google Scholar]
  55. ChenJ. WeiJ.S. ZhangP. NiuX.Q. ZhaoW. ZhuZ.Y. DingH. XiongH.M. Red-emissive carbon dots for fingerprints detection by spray method: coffee ring effect and unquenched fluorescence in drying process.ACS Appl. Mater. Interfaces2017922184291843310.1021/acsami.7b0391728537370
    [Google Scholar]
  56. YuanY.H. LiuZ.X. LiR.S. ZouH.Y. LinM. LiuH. HuangC.Z. Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states.Nanoscale20168126770677610.1039/C6NR00402D26955862
    [Google Scholar]
  57. ChenS. UllahN. WangT. ZhangR. Tuning the optical properties of graphene quantum dots by selective oxidation: a theoretical perspective.J. Mater. Chem. C Mater. Opt. Electron. Devices20186256875688310.1039/C8TC02083C
    [Google Scholar]
  58. SzapoczkaW.K. TruskewyczA.L. SkodvinT. HolstB. ThomasP.J. Fluorescence intensity and fluorescence lifetime measurements of various carbon dots as a function of pH.Sci. Rep.20231311066010.1038/s41598‑023‑37578‑z37391469
    [Google Scholar]
  59. SrivastavaI. MoitraP. FayyazM. PanditS. KampertT.L. FathiP. AlanaghH.R. DigheK. AlafeefM. VuongK. JabeenM. NieS. IrudayarajJ. PanD. Rational design of surface-State controlled multicolor cross-linked carbon dots with distinct photoluminescence and cellular uptake properties.ACS Appl. Mater. Interfaces20211350597475976010.1021/acsami.1c1999534878252
    [Google Scholar]
  60. XuX. MoL. LiY. PanX. HuG. LeiB. ZhangX. ZhengM. ZhuangJ. LiuY. HuC. Construction of carbon dots with color-tunable aggregation-induced emission by nitrogen- induced intramolecular charge transfer.Adv. Mater.20213349210487210.1002/adma.20210487234647365
    [Google Scholar]
  61. ChanK.K. YapS.H.K. YongK.T. Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications.Nano-Micro Lett.20181047210.1007/s40820‑018‑0223‑330417004
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137331045241005171451
Loading
/content/journals/cnano/10.2174/0115734137331045241005171451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test