Skip to content
2000
image of A Study on Oxygen Vacancy Resistance Mechanism of V2O5

Abstract

Introduction: Due to its magnetic and semiconductor properties, VO has shown tremendous potential in resistive switching memory. Method: Therefore, this paper investigates the resistive mechanism of oxygen vacancies in VO. The formation energies of different oxygen vacancies are calculated. Results: The results indicate that oxygen vacancies tend to form single-component conductive filaments. In mixed oxygen vacancies clusters, the charge transfer characteristics and density of states of the VO-V13 vacancies are the most significant, which is consistent with the analysis of formation energy data. Conclusions: Additionally, the charge transfer of cluster oxygen vacancies was calculated, showing that V atoms directly connected to oxygen vacancies tend to lose electrons, while adjacent oxygen atoms are more likely to gain electrons. In VO-V12 and VO-V13, the number of electrons obtained by O2 and O16 exceeds the average by 36.4% and 33.2%. Thus, the formation of oxygen vacancies effectively improves the resistance characteristics of the VO.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137333910241009071115
2024-10-17
2024-12-26
Loading full text...

Full text loading...

References

  1. Liu Z. Zhao Y. Yin Z. Low-power soft transistors triggering revolutionary electronics. Innovation 2024 5 3 100616 10.1016/j.xinn.2024.100616 38601793
    [Google Scholar]
  2. Xiong T. Li W. Yu P. Mao L. Fluidic memristor: Bringing chemistry to neuromorphic devices. Innovation 2023 4 3 100435 10.1016/j.xinn.2023.100435 37215530
    [Google Scholar]
  3. Wang C. Shi G. Qiao F. Lin R. Wu S. Hu Z. Research progress in architecture and application of RRAM with computing-in-memory. Nanoscale Adv. 2023 5 6 1559 1573 10.1039/D3NA00025G 36926563
    [Google Scholar]
  4. Jena A.K. Sahu M.C. Sahoo S. Mallik S.K. Pradhan G.K. Mohanty J. Sahoo S. Multilevel resistive switching in graphene oxide-multiferroic thin-film-based bilayer RRAM device by interfacial oxygen vacancy engineering. Appl. Phys., A Mater. Sci. Process. 2022 128 3 213 10.1007/s00339‑021‑05243‑9
    [Google Scholar]
  5. He L. He C. Zhao B. Xie Z. Long X. Zhang Z. Qi F. Zhang N. Influence of doping Sn direction and concentration on vanadium pentoxide based on density functional theory. Funct. Mater. Lett. 2022 15 3 2251028 10.1142/S1793604722510286
    [Google Scholar]
  6. Ielmini D. Pedretti G. Device and circuit architectures for in‐memory computing. Adv. Intell. Syst. 2020 2 7 2000040 10.1002/aisy.202000040
    [Google Scholar]
  7. Wang Q. Wang Y. Luo R. Wang J. Ji L. Jiang Z. Wenger C. Song Z. Song S. Ren W. Bi J. Niu G. Ultrathin HfO 2 /Al 2 O 3 bilayer based reliable 1T1R RRAM electronic synapses with low power consumption for neuromorphic computing. Neuromorphic Computing and Engineering 2022 2 4 044012 10.1088/2634‑4386/aca179
    [Google Scholar]
  8. Nardi F. Balatti S. Larentis S. Gilmer D.C. Ielmini D. Complementary switching in oxide-based bipolar resistive-switching random memory. IEEE Transactions on Electron Devices 2013 60 1 70 77 10.1109/TED.2012.2226728
    [Google Scholar]
  9. Dai Y. Zhao Y. Wang J. Xu J. Yang F. First principle simulations on the effects of oxygen vacancy in HfO2-based RRAM. AIP Adv. 2015 5 1 017133 10.1063/1.4906792
    [Google Scholar]
  10. Shen X. Zhang L. Liu L. An Y. Gao Z. Guo P. Bipolar resistive switching of Pt/Ga 2 O 3−x /SiC/Pt thin film with ultrahigh OFF/ON resistance ratios. Nanotechnology 2020 31 22 225206 10.1088/1361‑6528/ab758d 32050184
    [Google Scholar]
  11. Ruan W. Hu Y. Xu F. Zhang S. Resistive switching behavior of organic-metallic halide perovskites CH3NH3Pb1−Bi Br3. Org. Electron. 2019 70 252 257 10.1016/j.orgel.2019.04.031
    [Google Scholar]
  12. Patil A.R. Dongale T.D. Kamat R.K. Rajpure K.Y. Binary metal oxide-based resistive switching memory devices: A status review. Mater. Today Commun. 2023 34 105356 10.1016/j.mtcomm.2023.105356
    [Google Scholar]
  13. Han R. Huang P. Zhao Y. Chen Z. Liu L. Liu X. Kang J. Demonstration of logic operations in high-performance RRAM crossbar array fabricated by atomic layer deposition technique. Nanoscale Res. Lett. 2017 12 1 37 10.1186/s11671‑016‑1807‑9 28091948
    [Google Scholar]
  14. Hong X. Loy D.J. Dananjaya P.A. Tan F. Ng C. Lew W. Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci. 2018 53 12 8720 8746 10.1007/s10853‑018‑2134‑6
    [Google Scholar]
  15. Yang M.Y. Kamiya K. Magyari-Köpe B. Niwa M. Nishi Y. Shiraishi K. Charge-dependent oxygen vacancy diffusion in Al2O3-based resistive-random-access-memories. Appl. Phys. Lett. 2013 103 9 093504 10.1063/1.4819772
    [Google Scholar]
  16. Traore B. Blaise P. Vianello E. Grampeix H. Jeannot S. Perniola L. De Salvo B. Nishi Y. On the Origin of Low-Resistance State Retention Failure in HfO 2 -Based RRAM and Impact of Doping/Alloying. IEEE Trans. Electron Dev. 2015 62 12 4029 4036 10.1109/TED.2015.2490545
    [Google Scholar]
  17. Yildirim H. Pachter R. Mechanistic Analysis of Oxygen Vacancy-Driven Conductive Filament Formation in Resistive Random Access Memory Metal/NiO/Metal Structures. ACS Appl. Mater. Interfaces 2018 10 11 9802 9816 10.1021/acsami.7b17645 29488379
    [Google Scholar]
  18. He L. He C. Zhao B. Xie Z. Zhang J. Chen W. Research on the Effects of Sn Dopants of V2O5 Based on the First Principles. J. Electron. Mater. 2022 51 1 304 313 10.1007/s11664‑021‑09289‑6
    [Google Scholar]
  19. Kresse G. Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter 1994 49 20 14251 14269 10.1103/PhysRevB.49.14251 10010505
    [Google Scholar]
  20. Kresse G. Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 1996 54 16 11169 11186 10.1103/PhysRevB.54.11169 9984901
    [Google Scholar]
  21. Kaur G. Gupta S. Gaganpreet G. Dharamvir K. Hydrogen molecule on lithium adsorbed graphene: A DFT study. AIP Conf. Proc. 2016 1728 1 020434 10.1063/1.4946485
    [Google Scholar]
  22. Xiao Z.R. Guo G.Y. Structural, electronic and magnetic properties of V2O5−x: An ab initio study. J. Chem. Phys. 2009 130 21 214704 10.1063/1.3146790 19508084
    [Google Scholar]
  23. Van de Walle C.G. Neugebauer J. First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 2004 95 8 3851 3879 10.1063/1.1682673
    [Google Scholar]
  24. Freysoldt C. Grabowski B. Hickel T. Neugebauer J. Kresse G. Janotti A. Van de Walle C.G. First-principles calculations for point defects in solids. Rev. Mod. Phys. 2014 86 1 253 305 10.1103/RevModPhys.86.253
    [Google Scholar]
  25. Andrews J.L. Mukherjee A. Yoo H.D. Parija A. Marley P.M. Fakra S. Prendergast D. Cabana J. Klie R.F. Banerjee S. Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5. Chem 2018 4 3 564 585 10.1016/j.chempr.2017.12.018
    [Google Scholar]
  26. Liu J. Shi G. Qiao F. Lin R. Wu S. Hu Z. Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure: a hybrid DFT study. J. Phys. Chem. C 2015 119 51 28417 28423 10.1021/acs.jpcc.5b09092 36926563
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137333910241009071115
Loading
/content/journals/cnano/10.2174/0115734137333910241009071115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test