Skip to content
2000
image of Fabrication of Ti/Zr-SnO2/PbO2-Nd Electrode for Efficient Electrocatalytic Degradation of Alizarine Yellow R

Abstract

Introduction

A novel attempt to degrade alizarine yellow R (AYR) by lead dioxide (PbO)/ neodymium (Nd) coated Ti anode was investigated.

Method

Ti/Zr-SnO/PbO-Nd electrode showed high oxygen evolution potential, high current density, and neutral conditions, which favored the degradation of AYR. The PbO-Nd layer on Ti/Zr-SnO was further characterized by scanning electron microscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The electrochemical properties of Ti/Zr-SnO/PbO-Nd electrode were evaluated by cyclic voltammetry, AC impedance spectroscopy, and accelerated life test.

Result

The relatively higher oxygen evolution overpotential (~1.80 V) of the developed electrode can effectively suppress the occurrence of surface side reactions and oxygen evolution. A relatively lower charge transfer resistance (, 18.0 Ω) of Ti/Zr-SnO/PbO-Nd electrode could be found. The Ti/Zr-SnO/PbO-Nd electrode exhibited an accelerated lifetime of 110 min under a very high current density of 10,000 A/m2. The doping of Nd could produce loosely-stacked sheet-like structures, thus, the number of active sites on the electrode surface increases.

Conclusion

Moreover, an outstanding conductivity of Ti/Zr-SnO/PbO-Nd electrode was obtained, which favored the electron transfer and catalytic activity of the modified electrode. The Ti/Zr-SnO/PbO-Nd electrode exhibited improved electrochemical performances and higher oxygen evolution potential, and the highest oxygen evolution potential is 1.80 V. Under the current density of 30 mA/cm2, the electrocatalytic degradation of 92.3% could be achieved in 180 min. The electrochemical oxidation of AYR at the Ti/Zr-SnO/PbO-Nd electrode proved to be feasible and effective, indicating that it might be used for the elimination of AYR from wastewater.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137325822240819050628
2024-08-30
2024-12-26
Loading full text...

Full text loading...

References

  1. Long Y. Wang Y. Zhang D. Ju P. Sun Y. Facile synthesis of BiOI in hierarchical nanostructure preparation and its photocatalytic application to organic dye removal and biocidal effect of bacteria. J. Colloid Interface Sci. 2016 481 47 56 10.1016/j.jcis.2016.07.041 27451034
    [Google Scholar]
  2. Zhao C. Zhou Y. Ridder D.J. Zhai J. Wei Y. Deng H. Advantages of TiO2/5A composite catalyst for photocatalytic degradation of antibiotic oxytetracycline in aqueous solution: Comparison between TiO2 and TiO2/5A composite system. Chem. Eng. J. 2014 248 280 289 10.1016/j.cej.2014.03.050
    [Google Scholar]
  3. Bo S. Luo J. An Q. Xiao Z. Wang H. Cai W. Zhai S. Li Z. Efficiently selective adsorption of Pb(II) with functionalized alginate-based adsorbent in batch/column systems: Mechanism and application simulation. J. Clean. Prod. 2020 250 119585 10.1016/j.jclepro.2019.119585
    [Google Scholar]
  4. Nezamzadeh-Ejhieh A. Shahriari E. Heterogeneous photodecolorization of methyl green catalyzed by Fe(II)-o-phenanthroline/zeolite Y nanocluster. Int. J. Photoenergy 2011 2011 1 10 10.1155/2011/518153
    [Google Scholar]
  5. Zhang X. Wang Y. Liu C. Yu Y. Lu S. Zhang B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021 403 126269 10.1016/j.cej.2020.126269
    [Google Scholar]
  6. Deng Y. Zhu X. Chen N. Feng C. Wang H. Kuang P. Hu W. Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme. Sci. Total Environ. 2020 745 140768 10.1016/j.scitotenv.2020.140768 32726696
    [Google Scholar]
  7. Nezamzadeh-Ejhieh A. Moazzeni N. Sunlight photodecolorization of a mixture of Methyl Orange and Bromocresol Green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst. J. Ind. Eng. Chem. 2013 19 5 1433 1442 10.1016/j.jiec.2013.01.006
    [Google Scholar]
  8. Nosuhi M. Nezamzadeh-Ejhieh A. Voltammetric determination of trace amounts of permanganate at a zeolite modified carbon paste electrode. New J. Chem. 2017 41 24 15508 15516 10.1039/C7NJ03076B
    [Google Scholar]
  9. Sharifian S. Nezamzadeh-Ejhieh A. Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid. Mater. Sci. Eng. C 2016 58 510 520 10.1016/j.msec.2015.08.071 26478339
    [Google Scholar]
  10. Tamiji T. Nezamzadeh-Ejhieh A. Electrocatalytic behavior of AgBr NPs as modifier of carbon past electrode in the presence of methanol and ethanol in aqueous solution: A kinetic study. J. Taiwan Inst. Chem. Eng. 2019 104 130 138 10.1016/j.jtice.2019.08.021
    [Google Scholar]
  11. Tamiji T. Nezamzadeh-Ejhieh A. Electrocatalytic determination of Hg (II) by the modified carbon paste electrode with Sn (IV)-clinoptilolite nanoparticles. Electrocatalysis 2019 10 5 466 476 10.1007/s12678‑019‑00528‑3
    [Google Scholar]
  12. Raeisi-Kheirabadi N. Nezamzadeh-Ejhieh A. Aghaei H. Electrochemical amperometric sensing of loratadine using NiO modified paste electrode as an amplified sensor. Iranian Journal of Catalysis 2021 11 181 189
    [Google Scholar]
  13. Xu M. Gao C. Zhang X. Liang X. Hu Y. Wang F. Development of SDS-modified PbO2 anode material based on Ti3+ self-doping black TiO2NTs substrate as a conductive interlayer for enhanced electrocatalytic oxidation of methylene blue. Molecules 2023 28 19 6993 10.3390/molecules28196993 37836836
    [Google Scholar]
  14. Święch D. Palumbo G. Piergies N. Kollbek K. Marzec M. Szkudlarek A. Paluszkiewicz C. Surface modification of Cu nanoparticles coated commercial titanium in the presence of tryptophan: Comprehensive electrochemical and spectroscopic investigations. Appl. Surf. Sci. 2023 608 155138 10.1016/j.apsusc.2022.155138
    [Google Scholar]
  15. Shi Y. Liu R. Xin H. Jin Y. Feng B. Preparation of doped PBO 2 electrode and its application for aromatic aldehydes. J. Chem. Technol. Biotechnol. 2023 98 7 1651 1657 10.1002/jctb.7383
    [Google Scholar]
  16. Derikvandi H. Nezamzadeh-Ejhieh A. A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles. J. Mol. Catal. Chem. 2017 426 158 169 10.1016/j.molcata.2016.11.011
    [Google Scholar]
  17. Meng J. Geng C. Wu Y. Guan Y. Gao W. Jiang W. Liang J. Liu S. Wang X. Comparing the electrochemical degradation of levofloxacin using the modified Ti/SnO2 electrode in different electrolytes. J. Electroanal. Chem. 2023 944 117633 10.1016/j.jelechem.2023.117633
    [Google Scholar]
  18. Li X.Y. Xu J. Cheng J.P. Feng L. Shi Y.F. Ji J. TiO2-SiO2/GAC particles for enhanced electrocatalytic removal of acid orange 7 (AO7) dyeing wastewater in a three-dimensional electrochemical reactor. Separ. Purif. Tech. 2017 187 303 310 10.1016/j.seppur.2017.06.058
    [Google Scholar]
  19. Zhou Q. Zhou X. Zheng R. Liu Z. Wang J. Application of lead oxide electrodes in wastewater treatment: A review. Sci. Total Environ. 2022 806 Pt 1 150088 10.1016/j.scitotenv.2021.150088 34563906
    [Google Scholar]
  20. Babaahamdi-Milani M. Nezamzadeh-Ejhieh A. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles. J. Hazard. Mater. 2016 318 291 301 10.1016/j.jhazmat.2016.07.012 27427895
    [Google Scholar]
  21. Zhou J. Huang S. He Z. Song S. Enhanced activity and stability of PbO2 electrodes by modification with octadecyl phosphonic acid. J. Electrochem. Soc. 2021 168 11 116503 10.1149/1945‑7111/ac3275
    [Google Scholar]
  22. Wang Q. Tu S. Wang W. Chen W. Duan X. Chang L. Optimized Indium modified Ti/PbO2 anode for electrochemical degradation of antibiotic cefalexin in aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 2021 628 127244 10.1016/j.colsurfa.2021.127244
    [Google Scholar]
  23. Zhang Z. Xiao Q. Du X. Xue T. Yan Z. Liu Z. Zhang H. Qi T. The fabrication of Ti4O7 particle composite modified PbO2 coating electrode and its application in the electrochemical oxidation degradation of organic wastewater. J. Alloys Compd. 2022 897 162742 10.1016/j.jallcom.2021.162742
    [Google Scholar]
  24. Wang Z. Su R. Zhao M. Zhang L. Yang L. Xiao F. Tang W. Chen L. He P. Yang D. B4C/Ce co-modified Ti/PbO2 dimensionally stable anode: Facile one-step electrodeposition preparation and highly efficient electrocatalytic degradation of tetracycline. Chemosphere 2023 343 140142 140142 10.1016/j.chemosphere.2023.140142 37716565
    [Google Scholar]
  25. Zhang R. Hua S. Dang Y. Zhang B. Sun X. Yu S. He Y. Chen S. Zhou Y. Strategy for enhancing the electrocatalytic performance of Ti/β-PbO2 anode: Optimizing SnO2 intermediate layer by Cs doping and application for the efficient removal of mixed fluoroquinolones. J. Alloys Compd. 2022 895 162528 10.1016/j.jallcom.2021.162528
    [Google Scholar]
  26. Yanagi G. Furukawa M. Tateishi I. Katsumata H. Kaneco S. Electrochemical decolorization of methylene blue in solution with metal doped Ti/α,β-PbO2 mesh electrode. Sep. Sci. Technol. 2022 57 2 325 337 10.1080/01496395.2021.1896550
    [Google Scholar]
  27. Kang X. Wu J. Wei Z. Jia B. Feng Q. Xu S. Wang Y. Modification of Ti/Sb-SnO2/PbO2 electrode by active granules and its application in wastewater containing copper ions. Catalysts 2023 13 3 515 10.3390/catal13030515
    [Google Scholar]
  28. Mameda N. Park H. Shah S.S.A. Lee K. Li C.W. Naddeo V. Choo K.H. Highly robust and efficient Ti-based Sb-SnO2 anode with a mixed carbon and nitrogen interlayer for electrochemical 1,4-dioxane removal from water. Chem. Eng. J. 2020 393 124794 10.1016/j.cej.2020.124794
    [Google Scholar]
  29. Mei Y. Chen J. Pan H. Hao F. Yao J. Electrochemical oxidation of triclosan using Ti/TiO2 NTs/Al–PbO2 electrode: reaction mechanism and toxicity evaluation. Environ. Sci. Pollut. Res. Int. 2021 28 21 26479 26487 10.1007/s11356‑021‑12486‑9 33486682
    [Google Scholar]
  30. qizhou, D.; Hong, S.; Yijing, X.; Jianmeng, C. Typical rare earth doped lead dioxide electrode: Preparation and application. Int. J. Electrochem. Sci. 2012 7 10 10054 10062 10.1016/S1452‑3981(23)16258‑4
    [Google Scholar]
  31. Kharel P.L. Cuillier P.M. Fernando K. Zamborini F.P. Alphenaar B.W. Effect of rare-earth metal oxide nanoparticles on the conductivity of nanocrystalline titanium dioxide: An electrical and electrochemical approach. J. Phys. Chem. C 2018 122 27 15090 15096 10.1021/acs.jpcc.8b02971
    [Google Scholar]
  32. Ming F. Zhu Y. Huang G. Emwas A.H. Liang H. Cui Y. Alshareef H.N. Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 2022 144 16 7160 7170 10.1021/jacs.1c12764 35436108
    [Google Scholar]
  33. Singhal A. Toth L.M. Lin J.S. Affholter K. Zirconium(IV) tetramer/octamer hydrolysis equilibrium in aqueous hydrochloric acid solution. J. Am. Chem. Soc. 1996 118 46 11529 11534 10.1021/ja9602399
    [Google Scholar]
  34. Chen S. Chu X. Wu L. Foord J.S. Hu J. Hou H. Yang J. Three-dimensional PbO2-modified carbon felt electrode for efficient electrocatalytic oxidation of phenol characterized with in situ ATR-FTIR. J. Phys. Chem. C 2022 126 2 912 921 10.1021/acs.jpcc.1c07444
    [Google Scholar]
  35. Wang Z. Xu M. Wang F. Liang X. Wei Y. Hu Y. Zhu C.G. Fang W. Preparation and characterization of a novel Ce doped PbO2 electrode based on NiO modified Ti/TiO2NTs substrate for the electrocatalytic degradation of phenol wastewater. Electrochim. Acta 2017 247 535 547 10.1016/j.electacta.2017.07.057
    [Google Scholar]
  36. Shen T. Wang P. Hu L. Hu Q. Wang X. Zhang G. Adsorption of 4-chlorophenol by wheat straw biochar and its regeneration with persulfate under microwave irradiation. J. Environ. Chem. Eng. 2021 9 4 105353 10.1016/j.jece.2021.105353
    [Google Scholar]
  37. Wu Y. Wang N. Liu H. Cui R. Gu J. Sun R. Zhu Y. Gou L. Fan X. Li D. Wang D. Self-healing of surface defects on Zn electrode for stable aqueous zinc-ion batteries via manipulating the electrode/electrolyte interphases. J. Colloid Interface Sci. 2023 629 Pt A 916 925 10.1016/j.jcis.2022.09.022 36150269
    [Google Scholar]
  38. Nosuhi M. Nezamzadeh-Ejhieh A. An indirect application aspect of zeolite modified electrodes for voltammetric determination of iodate. J. Electroanal. Chem. (Lausanne) 2018 810 119 128 10.1016/j.jelechem.2017.12.075
    [Google Scholar]
  39. Ahmadpour-Mobarakeh L. Nezamzadeh-Ejhieh A. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen. Mater. Sci. Eng. C 2015 49 493 499 10.1016/j.msec.2015.01.028 25686976
    [Google Scholar]
  40. Derikvandi H. Nezamzadeh-Ejhieh A. A comprehensive study on enhancement and optimization of photocatalytic activity of ZnS and SnS2: Response Surface Methodology (RSM), n-n heterojunction, supporting and nanoparticles study. J. Photochem. Photobiol. Chem. 2017 348 68 78 10.1016/j.jphotochem.2017.08.007
    [Google Scholar]
  41. Feng C. Ouyang X. Deng Y. Wang J. Tang L. A novel g-C3N4/g-C3N4−x homojunction with efficient interfacial charge transfer for photocatalytic degradation of atrazine and tetracycline. J. Hazard. Mater. 2023 441 129845 10.1016/j.jhazmat.2022.129845 36067556
    [Google Scholar]
  42. Amani-Beni Z. Nezamzadeh-Ejhieh A. NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor. Anal. Chim. Acta 2018 1031 47 59 10.1016/j.aca.2018.06.002 30119743
    [Google Scholar]
  43. Zhang Z. Liu J. Ai H. Chen A. Xu L. Labiadh L. Fu M.L. Yuan B. Construction of the multi-layer TiO2-NTs/Sb-SnO2/PbO2 electrode for the highly efficient and selective oxidation of ammonia in aqueous solution: Characterization, performance and mechanism. J. Environ. Chem. Eng. 2023 11 3 109834 10.1016/j.jece.2023.109834
    [Google Scholar]
  44. Wu J. Zhu K. Xu H. Yan W. Electrochemical oxidation of rhodamine B by PbO2/Sb-SnO2/TiO2 nanotube arrays electrode. Chin. J. Catal. 2019 40 6 917 927 10.1016/S1872‑2067(19)63342‑5
    [Google Scholar]
  45. Wei Z. Kang X. Xu S. Zhou X. Jia B. Feng Q. Electrochemical oxidation of Rhodamine B with cerium and sodium dodecyl benzene sulfonate co-modified Ti/PbO2 electrodes: Preparation, characterization, optimization, application. Chin. J. Chem. Eng. 2021 32 191 202 10.1016/j.cjche.2020.09.044
    [Google Scholar]
  46. Jin Y. Lv Y. Yang C. Cai W. Zhang Z. Tong H. Zhou X. Fabrication of superhydrophobic Ti/SnO2-Sb/α-PbO2/Fe-β-PbO2-PTFE electrode and application in wastewater treatment. J. Electron. Mater. 2020 49 4 2411 2418 10.1007/s11664‑019‑07936‑7
    [Google Scholar]
  47. Duan X. Wang W. Wang Q. Sui X. Li N. Chang L. Electrocatalytic degradation of perfluoroocatane sulfonate (PFOS) on a 3D graphene-lead dioxide (3DG-PbO2) composite anode: Electrode characterization, degradation mechanism and toxicity. Chemosphere 2020 260 127587 10.1016/j.chemosphere.2020.127587
    [Google Scholar]
  48. Raeisi-Kheirabadi N. Nezamzadeh-Ejhieh A. Aghaei H. Cyclic and linear sweep voltammetric studies of a modified carbon paste electrode with nickel oxide nanoparticles toward tamoxifen: Effects of surface modification on electrode response kinetics. ACS Omega 2022 7 35 31413 31423 10.1021/acsomega.2c03441 36092618
    [Google Scholar]
  49. Song S. Fan J. He Z. Zhan L. Liu Z. Chen J. Xu X. Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochim. Acta 2010 55 11 3606 3613 10.1016/j.electacta.2010.01.101
    [Google Scholar]
  50. Norouzi A. Nezamzadeh-Ejhieh A. α-Fe2O3/Cu2O heterostructure: Brief characterization and kinetic aspect of degradation of methylene blue. Physica B 2020 599 412422 10.1016/j.physb.2020.412422
    [Google Scholar]
  51. Liu Y. Fan X. Quan X. Fan Y. Chen S. Zhao X. Enhanced perfluorooctanoic acid degradation by electrochemical activation of sulfate solution on B/N codoped diamond. Environ. Sci. Technol. 2019 53 9 5195 5201 10.1021/acs.est.8b06130 30957993
    [Google Scholar]
  52. Ghattavi S. Nezamzadeh-Ejhieh A. A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers. Compos., Part B Eng. 2020 183 107712 10.1016/j.compositesb.2019.107712
    [Google Scholar]
  53. Zhang Y. He P. Jia L. Li C. Liu H. Wang S. Zhou S. Dong F. Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R. J. Colloid Interface Sci. 2019 533 750 761 10.1016/j.jcis.2018.09.003 30199831
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137325822240819050628
Loading
/content/journals/cnano/10.2174/0115734137325822240819050628
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test