Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

In recent years, azo dyes have become the dominant choice in the textile industry, accounting for about 60-70% of all dyes used, which has led to growing environmental concerns.

Aim

This research focused on the photocatalytic degradation of methyl orange (MO) and methyl green (MG) dyes using a novel g-CN (GCN)/polyaniline (PANI)/Ag composite under visible light.

Methods

This composite was synthesized through a straightforward preparation process and characterized by using various techniques, including UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and cyclic voltammetry (CV).

Results

Characterization results confirmed the incorporation of PANI and Ag nanoparticles into the GCN matrix. This composite enhanced the visible light absorption and improved charge separation, leading to increased photocatalytic efficiency. Photocatalytic experiments were conducted under visible light irradiation with a catalyst dosage of 10 mg in a 10-ppm solution of the MO and MG dyes mixture.

Conclusion

The GCN/PANI/Ag composite achieved significant degradation efficiencies of 70% for MO and 69% for MG within 120 minutes. The degradation process followed first-order kinetics, with rate constants of 0.0087 min−1 for MO and 0.0086 min−1 for MG, respectively. Reusability tests showed that the composite retained over 60% of its initial efficiency after five cycles. These findings highlight the potential of the GCN/PANI/Ag composite as a sustainable and effective photocatalyst for visible-light-driven dye degradation, offering an eco-friendly approach to wastewater treatment.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137356016250211063405
2025-02-13
2026-02-22
Loading full text...

Full text loading...

References

  1. GungureA.S. JuleL.T. NagaprasadN. RamaswamyK. Studying the properties of green synthesized silver oxide nanoparticles in the application of organic dye degradation under visible light.Sci. Rep.20241412696710.1038/s41598‑024‑75614‑8 39505895
    [Google Scholar]
  2. KhanS. NoorT. IqbalN. YaqoobL. Photocatalytic dye degradation from textile wastewater: A review.ACS Omega2024920217512176710.1021/acsomega.4c00887 38799325
    [Google Scholar]
  3. Al-TohamyR. AliS.S. LiF. OkashaK.M. MahmoudY.A.G. ElsamahyT. JiaoH. FuY. SunJ. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety.Ecotoxicol. Environ. Saf.202223111316010.1016/j.ecoenv.2021.113160 35026583
    [Google Scholar]
  4. ShivalingamC. MohanL. GanapathyD. ShanmugamR. PitchiahS. RamadossR. SundramoorthyA.K. Current overview on the role of nanoparticles in water desalination technology.Curr. Anal. Chem.202218998999810.2174/1573411018666220805112549
    [Google Scholar]
  5. BoonwanC. RojviroonT. RojviroonO. RajendranR. ParamasivamS. ChinnasamyR. AnsarS. BoonyuenS. SongprakorpR. Micro-nano bubbles in action: AC/TiO2 hybrid photocatalysts for efficient organic pollutant degradation and antibacterial activity.Biocatal. Agric. Biotechnol.20246110340010.1016/j.bcab.2024.103400
    [Google Scholar]
  6. El-KhawagaA.M. TantawyH. ElsayedM.A. Abd El-MageedA.I.A. Synthesis and applicability of reduced graphene oxide/porphyrin nanocomposite as photocatalyst for waste water treatment and medical applications.Sci. Rep.20221211707510.1038/s41598‑022‑21360‑8 36224230
    [Google Scholar]
  7. HeryantoH. TahirD. Enhancing photocatalyst performance of magnetic surfaces covered by carbon clouds for textile dye degradation.Arab. J. Sci. Eng.20244967979799310.1007/s13369‑023‑08532‑y
    [Google Scholar]
  8. MuruganP. JeevanandhamG. SundramoorthyA.K. Identification, interaction and detection of microplastics on fish scales (Lutjanus gibbus).Curr. Anal. Chem.202218558859710.2174/1573411017999210112180054
    [Google Scholar]
  9. MuruganP. SivaperumalP. BaluS. AryaS. AtchudanR. SundramoorthyA.K. Recent advances on the methods developed for the identification and detection of emerging contaminant microplastics: A review.RSC Advances20231351362233624110.1039/D3RA05420A 38090077
    [Google Scholar]
  10. HeryantoH. TahirD. AkmalA. AkouibaaA. RahmatR. Photocatalysis and microwave absorption performance of cobalt particles dispersed on activated carbon surface under the role of surface, optical, and magnetic properties.Mater. Chem. Phys.202432712990210.1016/j.matchemphys.2024.129902
    [Google Scholar]
  11. ZhangG. ZhangX. MengY. PanG. NiZ. XiaS. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review.Chem. Eng. J.202039212368410.1016/j.cej.2019.123684
    [Google Scholar]
  12. BhanderiD. LakhaniP. ModiC.K. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: A comprehensive review.RSC Sustainability20242226528710.1039/D3SU00382E
    [Google Scholar]
  13. LinJ. YeW. XieM. SeoD.H. LuoJ. WanY. Van der BruggenB. Environmental impacts and remediation of dye-containing wastewater.Nat. Rev. Earth Environ.202341178580310.1038/s43017‑023‑00489‑8
    [Google Scholar]
  14. ChakravortyA. RoyS. A review of photocatalysis, basic principles, processes, and materials.Sustainable Chemistry for the Environment2024810015510.1016/j.scenv.2024.100155
    [Google Scholar]
  15. BaluS. GanapathyD. AryaS. AtchudanR. SundramoorthyA.K. Advanced photocatalytic materials based degradation of micropollutants and their use in hydrogen production - A review.RSC Advances20241420143921442410.1039/D4RA01307G 38699688
    [Google Scholar]
  16. BaluS. ChuaichamC. BalakumarV. RajendranS. SasakiK. SekarK. MaruthapillaiA. Recent development on core-shell photo(electro)catalysts for elimination of organic compounds from pharmaceutical wastewater.Chemosphere202229813431110.1016/j.chemosphere.2022.134311 35307392
    [Google Scholar]
  17. SongS. SongH. LiL. WangS. ChuW. PengK. MengX. WangQ. DengB. LiuQ. WangZ. WengY. HuH. LinH. KakoT. YeJ. A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen.Nat. Catal.20214121032104210.1038/s41929‑021‑00708‑9
    [Google Scholar]
  18. CongX. MazierskiP. MiodyńskaM. Zaleska-MedynskaA. HornH. SchwartzT. GmurekM. The role of TiO2 and gC3N4 bimetallic catalysts in boosting antibiotic resistance gene removal through photocatalyst assisted peroxone process.Sci. Rep.20241412289710.1038/s41598‑024‑74147‑4 39358462
    [Google Scholar]
  19. SongY. LingL. WesterhoffP. ShangC. Evanescent waves modulate energy efficiency of photocatalysis within TiO2 coated optical fibers illuminated using LEDs.Nat. Commun.2021121410110.1038/s41467‑021‑24370‑8 34215737
    [Google Scholar]
  20. WangS. XuM. PengT. ZhangC. LiT. HussainI. WangJ. TanB. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion.Nat. Commun.201910167610.1038/s41467‑019‑08651‑x 30737395
    [Google Scholar]
  21. KavgaciM. EskalenH. Facile synthesis and characterization of gCN, gCN-Zn and gCN-Fe binary nanocomposite and its application as photocatalyst for methylene blue degradation.Sakarya University Journal of Science202327353054110.16984/saufenbilder.1195934
    [Google Scholar]
  22. AbdullahB. TahirD. HeryantoH. TangN.F.R. RahmatR. Highly ordered structure and susceptibility to light absorption of ZnO/calcium phosphate (5%) to enhance the stability of charge diffusion as a methylene blue bond breaker.Phys. Scr.202499202590110.1088/1402‑4896/ad17af
    [Google Scholar]
  23. ZhangF. ZhangY. ZhangG. YangZ. DionysiouD.D. ZhuA. Exceptional synergistic enhancement of the photocatalytic activity of SnS2 by coupling with polyaniline and N-doped reduced graphene oxide.Appl. Catal. B2018236536310.1016/j.apcatb.2018.05.002
    [Google Scholar]
  24. NaciriY. HsiniA. BouzianiA. TanjiK. El IbrahimiB. GhazzalM.N. BakizB. AlbourineA. BenlhachemiA. NavíoJ.A. LiH. Z-scheme WO3/PANI heterojunctions with enhanced photocatalytic activity under visible light: A depth experimental and DFT studies.Chemosphere202229213346810.1016/j.chemosphere.2021.133468 34974036
    [Google Scholar]
  25. RegmiC. DhakalD. LeeS.W. Visible-light-induced Ag/BiVO 4 semiconductor with enhanced photocatalytic and antibacterial performance.Nanotechnology201829606400110.1088/1361‑6528/aaa052 29219840
    [Google Scholar]
  26. DaveP.N. ChaturvediS. Carbon dots: Synthesis, photocatalyst, and future perspective.ACS Symposium Series2024638010.1021/bk‑2024‑1465.ch003
    [Google Scholar]
  27. HuC. ChenQ. TianM. WangW. YuJ. ChenL. Efficient combination of carbon quantum dots and BiVO4 for significantly enhanced photocatalytic activities.Catalysts202313346310.3390/catal13030463
    [Google Scholar]
  28. HeryantoH. MutmainnaI. RahmiM.H. Tenri OlaA.T. TangN.F.R. MohamedM.A. TahirD. Favourable peak diffraction shift moments as a function of Mg doping on ZnO matrix as a promising catalyst for methylene blue waste.Mater. Chem. Phys.202431312877210.1016/j.matchemphys.2023.128772
    [Google Scholar]
  29. VermaP. SamantaS.K. Facile synthesis of TiO2-PC composites for enhanced photocatalytic abatement of multiple pollutant dye mixtures: A comprehensive study on the kinetics, mechanism, and effects of environmental factors.Res. Chem. Intermed.20184431963198810.1007/s11164‑017‑3209‑8
    [Google Scholar]
  30. QamarM.A. ShahidS. JavedM. ShariqM. FadhaliM.M. MadkhaliO. AliS.K. SyedI.S. AwajiM.Y. Shakir KhanM. HassanD.A. Al NasirM.H. Accelerated decoloration of organic dyes from wastewater using ternary metal/g-C3N4/ZnO nanocomposites: An investigation of impact of g-C3N4 concentration and Ni and Mn doping.Catalysts20221211138810.3390/catal12111388
    [Google Scholar]
  31. VayaD. KaushikP.K. RaoG. Study of photocatalytic degradation and simultaneous removal of a mixture of pollutant (MB and MG) dyes: Kinetic and adsorption isotherm.Nanosci. Nanotechnol. Asia2022126e15112221092210.2174/2210681213666221115142649
    [Google Scholar]
  32. HuK. YaoM. YangZ. XiaoG. ZhuL. ZhangH. LiuR. ZouB. LiuB. Pressure tuned photoluminescence and band gap in two-dimensional layered g-C3N4: The effect of interlayer interactions.Nanoscale20201223123001230710.1039/D0NR01542C 32285075
    [Google Scholar]
  33. ChenS. WeiZ. QiX. DongL. GuoY.G. WanL. ShaoZ. LiL. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity.J. Am. Chem. Soc.201213432132521325510.1021/ja306501x 22849618
    [Google Scholar]
  34. GhoshS. DasP.S. BiswasM. SamajdarS. MukhopadhyayJ. Z-scheme ferrite nanoparticle/graphite carbon nitride nanosheet heterojunctions for photocatalytic hydrogen evolution.Int. J. Hydrogen Energy202410758659610.1016/j.ijhydene.2024.06.167
    [Google Scholar]
  35. MatiasM.L. Reis-MachadoA.S. RodriguesJ. CalmeiroT. DeuermeierJ. PimentelA. FortunatoE. MartinsR. NunesD. Microwave synthesis of visible-light-activated g-C3N4/TiO2 photocatalysts.Nanomaterials (Basel)2023136109010.3390/nano13061090 36985984
    [Google Scholar]
  36. MuruganN. Chan-ParkM.B. SundramoorthyA.K. Electrochemical detection of uric acid on exfoliated nanosheets of graphitic-like carbon nitride (g-C3N4) based sensor.J. Electrochem. Soc.20191669B3163B317010.1149/2.0261909jes
    [Google Scholar]
  37. NguyenT.T. BuiH.T. NguyenG.T. HoangT.N. Van TranC. HoP.H. Hoai NguyenP.T. KimJ.Y. ChangS.W. ChungW.J. NguyenD.D. LaD.D. Facile preparation of porphyrin@g-C3N4/Ag nanocomposite for improved photocatalytic degradation of organic dyes in aqueous solution.Environ. Res.2023231Pt 111598410.1016/j.envres.2023.115984 37156354
    [Google Scholar]
  38. MengQ. YuanM. LvH. ChenZ. ZhouG. ChenZ. WangX. Facile construction of metal‐Free g‐C3N4 isotype heterojunction with highly enhanced visible‐light photocatalytic performance.ChemistrySelect20172246970697810.1002/slct.201700705
    [Google Scholar]
  39. EkandeO.S. KumarM. New insight on interfacial charge transfer at graphitic carbon nitride/sodium niobate heterojunction under piezoelectric effect for the generation of reactive oxygen species.J. Colloid Interface Sci.202365147749310.1016/j.jcis.2023.07.189 37556905
    [Google Scholar]
  40. RajendranR. RojviroonO. VasudevanV. ArumugamP. HandayaniM. AkechatreeN. LeelertY. RojviroonT. Magnetically separable ternary heterostructure photocatalyst CuFe2O4/g-C3N4/rGO: Enhancing photocatalytic degradation and bacterial inactivation.J. Water Process Eng.20246310544310.1016/j.jwpe.2024.105443
    [Google Scholar]
  41. MallickP. SahooS.K. SatpathyS.K. Different strategies to improve photocatalytic activity of graphitic carbon nitride (g-C3N4) semiconductor nanomaterials for hydrogen generation.J. Mol. Liq.202440612507110.1016/j.molliq.2024.125071
    [Google Scholar]
  42. MuthuganeshA. Davis JacobI. SoundranayagamJ.P. SurenderS. ElangovanP. Helan FloraX. Fabrication of g-C3N4/CuS heterostructures for efficient visible light-driven photocatalysts.Inorg. Chem. Commun.202415911181310.1016/j.inoche.2023.111813
    [Google Scholar]
  43. NaseriA. SamadiM. PourjavadiA. MoshfeghA.Z. RamakrishnaS. Graphitic carbon nitride (g-C 3 N 4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions.J. Mater. Chem. A Mater. Energy Sustain.2017545234062343310.1039/C7TA05131J
    [Google Scholar]
  44. NishimuraS. MottD. TakagakiA. MaenosonoS. EbitaniK. Role of base in the formation of silver nanoparticles synthesized using sodium acrylate as a dual reducing and encapsulating agent.Phys. Chem. Chem. Phys.201113209335934310.1039/c0cp02985h 21479291
    [Google Scholar]
  45. Nguyen XuanT. Nguyen ThiD. Tran ThuongQ. Nguyen NgocT. Dang QuocK. MolnárZ. MukhtarS. Szabó-BárdosE. HorváthO. Effect of copper-modification of g-C3N4 on the visible-light-driven photocatalytic oxidation of nitrophenols.Molecules20232823781010.3390/molecules28237810 38067540
    [Google Scholar]
  46. MoZ. SheX. LiY. LiuL. HuangL. ChenZ. ZhangQ. XuH. LiH. Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution.RSC Advances2015512310155210156210.1039/C5RA19586A
    [Google Scholar]
  47. AbdelhamiedM.M. AttaA. AbdelreheemA.M. FaragA.T.M. El OkrM.M. Synthesis and optical properties of PVA/PANI/Ag nanocomposite films.J. Mater. Sci. Mater. Electron.20203124226292264110.1007/s10854‑020‑04774‑w
    [Google Scholar]
  48. MakułaP. PaciaM. MacykW. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra.J. Phys. Chem. Lett.20189236814681710.1021/acs.jpclett.8b02892 30990726
    [Google Scholar]
  49. MaC. YangZ. WangW. ZhangM. HaoX. ZhuS. ChenS. Fabrication of Ag-Cu2O/PANI nanocomposites for visible-light photocatalysis triggering super antibacterial activity.J. Mater. Chem. C Mater. Opt. Electron. Devices2020882888289810.1039/C9TC05891E
    [Google Scholar]
  50. Papadopoulou-FermeliN. LagopatiN. GatouM.A. PavlatouE.A. Biocompatible PANI-encapsulated chemically modified nano-TiO2 particles for visible-light photocatalytic applications.Nanomaterials (Basel)202414764210.3390/nano14070642 38607176
    [Google Scholar]
  51. WangJ. ZhangK. ZhaoL. Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous Cr(VI): Effect of protonic acids.Chem. Eng. J.201423912313110.1016/j.cej.2013.11.006
    [Google Scholar]
  52. GeL. HanC. LiuJ. In situ synthesis and enhanced visible light photocatalytic activities of novel PANI-g-C3N4 composite photocatalysts.J. Mater. Chem.201222231184310.1039/c2jm16241e
    [Google Scholar]
  53. Nezamzadeh-EjhiehA. Shams-GhahfarokhiZ. Photodegradation of methyl green by Nickel‐Dimethylglyoxime/ZSM‐5 zeolite as a heterogeneous catalyst.J. Chem.20132013110409310.1155/2013/104093
    [Google Scholar]
  54. CyrilN. GeorgeJ.B. JosephL. SylasV.P. Catalytic degradation of methyl orange and selective sensing of mercury ion in aqueous solutions using green synthesized silver nanoparticles from the seeds of derris trifoliata.J. Cluster Sci.201930245946810.1007/s10876‑019‑01508‑9
    [Google Scholar]
  55. GroeneveldI. KanelliM. ArieseF. van BommelM.R. Parameters that affect the photodegradation of dyes and pigments in solution and on substrate - An overview.Dyes Pigments202321011099910.1016/j.dyepig.2022.110999
    [Google Scholar]
  56. IqbalA. YusafA. UsmanM. Hussain BokhariT. ManshaA. Insight into the degradation of different classes of dyes by advanced oxidation processes; a detailed review.Int. J. Environ. Anal. Chem.2024104175503553710.1080/03067319.2022.2125312
    [Google Scholar]
  57. KarP. SathiyanG. VivekanandanK.E. VenkatesanG. SivaG. SubramaniR. KandasamyS. A comprehensive review on tailoring factors of porous bismuth oxyhalide photocatalysts for wastewater treatment application.J. Taiwan Inst. Chem. Eng.202516610523410.1016/j.jtice.2023.105234
    [Google Scholar]
  58. DongH. SunJ. ChenG. LiC. HuY. LvC. An advanced Ag-based photocatalyst Ag2Ta4O11 with outstanding activity, durability and universality for removing organic dyes.Phys. Chem. Chem. Phys.201416239152392110.1039/C4CP03494E
    [Google Scholar]
  59. LiuF.Y. ZengH.Y. XiongJ. PengD.Y. XuS. AnD.S. A p-n heterostructural g-C3N4/PANI composite for the remediation of heavy metals and organic pollutants in water.New J. Chem.20224633159371594910.1039/D2NJ02162E
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137356016250211063405
Loading
/content/journals/cnano/10.2174/0115734137356016250211063405
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test