Skip to content
2000
image of Photocatalytic Degradation of Binary Dyes, Methyl Orange and Methyl Green, in Aqueous Media Using 2D g-C3N4/Polyaniline/Silver Nanocomposite

Abstract

Background

In recent years, azo dyes have become the dominant choice in the textile industry, accounting for about 60-70% of all dyes used, which has led to growing environmental concerns.

Aim

This research focused on the photocatalytic degradation of methyl orange (MO) and methyl green (MG) dyes using a novel g-CN (GCN)/polyaniline (PANI)/Ag composite under visible light.

Methods

This composite was synthesized through a straightforward preparation process and characterized by using various techniques, including UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and cyclic voltammetry (CV).

Results

Characterization results confirmed the incorporation of PANI and Ag nanoparticles into the GCN matrix. This composite enhanced the visible light absorption and improved charge separation, leading to increased photocatalytic efficiency. Photocatalytic experiments were conducted under visible light irradiation with a catalyst dosage of 10 mg in a 10-ppm solution of the MO and MG dyes mixture.

Conclusion

The GCN/PANI/Ag composite achieved significant degradation efficiencies of 70% for MO and 69% for MG within 120 minutes. The degradation process followed first-order kinetics, with rate constants of 0.0087 min−1 for MO and 0.0086 min−1 for MG, respectively. Reusability tests showed that the composite retained over 60% of its initial efficiency after five cycles. These findings highlight the potential of the GCN/PANI/Ag composite as a sustainable and effective photocatalyst for visible-light-driven dye degradation, offering an eco-friendly approach to wastewater treatment.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137356016250211063405
2025-02-13
2025-04-06
Loading full text...

Full text loading...

References

  1. Gungure A.S. Jule L.T. Nagaprasad N. Ramaswamy K. Studying the properties of green synthesized silver oxide nanoparticles in the application of organic dye degradation under visible light. Sci. Rep. 2024 14 1 26967 10.1038/s41598‑024‑75614‑8 39505895
    [Google Scholar]
  2. Khan S. Noor T. Iqbal N. Yaqoob L. Photocatalytic dye degradation from textile wastewater: A review. ACS Omega 2024 9 20 21751 21767 10.1021/acsomega.4c00887 38799325
    [Google Scholar]
  3. Al-Tohamy R. Ali S.S. Li F. Okasha K.M. Mahmoud Y.A.G. Elsamahy T. Jiao H. Fu Y. Sun J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022 231 113160 113160 10.1016/j.ecoenv.2021.113160 35026583
    [Google Scholar]
  4. Shivalingam C. Mohan L. Ganapathy D. Shanmugam R. Pitchiah S. Ramadoss R. Sundramoorthy A.K. Current overview on the role of nanoparticles in water desalination technology. Curr. Anal. Chem. 2022 18 9 989 998 10.2174/1573411018666220805112549
    [Google Scholar]
  5. Boonwan C. Rojviroon T. Rojviroon O. Rajendran R. Paramasivam S. Chinnasamy R. Ansar S. Boonyuen S. Songprakorp R. Micro-nano bubbles in action: AC/TiO2 hybrid photocatalysts for efficient organic pollutant degradation and antibacterial activity. Biocatal. Agric. Biotechnol. 2024 61 103400 103400 10.1016/j.bcab.2024.103400
    [Google Scholar]
  6. El-Khawaga A.M. Tantawy H. Elsayed M.A. Abd El-Mageed A.I.A. Synthesis and applicability of reduced graphene oxide/porphyrin nanocomposite as photocatalyst for waste water treatment and medical applications. Sci. Rep. 2022 12 1 17075 10.1038/s41598‑022‑21360‑8 36224230
    [Google Scholar]
  7. Heryanto H. Tahir D. Enhancing photocatalyst performance of magnetic surfaces covered by carbon clouds for textile dye degradation. Arab. J. Sci. Eng. 2024 49 6 7979 7993 10.1007/s13369‑023‑08532‑y
    [Google Scholar]
  8. Murugan P. Jeevanandham G. Sundramoorthy A.K. Identification, interaction and detection of microplastics on fish scales (Lutjanus gibbus). Curr. Anal. Chem. 2022 18 5 588 597 10.2174/1573411017999210112180054
    [Google Scholar]
  9. Murugan P. Sivaperumal P. Balu S. Arya S. Atchudan R. Sundramoorthy A.K. Recent advances on the methods developed for the identification and detection of emerging contaminant microplastics: A review. RSC Advances 2023 13 51 36223 36241 10.1039/D3RA05420A 38090077
    [Google Scholar]
  10. Heryanto H. Tahir D. Akmal A. Akouibaa A. Rahmat R. Photocatalysis and microwave absorption performance of cobalt particles dispersed on activated carbon surface under the role of surface, optical, and magnetic properties. Mater. Chem. Phys. 2024 327 129902 129902 10.1016/j.matchemphys.2024.129902
    [Google Scholar]
  11. Zhang G. Zhang X. Meng Y. Pan G. Ni Z. Xia S. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review. Chem. Eng. J. 2020 392 123684 123684 10.1016/j.cej.2019.123684
    [Google Scholar]
  12. Bhanderi D. Lakhani P. Modi C.K. Graphitic carbon nitride (g-C 3 N 4 ) as an emerging photocatalyst for sustainable environmental applications: A comprehensive review. RSC Sustainability 2024 2 2 265 287 10.1039/D3SU00382E
    [Google Scholar]
  13. Lin J. Ye W. Xie M. Seo D.H. Luo J. Wan Y. Van der Bruggen B. Environmental impacts and remediation of dye-containing wastewater. Nat. Rev. Earth Environ. 2023 4 11 785 803 10.1038/s43017‑023‑00489‑8
    [Google Scholar]
  14. Chakravorty A. Roy S. A review of photocatalysis, basic principles, processes, and materials. Sustainable Chemistry for the Environment 2024 8 100155 100155 10.1016/j.scenv.2024.100155
    [Google Scholar]
  15. Balu S. Ganapathy D. Arya S. Atchudan R. Sundramoorthy A.K. Advanced photocatalytic materials based degradation of micropollutants and their use in hydrogen production – A review. RSC Advances 2024 14 20 14392 14424 10.1039/D4RA01307G 38699688
    [Google Scholar]
  16. Balu S. Chuaicham C. Balakumar V. Rajendran S. Sasaki K. Sekar K. Maruthapillai A. Recent development on core-shell photo(electro)catalysts for elimination of organic compounds from pharmaceutical wastewater. Chemosphere 2022 298 134311 134311 10.1016/j.chemosphere.2022.134311 35307392
    [Google Scholar]
  17. Song S. Song H. Li L. Wang S. Chu W. Peng K. Meng X. Wang Q. Deng B. Liu Q. Wang Z. Weng Y. Hu H. Lin H. Kako T. Ye J. A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nat. Catal. 2021 4 12 1032 1042 10.1038/s41929‑021‑00708‑9
    [Google Scholar]
  18. Cong X. Mazierski P. Miodyńska M. Zaleska-Medynska A. Horn H. Schwartz T. Gmurek M. The role of TiO2 and gC3N4 bimetallic catalysts in boosting antibiotic resistance gene removal through photocatalyst assisted peroxone process. Sci. Rep. 2024 14 1 22897 10.1038/s41598‑024‑74147‑4 39358462
    [Google Scholar]
  19. Song Y. Ling L. Westerhoff P. Shang C. Evanescent waves modulate energy efficiency of photocatalysis within TiO2 coated optical fibers illuminated using LEDs. Nat. Commun. 2021 12 1 4101 10.1038/s41467‑021‑24370‑8 34215737
    [Google Scholar]
  20. Wang S. Xu M. Peng T. Zhang C. Li T. Hussain I. Wang J. Tan B. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun. 2019 10 1 676 10.1038/s41467‑019‑08651‑x 30737395
    [Google Scholar]
  21. Kavgaci M. Eskalen H. Facile synthesis and characterization of gCN, gCN-Zn and gCN-Fe binary nanocomposite and its application as photocatalyst for methylene blue degradation. Sakarya University Journal of Science 2023 27 3 530 541 10.16984/saufenbilder.1195934
    [Google Scholar]
  22. Abdullah B. Tahir D. Heryanto H. Tang N.F.R. Rahmat R. Highly ordered structure and susceptibility to light absorption of ZnO/calcium phosphate (5%) to enhance the stability of charge diffusion as a methylene blue bond breaker. Phys. Scr. 2024 99 2 025901 10.1088/1402‑4896/ad17af
    [Google Scholar]
  23. Zhang F. Zhang Y. Zhang G. Yang Z. Dionysiou D.D. Zhu A. Exceptional synergistic enhancement of the photocatalytic activity of SnS2 by coupling with polyaniline and N-doped reduced graphene oxide. Appl. Catal. B 2018 236 53 63 10.1016/j.apcatb.2018.05.002
    [Google Scholar]
  24. Naciri Y. Hsini A. Bouziani A. Tanji K. El Ibrahimi B. Ghazzal M.N. Bakiz B. Albourine A. Benlhachemi A. Navío J.A. Li H. Z-scheme WO3/PANI heterojunctions with enhanced photocatalytic activity under visible light: A depth experimental and DFT studies. Chemosphere 2022 292 133468 133468 10.1016/j.chemosphere.2021.133468 34974036
    [Google Scholar]
  25. Regmi C. Dhakal D. Lee S.W. Visible-light-induced Ag/BiVO 4 semiconductor with enhanced photocatalytic and antibacterial performance. Nanotechnology 2018 29 6 064001 10.1088/1361‑6528/aaa052 29219840
    [Google Scholar]
  26. Dave P.N. Chaturvedi S. Carbon dots: Synthesis, photocatalyst, and future perspective. ACS Symposium Series American Chemical Society Washington, DC 2024 63 80 10.1021/bk‑2024‑1465.ch003
    [Google Scholar]
  27. Hu C. Chen Q. Tian M. Wang W. Yu J. Chen L. Efficient combination of carbon quantum dots and BiVO4 for significantly enhanced photocatalytic activities. Catalysts 2023 13 3 463 10.3390/catal13030463
    [Google Scholar]
  28. Heryanto H. Mutmainna I. Rahmi M.H. Tenri Ola A.T. Tang N.F.R. Mohamed M.A. Tahir D. Favourable peak diffraction shift moments as a function of Mg doping on ZnO matrix as a promising catalyst for methylene blue waste. Mater. Chem. Phys. 2024 313 128772 128772 10.1016/j.matchemphys.2023.128772
    [Google Scholar]
  29. Verma P. Samanta S.K. Facile synthesis of TiO2–PC composites for enhanced photocatalytic abatement of multiple pollutant dye mixtures: A comprehensive study on the kinetics, mechanism, and effects of environmental factors. Res. Chem. Intermed. 2018 44 3 1963 1988 10.1007/s11164‑017‑3209‑8
    [Google Scholar]
  30. Qamar M.A. Shahid S. Javed M. Shariq M. Fadhali M.M. Madkhali O. Ali S.K. Syed I.S. Awaji M.Y. Shakir Khan M. Hassan D.A. Al Nasir M.H. Accelerated decoloration of organic dyes from wastewater using ternary metal/g-C3N4/ZnO nanocomposites: An investigation of impact of g-C3N4 concentration and Ni and Mn doping. Catalysts 2022 12 11 1388 10.3390/catal12111388
    [Google Scholar]
  31. Vaya D. Kaushik P. K Rao G. Study of photocatalytic degradation and simultaneous removal of a mixture of pollutant (MB and MG) dyes: Kinetic and adsorption isotherm. Nanosci. Nanotechnol. Asia 2022 12 6 e151122210922 10.2174/2210681213666221115142649
    [Google Scholar]
  32. Hu K. Yao M. Yang Z. Xiao G. Zhu L. Zhang H. Liu R. Zou B. Liu B. Pressure tuned photoluminescence and band gap in two-dimensional layered g-C 3 N 4 : The effect of interlayer interactions. Nanoscale 2020 12 23 12300 12307 10.1039/D0NR01542C 32285075
    [Google Scholar]
  33. Chen S. Wei Z. Qi X. Dong L. Guo Y.G. Wan L. Shao Z. Li L. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity. J. Am. Chem. Soc. 2012 134 32 13252 13255 10.1021/ja306501x 22849618
    [Google Scholar]
  34. Ghosh S. Das P.S. Biswas M. Samajdar S. Mukhopadhyay J. Z-scheme ferrite nanoparticle/graphite carbon nitride nanosheet heterojunctions for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2024 10.1016/j.ijhydene.2024.06.167
    [Google Scholar]
  35. Matias M.L. Reis-Machado A.S. Rodrigues J. Calmeiro T. Deuermeier J. Pimentel A. Fortunato E. Martins R. Nunes D. Microwave synthesis of visible-light-activated g-C3N4/TiO2 photocatalysts. Nanomaterials (Basel) 2023 13 6 1090 10.3390/nano13061090 36985984
    [Google Scholar]
  36. Murugan N. Chan-Park M.B. Sundramoorthy A.K. Electrochemical detection of uric acid on exfoliated nanosheets of graphitic-like carbon nitride (g-C 3 N 4 ) based sensor. J. Electrochem. Soc. 2019 166 9 B3163 B3170 10.1149/2.0261909jes
    [Google Scholar]
  37. Nguyen T.T. Bui H.T. Nguyen G.T. Hoang T.N. Van Tran C. Ho P.H. Hoai Nguyen P.T. Kim J.Y. Chang S.W. Chung W.J. Nguyen D.D. La D.D. Facile preparation of porphyrin@g-C3N4/Ag nanocomposite for improved photocatalytic degradation of organic dyes in aqueous solution. Environ. Res. 2023 231 Pt 1 115984 10.1016/j.envres.2023.115984 37156354
    [Google Scholar]
  38. Meng Q. Yuan M. Lv H. Chen Z. Zhou G. Chen Z. Wang X. Facile construction of metal‐Free g‐C 3 N 4 isotype heterojunction with highly enhanced visible‐light photocatalytic performance. ChemistrySelect 2017 2 24 6970 6978 10.1002/slct.201700705
    [Google Scholar]
  39. Ekande O.S. Kumar M. New insight on interfacial charge transfer at graphitic carbon nitride/sodium niobate heterojunction under piezoelectric effect for the generation of reactive oxygen species. J. Colloid Interface Sci. 2023 651 477 493 10.1016/j.jcis.2023.07.189 37556905
    [Google Scholar]
  40. Rajendran R. Rojviroon O. Vasudevan V. Arumugam P. Handayani M. Akechatree N. Leelert Y. Rojviroon T. Magnetically separable ternary heterostructure photocatalyst CuFe2O4/g-C3N4/rGO: Enhancing photocatalytic degradation and bacterial inactivation. J. Water Process Eng. 2024 63 105443 105443 10.1016/j.jwpe.2024.105443
    [Google Scholar]
  41. Mallick P. Sahoo S.K. Satpathy S.K. Different strategies to improve photocatalytic activity of graphitic carbon nitride (g-C3N4) semiconductor nanomaterials for hydrogen generation. J. Mol. Liq. 2024 406 125071 125071 10.1016/j.molliq.2024.125071
    [Google Scholar]
  42. Muthuganesh A. Davis Jacob I. Soundranayagam J.P. Surender S. Elangovan P. Helan Flora X. Fabrication of g-C3N4/CuS heterostructures for efficient visible light-driven photocatalysts. Inorg. Chem. Commun. 2024 159 111813 111813 10.1016/j.inoche.2023.111813
    [Google Scholar]
  43. Naseri A. Samadi M. Pourjavadi A. Moshfegh A.Z. Ramakrishna S. Graphitic carbon nitride (g-C 3 N 4 )-based photocatalysts for solar hydrogen generation: Recent advances and future development directions. J. Mater. Chem. A Mater. Energy Sustain. 2017 5 45 23406 23433 10.1039/C7TA05131J
    [Google Scholar]
  44. Nishimura S. Mott D. Takagaki A. Maenosono S. Ebitani K. Role of base in the formation of silver nanoparticles synthesized using sodium acrylate as a dual reducing and encapsulating agent. Phys. Chem. Chem. Phys. 2011 13 20 9335 9343 10.1039/c0cp02985h 21479291
    [Google Scholar]
  45. Nguyen Xuan T. Nguyen Thi D. Tran Thuong Q. Nguyen Ngoc T. Dang Quoc K. Molnár Z. Mukhtar S. Szabó-Bárdos E. Horváth O. Effect of copper-modification of g-C3N4 on the visible-light-driven photocatalytic oxidation of nitrophenols. Molecules 2023 28 23 7810 10.3390/molecules28237810 38067540
    [Google Scholar]
  46. Mo Z. She X. Li Y. Liu L. Huang L. Chen Z. Zhang Q. Xu H. Li H. Synthesis of g-C 3 N 4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution. RSC Advances 2015 5 123 101552 101562 10.1039/C5RA19586A
    [Google Scholar]
  47. Abdelhamied M.M. Atta A. Abdelreheem A.M. Farag A.T.M. El Okr M.M. Synthesis and optical properties of PVA/PANI/Ag nanocomposite films. J. Mater. Sci. Mater. Electron. 2020 31 24 22629 22641 10.1007/s10854‑020‑04774‑w
    [Google Scholar]
  48. Makuła P. Pacia M. Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. J. Phys. Chem. Lett. 2018 9 23 6814 6817 10.1021/acs.jpclett.8b02892 30990726
    [Google Scholar]
  49. Ma C. Yang Z. Wang W. Zhang M. Hao X. Zhu S. Chen S. Fabrication of Ag–Cu 2 O/PANI nanocomposites for visible-light photocatalysis triggering super antibacterial activity. J. Mater. Chem. C Mater. Opt. Electron. Devices 2020 8 8 2888 2898 10.1039/C9TC05891E
    [Google Scholar]
  50. Papadopoulou-Fermeli N. Lagopati N. Gatou M.A. Pavlatou E.A. Biocompatible PANI-encapsulated chemically modified nano-TiO2 particles for visible-light photocatalytic applications. Nanomaterials (Basel) 2024 14 7 642 10.3390/nano14070642 38607176
    [Google Scholar]
  51. Wang J. Zhang K. Zhao L. Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous Cr(VI): Effect of protonic acids. Chem. Eng. J. 2014 239 123 131 10.1016/j.cej.2013.11.006
    [Google Scholar]
  52. Ge L. Han C. Liu J. In situ synthesis and enhanced visible light photocatalytic activities of novel PANI–g-C3N4 composite photocatalysts. J. Mater. Chem. 2012 22 23 11843 10.1039/c2jm16241e
    [Google Scholar]
  53. Nezamzadeh-Ejhieh A. Shams-Ghahfarokhi Z. Photodegradation of methyl green by Nickel‐Dimethylglyoxime/ZSM‐5 zeolite as a heterogeneous catalyst. J. Chem. 2013 2013 1 104093 10.1155/2013/104093
    [Google Scholar]
  54. Cyril N. George J.B. Joseph L. Sylas V.P. Catalytic degradation of methyl orange and selective sensing of mercury ion in aqueous solutions using green synthesized silver nanoparticles from the seeds of derris trifoliata. J. Cluster Sci. 2019 30 2 459 468 10.1007/s10876‑019‑01508‑9
    [Google Scholar]
  55. Groeneveld I. Kanelli M. Ariese F. van Bommel M.R. Parameters that affect the photodegradation of dyes and pigments in solution and on substrate – An overview. Dyes Pigments 2023 210 110999 110999 10.1016/j.dyepig.2022.110999
    [Google Scholar]
  56. Iqbal A. Yusaf A. Usman M. Hussain Bokhari T. Mansha A. Insight into the degradation of different classes of dyes by advanced oxidation processes; a detailed review. Int. J. Environ. Anal. Chem. 2023 1 35 10.1080/03067319.2022.2125312
    [Google Scholar]
  57. Kar P. Sathiyan G. Vivekanandan K.E. Venkatesan G. Siva G. Subramani R. Kandasamy S. A comprehensive review on tailoring factors of porous bismuth oxyhalide photocatalysts for wastewater treatment application. J. Taiwan Inst. Chem. Eng. 2023 105234 105234 105234 10.1016/j.jtice.2023.105234
    [Google Scholar]
  58. Liu F.Y. Zeng H.Y. Xiong J. Peng D.Y. Xu S. An D.S. A p–n heterostructural g-C 3 N 4 /PANI composite for the remediation of heavy metals and organic pollutants in water. New J. Chem. 2022 46 33 15937 15949 10.1039/D2NJ02162E
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137356016250211063405
Loading
/content/journals/cnano/10.2174/0115734137356016250211063405
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test