Skip to content
2000
image of Advancements in Electrochemical Sensing: Nanocomposites for Vanillin Detection in Food Products

Abstract

Recent advancements in electrochemical sensing have significantly improved the detection of vanillin, an essential flavor compound in food products. This review discusses notable innovations, including developing 3D hybrid sensors that combine Silver-Palladium (Ag-Pd) bimetallic nanoparticles with graphene oxide. These sensors offer a broad detection range, low detection limits, and high recovery rates. Other advancements feature carbon paste electrodes (CPE) modified with cadmium oxide nanoparticles and single-walled carbon nanotubes, manganese dioxide nanowire hybrid electrodes with reduced graphene oxide, and various nanocomposite sensors such as poly (glutamic acid) with multiwalled carbon nanotubes and molybdenum disulfide-polyaniline-graphitic carbon nitride. These technologies demonstrate exceptional sensitivity, selectivity, and reliability, with detection limits as low as 0.0032 μM and broad dynamic ranges. These technologies' superior sensitivity and reliability should reassure and instill confidence in the potential of electrochemical sensing in vanillin detection. Despite these improvements, several challenges persist, including issues related to long-term stability, reproducibility, specificity in complex real-world samples, and scalability for commercial production. Addressing these challenges is essential for advancing the practical application of electrochemical sensors in vanillin detection. Future research is crucial to address these challenges and further enhance the field of electrochemical sensing. Future research should focus on improving sensor durability, expanding testing across diverse matrices, and exploring cost-effective manufacturing methods to ensure these advanced sensors can be widely implemented in food safety and quality control.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137355751241129110722
2025-01-15
2025-04-25
Loading full text...

Full text loading...

References

  1. Fitzgerald D.J. Stratford M. Gasson M.J. Narbad A. The potential application of vanillin in preventing yeast spoilage of soft drinks and fruit juices. J. Food Prot. 2004 67 2 391 395 10.4315/0362‑028X‑67.2.391 14968976
    [Google Scholar]
  2. Sinha A.K. Sharma U.K. Sharma N. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents. Int. J. Food Sci. Nutr. 2008 59 4 299 326 10.1080/09687630701539350 17886091
    [Google Scholar]
  3. Mourtzinos I. Konteles S. Kalogeropoulos N. Karathanos V.T. Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties. Food Chem. 2009 114 3 791 797 10.1016/j.foodchem.2008.10.014
    [Google Scholar]
  4. Gan T. Shi Z. Deng Y. Sun J. Wang H. Morphology–dependent electrochemical sensing properties of manganese dioxide–graphene oxide hybrid for guaiacol and vanillin. Electrochim. Acta 2014 147 157 166 10.1016/j.electacta.2014.09.116
    [Google Scholar]
  5. Park S.H. Sim Y.B. Choi S.M. Seo Y.J. Kwon M.S. Lee J.K. Suh H.W. Antinociceptive profiles and mechanisms of orally administered vanillin in the mice. Arch. Pharm. Res. 2009 32 11 1643 1649 10.1007/s12272‑009‑2119‑8 20091280
    [Google Scholar]
  6. Abo-youssef A.M. Possible antidepressant effects of vanillin against experimentally induced chronic mild stress in rats. Beni. Suef Univ. J. Basic Appl. Sci. 2016 5 2 187 192 10.1016/j.bjbas.2016.04.003
    [Google Scholar]
  7. Kim Y.H. Park J.H. Vanillin and 4-hydroxybenzyl alcohol attenuate cognitive impairment and the reduction of cell proliferation and neuroblast differentiation in the dentate gyrus in a mouse model of scopolamine-induced amnesia. Anat. Cell Biol. 2017 50 2 143 151 10.5115/acb.2017.50.2.143 28713618
    [Google Scholar]
  8. Lee J.C. Kim I.H. Cho J.H. Lee T.K. Park J.H. Ahn J.H. Shin B.N. Yan B.C. Kim J.D. Jeon Y.H. Lee Y.J. Won M.H. Kang I.J. Vanillin improves scopolamine‑induced memory impairment through restoration of ID1 expression in the mouse hippocampus. Mol. Med. Rep. 2018 17 3 4399 4405 10.3892/mmr.2018.8401 29328430
    [Google Scholar]
  9. Ogawa K. Tashima A. Sadakata M. Morinaga O. Appetite-enhancing effects of vanilla flavours such as vanillin. J. Nat. Med. 2018 72 3 798 802 10.1007/s11418‑018‑1206‑x 29569223
    [Google Scholar]
  10. Jiang L. Ding Y. Jiang F. Li L. Mo F. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin. Anal. Chim. Acta 2014 833 22 28 10.1016/j.aca.2014.05.010 24909770
    [Google Scholar]
  11. Li J. Feng H. Li J. Jiang J. Feng Y. He L. Qian D. Bimetallic Ag-Pd nanoparticles-decorated graphene oxide: A fascinating three-dimensional nanohybrid as an efficient electrochemical sensing platform for vanillin determination. Electrochim. Acta 2015 176 827 835 10.1016/j.electacta.2015.07.091
    [Google Scholar]
  12. Ueno H. Shimada A. Suemitsu S. Murakami S. Kitamura N. Wani K. Takahashi Y. Matsumoto Y. Okamoto M. Fujiwara Y. Ishihara T. Comprehensive behavioral study of the effects of vanillin inhalation in mice. Biomed. Pharmacother. 2019 115 108879 10.1016/j.biopha.2019.108879 31035009
    [Google Scholar]
  13. Teissedre P.L. Waterhouse A.L. Inhibition of oxidation of human low-density lipoproteins by phenolic substances in different essential oils varieties. J. Agric. Food Chem. 2000 48 9 3801 3805 10.1021/jf990921x 10995274
    [Google Scholar]
  14. Yardım Y. Gülcan M. Şentürk Z. Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode. Food Chem. 2013 141 3 1821 1827 10.1016/j.foodchem.2013.04.085 23870896
    [Google Scholar]
  15. Venkadesh A. Mathiyarasu J. Radhakrishnan S. A highly uniform CuO@SiO2 porous sphere with improved electrochemical sensing performance for the accurate determination of vanillin in food samples. Mater. Today Chem. 2021 22 100554 10.1016/j.mtchem.2021.100554
    [Google Scholar]
  16. Fu L. Xie K. Wu D. Wang A. Zhang H. Ji Z. Electrochemical determination of vanillin in food samples by using pyrolyzed graphitic carbon nitride. Mater. Chem. Phys. 2020 242 122462 10.1016/j.matchemphys.2019.122462
    [Google Scholar]
  17. Pérez-Esteve É. Lerma-García M.J. Fuentes A. Palomares C. Barat J.M. Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control 2016 67 171 176 10.1016/j.foodcont.2016.02.048
    [Google Scholar]
  18. Minematsu S. Xuan G.S. Wu X.Z. Determination of vanillin in vanilla perfumes and air by capillary electrophoresis. J. Environ. Sci. 2013 25 Suppl. 1 S8 S14 10.1016/S1001‑0742(14)60617‑3 25078845
    [Google Scholar]
  19. Dehdashtian S. Wang S. Murray T.A. Chegeni M. Rostamnia S. Fattahi N. Determination of vanillin in different food samples by using SMM/Au@ZIF-67 electrochemical sensor. Sci. Rep. 2023 13 1 17907 10.1038/s41598‑023‑45342‑6 37863995
    [Google Scholar]
  20. Dehdashtian N. Shahidi S.A. Ghorbani-HasanSaraei A. Hosseini S. Ahmadi M. Trace level monitoring of vanillin in food products using a modified electrode amplified with NiO/Nitrogen doped carbon quantum dots nanocomposite. J. Food Meas. Charact. 2024 18 1 117 124 10.1007/s11694‑023‑02180‑4
    [Google Scholar]
  21. Tian Y. Deng P. Wu Y. Liu J. Li J. Li G. He Q. High sensitive voltammetric sensor for nanomolarity vanillin detection in food samples via manganese dioxide nanowires hybridized electrode. Microchem. J. 2020 157 104885 10.1016/j.microc.2020.104885
    [Google Scholar]
  22. Carnero Ruiz C. Heredia Bayona A. Garcia Sanchez F. Derivative spectrophotometric determination of vanillin and p-hydroxybenzaldehyde in vanilla bean extracts. J. Agric. Food Chem. 1990 38 1 178 181 10.1021/jf00091a039
    [Google Scholar]
  23. Sostaric T. Boyce M.C. Spickett E.E. Analysis of the volatile components in vanilla extracts and flavorings by solid-phase microextraction and gas chromatography. J. Agric. Food Chem. 2000 48 12 5802 5807 10.1021/jf000515+ 11141252
    [Google Scholar]
  24. Timotheou-Potamia M. Calokerinos A.C. Chemiluminometric determination of vanillin in commercial vanillin products. Talanta 2007 71 1 208 212 10.1016/j.talanta.2006.03.046 19071290
    [Google Scholar]
  25. Bononi M. Quaglia G. Tateo F. Easy extraction method to evaluate δ13c vanillin by liquid chromatography–isotopic ratio mass spectrometry in chocolate bars and chocolate snack foods. J. Agric. Food Chem. 2015 63 19 4777 4781 10.1021/acs.jafc.5b02136 25965784
    [Google Scholar]
  26. Takahashi M. Sakamaki S. Fujita A. Simultaneous analysis of guaiacol and vanillin in a vanilla extract by using high-performance liquid chromatography with electrochemical detection. Biosci. Biotechnol. Biochem. 2013 77 3 595 600 10.1271/bbb.120835 23470765
    [Google Scholar]
  27. Remaud G.S. Akoka S. A review of flavors authentication by position‐specific isotope analysis by nuclear magnetic resonance spectrometry: The example of vanillin. Flavour Fragrance J. 2017 32 2 77 84 10.1002/ffj.3366
    [Google Scholar]
  28. Wang Z. Zeng G. Wei X. Ding B. Huang C. Xu B. Determination of vanillin and ethyl-vanillin in milk powder by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Food Anal. Methods 2016 9 12 3360 3366 10.1007/s12161‑016‑0520‑8
    [Google Scholar]
  29. Barho F.B. Gonzalez-Posada F. Milla M-J. Bomers M. Cerutti L. Tournié E. Taliercio T. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin. Nanophotonics 2017 7 2 507 516 10.1515/nanoph‑2017‑0052
    [Google Scholar]
  30. Hareesha N. Manjunatha J.G. Amrutha B.M. Sreeharsha N. Basheeruddin Asdaq S.M. Anwer M.K. A fast and selective electrochemical detection of vanillin in food samples on the surface of poly(glutamic acid) functionalized multiwalled carbon nanotubes and graphite composite paste sensor. Colloids Surf. A Physicochem. Eng. Asp. 2021 626 127042 10.1016/j.colsurfa.2021.127042
    [Google Scholar]
  31. Sharifian S. Nezamzadeh-Ejhieh A. Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid. Mater. Sci. Eng. C 2016 58 510 520 10.1016/j.msec.2015.08.071 26478339
    [Google Scholar]
  32. Tamiji T. Nezamzadeh-Ejhieh A. Sensitive voltammetric determination of bromate by using ion-exchange property of a Sn(II)-clinoptilolite-modified carbon paste electrode. J. Solid State Electrochem. 2019 23 1 143 157 10.1007/s10008‑018‑4119‑4
    [Google Scholar]
  33. Mehmandoust M. Tiris G. Pourhakkak P. Erk N. Soylak M. Kanberoglu G.S. Zahmakiran M. An electrochemical sensing platform with a molecularly imprinted polymer based on chitosan-stabilized metal@metal-organic frameworks for topotecan detection. Mikrochim. Acta 2023 190 4 142 10.1007/s00604‑023‑05722‑1 36933052
    [Google Scholar]
  34. Mehmandoust M. Çakar S. Özacar M. Erk N. The determination of timolol maleate using silver/tannic acid/titanium oxide nanocomposite as an electrochemical sensor in real samples. Electroanalysis 2022 34 7 1150 1162 10.1002/elan.202100363
    [Google Scholar]
  35. Lalmalsawmi J. Tiwari D. Kim D.J. Role of nanocomposite materials in the development of electrochemical sensors for arsenic: Past, present and future. J. Electroanal. Chem. 2020 877 114630 10.1016/j.jelechem.2020.114630
    [Google Scholar]
  36. Munonde T.S. Nomngongo P.N. Nanocomposites for electrochemical sensors and their applications on the detection of trace metals in environmental water samples. Sensors 2020 21 1 131 10.3390/s21010131 33379201
    [Google Scholar]
  37. Lu L. Zhu Z. Hu X. Multivariate nanocomposites for electrochemical sensing in the application of food. Trends Analyt. Chem. 2019 118 759 769 10.1016/j.trac.2019.07.010
    [Google Scholar]
  38. Manjunatha J.G. Swamy B.E.K. Mamatha G.P. Gilbert O. Shreenivas M.T. Sherigara B.S. Electrocatalytic response of dopamine at mannitol and triton X-100 modified carbon paste electrode: A cyclic voltammetric study. Int. J. Electrochem. Sci. 2009 4 12 1706 1718 10.1016/S1452‑3981(23)15256‑4
    [Google Scholar]
  39. Raril C. Manjunatha J.G. Sensitive electrochemical analysis of resorcinol using polymer modified carbon paste electrode: A cyclic voltammetric study. Anal. Bioanal. Electrochem. 2018 10 488 498
    [Google Scholar]
  40. Bettazzi F. Palchetti I. Sisalli S. Mascini M. A disposable electrochemical sensor for vanillin detection. Anal. Chim. Acta 2006 555 1 134 138 10.1016/j.aca.2005.08.069
    [Google Scholar]
  41. Hasheminejad M. Nezamzadeh-Ejhieh A. A novel citrate selective electrode based on surfactant modified nano-clinoptilolite. Food Chem. 2015 172 794 801 10.1016/j.foodchem.2014.09.057 25442622
    [Google Scholar]
  42. Singh T. Shukla S. Kumar P. Wahla V. Bajpai V.K. Rather I.A. Application of nanotechnology in food science: Perception and overview. Front. Microbiol. 2017 8 1501 10.3389/fmicb.2017.01501 28824605
    [Google Scholar]
  43. Sivamaruthi B.S. Ramkumar V.S. Archunan G. Chaiyasut C. Suganthy N. Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebulaIn vitro evaluation of anticancer and antimicrobial activity. J. Drug Deliv. Sci. Technol. 2019 51 139 151 10.1016/j.jddst.2019.02.024
    [Google Scholar]
  44. Prakashkumar N. Sivamaruthi B.S. Chaiyasut C. Suganthy N. Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta-amyloid-induced oxidative stress-mediated apoptosis: An in vitro study. Pharmaceutics 2021 13 3 299 10.3390/pharmaceutics13030299 33668877
    [Google Scholar]
  45. Joudeh N. Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnology 2022 20 1 262 10.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  46. Sivamaruthi B. Thangaleela S. Kesika P. Suganthy N. Chaiyasut C. Mesoporous silica-based nanoplatforms are theranostic agents for the treatment of inflammatory disorders. Pharmaceutics 2023 15 2 439 10.3390/pharmaceutics15020439 36839761
    [Google Scholar]
  47. Sisubalan N. Shalini R. Ramya S. Sivamaruthi B.S. Chaiyasut C. Recent advances in nanomaterials for neural applications: Opportunities and challenges. Nanomedicine 2023 18 26 1979 1994 10.2217/nnm‑2023‑0261 38078433
    [Google Scholar]
  48. Nie X. Zhang R. Tang Z. Wang H. Deng P. Tang Y. Facile fabrication of CeO2/electrochemically reduced graphene oxide nanocomposites for vanillin detection in commercial food products. Nanomaterials 2020 10 7 1356 10.3390/nano10071356 32664495
    [Google Scholar]
  49. Taouri L. Bourouina M. Bourouina-Bacha S. Hauchard D. Fullerene-MWCNT nanostructured-based electrochemical sensor for the detection of Vanillin as food additive. J. Food Compos. Anal. 2021 100 103811 10.1016/j.jfca.2021.103811
    [Google Scholar]
  50. Zabihpour T. Shahidi S.A. Karimi-Maleh H. Ghorbani-HasanSaraei A. Voltammetric food analytical sensor for determining vanillin based on amplified NiFe2O4 nanoparticle/ionic liquid sensor. J. Food Meas. Charact. 2020 14 2 1039 1045 10.1007/s11694‑019‑00353‑8
    [Google Scholar]
  51. Wang J. Ni Y. Ammonium molybdate-assisted shape-controlled synthesis of fluorescent Co(II)-based MOFs nanoflakes as highly-sensitive probes for selective detection of vanillin in milk powders. Mater. Res. Bull. 2020 123 110721 10.1016/j.materresbull.2019.110721
    [Google Scholar]
  52. Madhusudhana Manasa G. Bhakta A.K. Mekhalif Z. Mascarenhas R.J. Bismuth-nanoparticles decorated multi-wall-carbon-nanotubes cast-coated on carbon paste electrode; An electrochemical sensor for sensitive determination of Gallic Acid at neutral pH. Mater. Sci. Energy Technol. 2020 3 174 182 10.1016/j.mset.2019.10.001
    [Google Scholar]
  53. Cheraghi S. Taher M.A. Karimi-Maleh H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal. 2017 62 254 259 10.1016/j.jfca.2017.06.006
    [Google Scholar]
  54. Raril C. Manjunatha J.G. A simple approach for the electrochemical determination of vanillin at ionic surfactant modified graphene paste electrode. Microchem. J. 2020 154 104575 10.1016/j.microc.2019.104575
    [Google Scholar]
  55. Huang L. Hou K. Jia X. Pan H. Du M. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Mater. Sci. Eng. C 2014 38 39 45 10.1016/j.msec.2014.01.037 24656350
    [Google Scholar]
  56. Deng P. Xu Z. Zeng R. Ding C. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene–polyvinylpyrrolidone composite film. Food Chem. 2015 180 156 163 10.1016/j.foodchem.2015.02.035 25766813
    [Google Scholar]
  57. Zheng D. Hu C. Gan T. Dang X. Hu S. Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sens. Actuators B Chem. 2010 148 1 247 252 10.1016/j.snb.2010.04.031
    [Google Scholar]
  58. Nezamzadeh-Ejhieh A. Esmaeilian A. Application of surfactant modified zeolite carbon paste electrode (SMZ-CPE) towards potentiometric determination of sulfate. Microporous Mesoporous Mater. 2012 147 1 302 309 10.1016/j.micromeso.2011.06.026
    [Google Scholar]
  59. Ejhieh A.N. Masoudipour N. Application of a new potentiometric method for determination of phosphate based on a surfactant-modified zeolite carbon-paste electrode (SMZ-CPE). Anal. Chim. Acta 2010 658 1 68 74 10.1016/j.aca.2009.10.064 20082776
    [Google Scholar]
  60. Deng P. Zhou C. Sun H. Chen A. Wei Y. Tang N. Shi S. Zuo J. Li J. He Q. Manganese cobalt sulfide nanoparticles wrapped by reduced graphene oxide: A fascinating nanocomposite as an efficient electrochemical sensing platform for vanillin determination. Journal of Future Foods 2025 5 2 162 171 10.1016/j.jfutfo.2024.05.005
    [Google Scholar]
  61. Tabanlıgil Calam T. Voltammetric determination and electrochemical behavior of vanillin based on 1H-1,2,4-triazole-3-thiol polymer film modified gold electrode. Food Chem. 2020 328 127098 10.1016/j.foodchem.2020.127098 32470775
    [Google Scholar]
  62. Erady V. Mascarenhas R.J. Satpati A.K. Highly efficient and selective quantification of vanillin in food, beverages and pharmaceuticals using surfactant modified carbon paste sensor. Sens. Int. 2020 1 100023 10.1016/j.sintl.2020.100023
    [Google Scholar]
  63. Khademi F. Motamedzadegan A. Farahmandfar R. Hamzeh S. Shahidi S.A. Development of an ionic liquid based-Fe3O4/Gr nanocomposite for sensitive electrochemical sensing and monitoring of vanillin in food products. Top. Catal. 2024 10.1007/s11244‑024‑01977‑x
    [Google Scholar]
  64. Lee Y.Y. Sriram B. Wang S.F. Stanley M.M. Lin W.C. Kogularasu S. Chang-Chien G.P. George M. Eco-innovative electrochemical sensing for precise detection of vanillin and sulfadiazine additives in confectioneries. Appl. Surf. Sci. Adv. 2024 20 100584 10.1016/j.apsadv.2024.100584
    [Google Scholar]
  65. Gupta R. Ali H. Verma N. Detection of vanillin in food products over Cu - laser induced graphene nanocomposite using the combined electrochemistry and UV–Vis spectroscopy principles. Microchem. J. 2024 199 109984 10.1016/j.microc.2024.109984
    [Google Scholar]
  66. Fortulan R. Kheirabadi N.R. Raeisi-Kheirabadi N. Nezamzadeh-Ejhieh A. Chiolerio A. Adamatzky A. Fractional-order memristive dynamics in colloidal graphitic carbon nitride systems. Phys. Rev. E 2024 110 3 034607 10.1103/PhysRevE.110.034607 39425438
    [Google Scholar]
  67. Raeisi-Kheirabadi N. Nezamzadeh-Ejhieh A. A Z-scheme g-C3N4/Ag3PO4 nanocomposite: Its photocatalytic activity and capability for water splitting. Int. J. Hydrogen Energy 2020 45 58 33381 33395 10.1016/j.ijhydene.2020.09.028
    [Google Scholar]
  68. Haredy A.M. Derayea S.M. Gahlan A.A. Omar M.A. Saleh G.A. Graphene oxide modified glassy carbon electrode for determination of linagliptin in dosage form, biological fluids, and rats’ feces using square wave voltammetry. Arab. J. Chem. 2022 15 3 103663 10.1016/j.arabjc.2021.103663
    [Google Scholar]
  69. Murugan E. Dhamodharan A. Separate and simultaneous determination of vanillin, theophylline and caffeine using molybdenum disulfide embedded polyaniline/graphitic carbon nitrite nanocomposite modified glassy carbon electrode. Diamond Related Materials 2021 120 108684 10.1016/j.diamond.2021.108684
    [Google Scholar]
  70. Murugan E. Dhamodharan A. MoS2/PANI/f-MWCNTs ternary nanocomposite modified electrode for selective and concomitant sensing of vanillin, theophylline and caffeine. Diamond Related Materials 2022 128 109268 10.1016/j.diamond.2022.109268
    [Google Scholar]
  71. Kumari R. Kumar H. Yadav A. Sharma R. Kumari A. Kumar A. Metal nanocomposites-based electrochemical sensor for the detection of Vanillin (food additives): Experimental and theoretical approach. Food Biosci. 2023 52 102464 10.1016/j.fbio.2023.102464
    [Google Scholar]
  72. Gokulkumar K. Huang S.J. Lee Y.Y. Kogularasu S. Chang-Chien G.P. Nanoparticles of SnS on carbon nanofibers for electrochemical detection of vanillin. ACS Appl. Nano Mater. 2024 7 11 13183 13193 10.1021/acsanm.4c01707
    [Google Scholar]
  73. Gopi S. Wang S.F. Electrochemical determination of vanillin using 2D/2D heterostructure based on ZnCr-layered double hydroxide and g-CN. Mikrochim. Acta 2023 190 10 423 10.1007/s00604‑023‑05985‑8 37775607
    [Google Scholar]
  74. Manikandan V.S. Boateng E. Durairaj S. Chen A. Electrochemical sensing of vanillin based on fluorine-doped reduced graphene oxide decorated with gold nanoparticles. Foods 2022 11 10 1448 10.3390/foods11101448 35627019
    [Google Scholar]
  75. Moradi O. A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples. Food Chem. Toxicol. 2022 168 113391 10.1016/j.fct.2022.113391 36041662
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137355751241129110722
Loading
/content/journals/cnano/10.2174/0115734137355751241129110722
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test