Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Recent advancements in electrochemical sensing have significantly improved the detection of vanillin, an essential flavor compound in food products. This review discusses notable innovations, including developing 3D hybrid sensors that combine Silver-Palladium (Ag-Pd) bimetallic nanoparticles with graphene oxide. These sensors offer a broad detection range, low detection limits, and high recovery rates. Other advancements feature carbon paste electrodes (CPE) modified with cadmium oxide nanoparticles and single-walled carbon nanotubes, manganese dioxide nanowire hybrid electrodes with reduced graphene oxide, and various nanocomposite sensors such as poly (glutamic acid) with multiwalled carbon nanotubes and molybdenum disulfide-polyaniline-graphitic carbon nitride. These technologies demonstrate exceptional sensitivity, selectivity, and reliability, with detection limits as low as 0.0032 μM and broad dynamic ranges. These technologies' superior sensitivity and reliability should reassure and instill confidence in the potential of electrochemical sensing in vanillin detection. Despite these improvements, several challenges persist, including issues related to long-term stability, reproducibility, specificity in complex real-world samples, and scalability for commercial production. Addressing these challenges is essential for advancing the practical application of electrochemical sensors in vanillin detection. Future research is crucial to address these challenges and further enhance the field of electrochemical sensing. Future research should focus on improving sensor durability, expanding testing across diverse matrices, and exploring cost-effective manufacturing methods to ensure these advanced sensors can be widely implemented in food safety and quality control.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137355751241129110722
2025-01-15
2026-02-20
Loading full text...

Full text loading...

References

  1. FitzgeraldD.J. StratfordM. GassonM.J. NarbadA. The potential application of vanillin in preventing yeast spoilage of soft drinks and fruit juices.J. Food Prot.200467239139510.4315/0362‑028X‑67.2.391 14968976
    [Google Scholar]
  2. SinhaA.K. SharmaU.K. SharmaN. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents.Int. J. Food Sci. Nutr.200859429932610.1080/09687630701539350 17886091
    [Google Scholar]
  3. MourtzinosI. KontelesS. KalogeropoulosN. KarathanosV.T. Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties.Food Chem.2009114379179710.1016/j.foodchem.2008.10.014
    [Google Scholar]
  4. GanT. ShiZ. DengY. SunJ. WangH. Morphology–dependent electrochemical sensing properties of manganese dioxide–graphene oxide hybrid for guaiacol and vanillin.Electrochim. Acta201414715716610.1016/j.electacta.2014.09.116
    [Google Scholar]
  5. ParkS.H. SimY.B. ChoiS.M. SeoY.J. KwonM.S. LeeJ.K. SuhH.W. Antinociceptive profiles and mechanisms of orally administered vanillin in the mice.Arch. Pharm. Res.200932111643164910.1007/s12272‑009‑2119‑8 20091280
    [Google Scholar]
  6. Abo-youssefA.M. Possible antidepressant effects of vanillin against experimentally induced chronic mild stress in rats.Beni. Suef Univ. J. Basic Appl. Sci.20165218719210.1016/j.bjbas.2016.04.003
    [Google Scholar]
  7. KimY.H. ParkJ.H. Vanillin and 4-hydroxybenzyl alcohol attenuate cognitive impairment and the reduction of cell proliferation and neuroblast differentiation in the dentate gyrus in a mouse model of scopolamine-induced amnesia.Anat. Cell Biol.201750214315110.5115/acb.2017.50.2.143 28713618
    [Google Scholar]
  8. LeeJ.C. KimI.H. ChoJ.H. LeeT.K. ParkJ.H. AhnJ.H. ShinB.N. YanB.C. KimJ.D. JeonY.H. LeeY.J. WonM.H. KangI.J. Vanillin improves scopolamine induced memory impairment through restoration of ID1 expression in the mouse hippocampus.Mol. Med. Rep.20181734399440510.3892/mmr.2018.8401 29328430
    [Google Scholar]
  9. OgawaK. TashimaA. SadakataM. MorinagaO. Appetite-enhancing effects of vanilla flavours such as vanillin.J. Nat. Med.201872379880210.1007/s11418‑018‑1206‑x 29569223
    [Google Scholar]
  10. JiangL. DingY. JiangF. LiL. MoF. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin.Anal. Chim. Acta2014833222810.1016/j.aca.2014.05.010 24909770
    [Google Scholar]
  11. LiJ. FengH. LiJ. JiangJ. FengY. HeL. QianD. Bimetallic Ag-Pd nanoparticles-decorated graphene oxide: A fascinating three-dimensional nanohybrid as an efficient electrochemical sensing platform for vanillin determination.Electrochim. Acta201517682783510.1016/j.electacta.2015.07.091
    [Google Scholar]
  12. UenoH. ShimadaA. SuemitsuS. MurakamiS. KitamuraN. WaniK. TakahashiY. MatsumotoY. OkamotoM. FujiwaraY. IshiharaT. Comprehensive behavioral study of the effects of vanillin inhalation in mice.Biomed. Pharmacother.201911510887910.1016/j.biopha.2019.108879 31035009
    [Google Scholar]
  13. TeissedreP.L. WaterhouseA.L. Inhibition of oxidation of human low-density lipoproteins by phenolic substances in different essential oils varieties.J. Agric. Food Chem.20004893801380510.1021/jf990921x 10995274
    [Google Scholar]
  14. YardımY. GülcanM. ŞentürkZ. Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode.Food Chem.201314131821182710.1016/j.foodchem.2013.04.085 23870896
    [Google Scholar]
  15. VenkadeshA. MathiyarasuJ. RadhakrishnanS. A highly uniform CuO@SiO2 porous sphere with improved electrochemical sensing performance for the accurate determination of vanillin in food samples.Mater. Today Chem.20212210055410.1016/j.mtchem.2021.100554
    [Google Scholar]
  16. FuL. XieK. WuD. WangA. ZhangH. JiZ. Electrochemical determination of vanillin in food samples by using pyrolyzed graphitic carbon nitride.Mater. Chem. Phys.202024212246210.1016/j.matchemphys.2019.122462
    [Google Scholar]
  17. Pérez-EsteveÉ. Lerma-GarcíaM.J. FuentesA. PalomaresC. BaratJ.M. Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC.Food Control20166717117610.1016/j.foodcont.2016.02.048
    [Google Scholar]
  18. MinematsuS. XuanG.S. WuX.Z. Determination of vanillin in vanilla perfumes and air by capillary electrophoresis.J. Environ. Sci.201325Suppl. 1S8S1410.1016/S1001‑0742(14)60617‑3 25078845
    [Google Scholar]
  19. DehdashtianS. WangS. MurrayT.A. ChegeniM. RostamniaS. FattahiN. Determination of vanillin in different food samples by using SMM/Au@ZIF-67 electrochemical sensor.Sci. Rep.20231311790710.1038/s41598‑023‑45342‑6 37863995
    [Google Scholar]
  20. DehdashtianN. ShahidiS.A. Ghorbani-HasanSaraeiA. HosseiniS. AhmadiM. Trace level monitoring of vanillin in food products using a modified electrode amplified with NiO/Nitrogen doped carbon quantum dots nanocomposite.J. Food Meas. Charact.202418111712410.1007/s11694‑023‑02180‑4
    [Google Scholar]
  21. TianY. DengP. WuY. LiuJ. LiJ. LiG. HeQ. High sensitive voltammetric sensor for nanomolarity vanillin detection in food samples via manganese dioxide nanowires hybridized electrode.Microchem. J.202015710488510.1016/j.microc.2020.104885
    [Google Scholar]
  22. Carnero RuizC. Heredia BayonaA. Garcia SanchezF. Derivative spectrophotometric determination of vanillin and p-hydroxybenzaldehyde in vanilla bean extracts.J. Agric. Food Chem.199038117818110.1021/jf00091a039
    [Google Scholar]
  23. SostaricT. BoyceM.C. SpickettE.E. Analysis of the volatile components in vanilla extracts and flavorings by solid-phase microextraction and gas chromatography.J. Agric. Food Chem.200048125802580710.1021/jf000515+ 11141252
    [Google Scholar]
  24. Timotheou-PotamiaM. CalokerinosA.C. Chemiluminometric determination of vanillin in commercial vanillin products.Talanta200771120821210.1016/j.talanta.2006.03.046 19071290
    [Google Scholar]
  25. BononiM. QuagliaG. TateoF. Easy extraction method to evaluate δ13c vanillin by liquid chromatography–isotopic ratio mass spectrometry in chocolate bars and chocolate snack foods.J. Agric. Food Chem.201563194777478110.1021/acs.jafc.5b02136 25965784
    [Google Scholar]
  26. TakahashiM. SakamakiS. FujitaA. Simultaneous analysis of guaiacol and vanillin in a vanilla extract by using high-performance liquid chromatography with electrochemical detection.Biosci. Biotechnol. Biochem.201377359560010.1271/bbb.120835 23470765
    [Google Scholar]
  27. RemaudG.S. AkokaS. A review of flavors authentication by position‐specific isotope analysis by nuclear magnetic resonance spectrometry: The example of vanillin.Flavour Fragrance J.2017322778410.1002/ffj.3366
    [Google Scholar]
  28. WangZ. ZengG. WeiX. DingB. HuangC. XuB. Determination of vanillin and ethyl-vanillin in milk powder by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry.Food Anal. Methods20169123360336610.1007/s12161‑016‑0520‑8
    [Google Scholar]
  29. BarhoF.B. Gonzalez-PosadaF. MillaM.J. BomersM. CeruttiL. TourniéE. TaliercioT. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin.Nanophotonics20177250751610.1515/nanoph‑2017‑0052
    [Google Scholar]
  30. HareeshaN. ManjunathaJ.G. AmruthaB.M. SreeharshaN. Basheeruddin AsdaqS.M. AnwerM.K. A fast and selective electrochemical detection of vanillin in food samples on the surface of poly(glutamic acid) functionalized multiwalled carbon nanotubes and graphite composite paste sensor.Colloids Surf. A Physicochem. Eng. Asp.202162612704210.1016/j.colsurfa.2021.127042
    [Google Scholar]
  31. SharifianS. Nezamzadeh-EjhiehA. Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid.Mater. Sci. Eng. C20165851052010.1016/j.msec.2015.08.071 26478339
    [Google Scholar]
  32. TamijiT. Nezamzadeh-EjhiehA. Sensitive voltammetric determination of bromate by using ion-exchange property of a Sn(II)-clinoptilolite-modified carbon paste electrode.J. Solid State Electrochem.201923114315710.1007/s10008‑018‑4119‑4
    [Google Scholar]
  33. MehmandoustM. TirisG. PourhakkakP. ErkN. SoylakM. KanberogluG.S. ZahmakiranM. An electrochemical sensing platform with a molecularly imprinted polymer based on chitosan-stabilized metal@metal-organic frameworks for topotecan detection.Mikrochim. Acta2023190414210.1007/s00604‑023‑05722‑1 36933052
    [Google Scholar]
  34. MehmandoustM. ÇakarS. ÖzacarM. ErkN. The determination of timolol maleate using silver/tannic acid/titanium oxide nanocomposite as an electrochemical sensor in real samples.Electroanalysis20223471150116210.1002/elan.202100363
    [Google Scholar]
  35. LalmalsawmiJ. TiwariD. KimD.J. Role of nanocomposite materials in the development of electrochemical sensors for arsenic: Past, present and future.J. Electroanal. Chem.202087711463010.1016/j.jelechem.2020.114630
    [Google Scholar]
  36. MunondeT.S. NomngongoP.N. Nanocomposites for electrochemical sensors and their applications on the detection of trace metals in environmental water samples.Sensors202021113110.3390/s21010131 33379201
    [Google Scholar]
  37. LuL. ZhuZ. HuX. Multivariate nanocomposites for electrochemical sensing in the application of food.Trends Analyt. Chem.201911875976910.1016/j.trac.2019.07.010
    [Google Scholar]
  38. ManjunathaJ.G. SwamyB.E.K. MamathaG.P. GilbertO. ShreenivasM.T. SherigaraB.S. Electrocatalytic response of dopamine at mannitol and triton X-100 modified carbon paste electrode: A cyclic voltammetric study.Int. J. Electrochem. Sci.20094121706171810.1016/S1452‑3981(23)15256‑4
    [Google Scholar]
  39. RarilC. ManjunathaJ.G. Sensitive electrochemical analysis of resorcinol using polymer modified carbon paste electrode: A cyclic voltammetric study.Anal. Bioanal. Electrochem.201810488498
    [Google Scholar]
  40. BettazziF. PalchettiI. SisalliS. MasciniM. A disposable electrochemical sensor for vanillin detection.Anal. Chim. Acta2006555113413810.1016/j.aca.2005.08.069
    [Google Scholar]
  41. HasheminejadM. Nezamzadeh-EjhiehA. A novel citrate selective electrode based on surfactant modified nano-clinoptilolite.Food Chem.201517279480110.1016/j.foodchem.2014.09.057 25442622
    [Google Scholar]
  42. SinghT. ShuklaS. KumarP. WahlaV. BajpaiV.K. RatherI.A. Application of nanotechnology in food science: Perception and overview.Front. Microbiol.20178150110.3389/fmicb.2017.01501 28824605
    [Google Scholar]
  43. SivamaruthiB.S. RamkumarV.S. ArchunanG. ChaiyasutC. SuganthyN. Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula – In vitro evaluation of anticancer and antimicrobial activity.J. Drug Deliv. Sci. Technol.20195113915110.1016/j.jddst.2019.02.024
    [Google Scholar]
  44. PrakashkumarN. SivamaruthiB.S. ChaiyasutC. SuganthyN. Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta-amyloid-induced oxidative stress-mediated apoptosis: An in vitro study.Pharmaceutics202113329910.3390/pharmaceutics13030299 33668877
    [Google Scholar]
  45. JoudehN. LinkeD. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists.J. Nanobiotechnology202220126210.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  46. SivamaruthiB. ThangaleelaS. KesikaP. SuganthyN. ChaiyasutC. Mesoporous silica-based nanoplatforms are theranostic agents for the treatment of inflammatory disorders.Pharmaceutics202315243910.3390/pharmaceutics15020439 36839761
    [Google Scholar]
  47. SisubalanN. ShaliniR. RamyaS. SivamaruthiB.S. ChaiyasutC. Recent advances in nanomaterials for neural applications: Opportunities and challenges.Nanomedicine202318261979199410.2217/nnm‑2023‑0261 38078433
    [Google Scholar]
  48. NieX. ZhangR. TangZ. WangH. DengP. TangY. Facile fabrication of CeO2/electrochemically reduced graphene oxide nanocomposites for vanillin detection in commercial food products.Nanomaterials2020107135610.3390/nano10071356 32664495
    [Google Scholar]
  49. TaouriL. BourouinaM. Bourouina-BachaS. HauchardD. Fullerene-MWCNT nanostructured-based electrochemical sensor for the detection of Vanillin as food additive.J. Food Compos. Anal.202110010381110.1016/j.jfca.2021.103811
    [Google Scholar]
  50. ZabihpourT. ShahidiS.A. Karimi-MalehH. Ghorbani-HasanSaraeiA. Voltammetric food analytical sensor for determining vanillin based on amplified NiFe2O4 nanoparticle/ionic liquid sensor.J. Food Meas. Charact.20201421039104510.1007/s11694‑019‑00353‑8
    [Google Scholar]
  51. WangJ. NiY. Ammonium molybdate-assisted shape-controlled synthesis of fluorescent Co(II)-based MOFs nanoflakes as highly-sensitive probes for selective detection of vanillin in milk powders.Mater. Res. Bull.202012311072110.1016/j.materresbull.2019.110721
    [Google Scholar]
  52. Madhusudhana; Manasa, G.; Bhakta, A.K.; Mekhalif, Z.; Mascarenhas, R.J. Bismuth-nanoparticles decorated multi-wall-carbon-nanotubes cast-coated on carbon paste electrode; An electrochemical sensor for sensitive determination of Gallic Acid at neutral pH.Mater. Sci. Energy Technol.2020317418210.1016/j.mset.2019.10.001
    [Google Scholar]
  53. CheraghiS. TaherM.A. Karimi-MalehH. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples.J. Food Compos. Anal.20176225425910.1016/j.jfca.2017.06.006
    [Google Scholar]
  54. RarilC. ManjunathaJ.G. A simple approach for the electrochemical determination of vanillin at ionic surfactant modified graphene paste electrode.Microchem. J.202015410457510.1016/j.microc.2019.104575
    [Google Scholar]
  55. HuangL. HouK. JiaX. PanH. DuM. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection.Mater. Sci. Eng. C201438394510.1016/j.msec.2014.01.037 24656350
    [Google Scholar]
  56. DengP. XuZ. ZengR. DingC. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene–polyvinylpyrrolidone composite film.Food Chem.201518015616310.1016/j.foodchem.2015.02.035 25766813
    [Google Scholar]
  57. ZhengD. HuC. GanT. DangX. HuS. Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles.Sens. Actuators B Chem.2010148124725210.1016/j.snb.2010.04.031
    [Google Scholar]
  58. Nezamzadeh-EjhiehA. EsmaeilianA. Application of surfactant modified zeolite carbon paste electrode (SMZ-CPE) towards potentiometric determination of sulfate.Microporous Mesoporous Mater.2012147130230910.1016/j.micromeso.2011.06.026
    [Google Scholar]
  59. EjhiehA.N. MasoudipourN. Application of a new potentiometric method for determination of phosphate based on a surfactant-modified zeolite carbon-paste electrode (SMZ-CPE).Anal. Chim. Acta20106581687410.1016/j.aca.2009.10.064 20082776
    [Google Scholar]
  60. DengP. ZhouC. SunH. ChenA. WeiY. TangN. ShiS. ZuoJ. LiJ. HeQ. Manganese cobalt sulfide nanoparticles wrapped by reduced graphene oxide: A fascinating nanocomposite as an efficient electrochemical sensing platform for vanillin determination.J. Fut. Foods20255216217110.1016/j.jfutfo.2024.05.005
    [Google Scholar]
  61. Tabanlıgil CalamT. Voltammetric determination and electrochemical behavior of vanillin based on 1H-1,2,4-triazole-3-thiol polymer film modified gold electrode.Food Chem.202032812709810.1016/j.foodchem.2020.127098 32470775
    [Google Scholar]
  62. EradyV. MascarenhasR.J. SatpatiA.K. Highly efficient and selective quantification of vanillin in food, beverages and pharmaceuticals using surfactant modified carbon paste sensor.Sens. Int.2020110002310.1016/j.sintl.2020.100023
    [Google Scholar]
  63. KhademiF. MotamedzadeganA. FarahmandfarR. HamzehS. ShahidiS.A. Development of an ionic liquid based-Fe3O4/Gr nanocomposite for sensitive electrochemical sensing and monitoring of vanillin in food products.Top. Catal.202468571872510.1007/s11244‑024‑01977‑x
    [Google Scholar]
  64. LeeY.Y. SriramB. WangS.F. StanleyM.M. LinW.C. KogularasuS. Chang-ChienG.P. GeorgeM. Eco-innovative electrochemical sensing for precise detection of vanillin and sulfadiazine additives in confectioneries.Appl. Surf. Sci. Adv.20242010058410.1016/j.apsadv.2024.100584
    [Google Scholar]
  65. GuptaR. AliH. VermaN. Detection of vanillin in food products over Cu - laser induced graphene nanocomposite using the combined electrochemistry and UV–Vis spectroscopy principles.Microchem. J.202419910998410.1016/j.microc.2024.109984
    [Google Scholar]
  66. FortulanR. KheirabadiN.R. Raeisi-KheirabadiN. Nezamzadeh-EjhiehA. ChiolerioA. AdamatzkyA. Fractional-order memristive dynamics in colloidal graphitic carbon nitride systems.Phys. Rev. E2024110303460710.1103/PhysRevE.110.034607 39425438
    [Google Scholar]
  67. Raeisi-KheirabadiN. Nezamzadeh-EjhiehA. A Z-scheme g-C3N4/Ag3PO4 nanocomposite: Its photocatalytic activity and capability for water splitting.Int. J. Hydrogen Energy20204558333813339510.1016/j.ijhydene.2020.09.028
    [Google Scholar]
  68. HaredyA.M. DerayeaS.M. GahlanA.A. OmarM.A. SalehG.A. Graphene oxide modified glassy carbon electrode for determination of linagliptin in dosage form, biological fluids, and rats’ feces using square wave voltammetry.Arab. J. Chem.202215310366310.1016/j.arabjc.2021.103663
    [Google Scholar]
  69. MuruganE. DhamodharanA. Separate and simultaneous determination of vanillin, theophylline and caffeine using molybdenum disulfide embedded polyaniline/graphitic carbon nitrite nanocomposite modified glassy carbon electrode.Diamond Related Materials202112010868410.1016/j.diamond.2021.108684
    [Google Scholar]
  70. MuruganE. DhamodharanA. MoS2/PANI/f-MWCNTs ternary nanocomposite modified electrode for selective and concomitant sensing of vanillin, theophylline and caffeine.Diamond Related Materials202212810926810.1016/j.diamond.2022.109268
    [Google Scholar]
  71. KumariR. KumarH. YadavA. SharmaR. KumariA. KumarA. Metal nanocomposites-based electrochemical sensor for the detection of Vanillin (food additives): Experimental and theoretical approach.Food Biosci.20235210246410.1016/j.fbio.2023.102464
    [Google Scholar]
  72. GokulkumarK. HuangS.J. LeeY.Y. KogularasuS. Chang-ChienG.P. Nanoparticles of SnS on carbon nanofibers for electrochemical detection of vanillin.ACS Appl. Nano Mater.2024711131831319310.1021/acsanm.4c01707
    [Google Scholar]
  73. GopiS. WangS.F. Electrochemical determination of vanillin using 2D/2D heterostructure based on ZnCr-layered double hydroxide and g-CN.Mikrochim. Acta20231901042310.1007/s00604‑023‑05985‑8 37775607
    [Google Scholar]
  74. ManikandanV.S. BoatengE. DurairajS. ChenA. Electrochemical sensing of vanillin based on fluorine-doped reduced graphene oxide decorated with gold nanoparticles.Foods20221110144810.3390/foods11101448 35627019
    [Google Scholar]
  75. MoradiO. A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples.Food Chem. Toxicol.202216811339110.1016/j.fct.2022.113391 36041662
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137355751241129110722
Loading
/content/journals/cnano/10.2174/0115734137355751241129110722
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test