Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

The development of cost-effective and efficient catalysts plays a pivotal role in the realization of hydrogen production through electrochemical water splitting.

Methods

In this study, two-dimensional NiCoS nanosheets were synthesized using a hydrothermal method followed by a sulfidation process.

Results

The resulting materials were thoroughly characterized to understand their morphology and structure. The findings indicate that the NiCoS nanosheets exhibit exceptional electrical conductivity and a high density of pores, which facilitate electrolyte infiltration and interfacial charge transfer during electrochemical reactions. Furthermore, the incorporation of S2− modulates the electronic structure of metal ions, reducing the oxidation potential of metal sites and promoting the surface reconstruction of the electrode to form active species. Electrochemical tests conducted in a 1 M KOH solution using the synthesized catalyst as the working electrode demonstrate an overpotential of merely 280 mV and 300 mV at a current density of 20 mA cm−2 and 40 mA cm-2, respectively, which are much lower than those of NiCo-LDH electrodes (360 mV and 410 mV).

Conclusion

Furthermore, the NiCoS electrode delivers a remarkably low Tafel slope of 47.9 mV dec−1. This investigation presents a novel approach to the development of efficient transition metal-based electrocatalysts.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137319139240614103935
2024-07-08
2025-10-10
Loading full text...

Full text loading...

References

  1. ClarkD. Malerød-FjeldH. BuddM. Yuste-TiradosI. BeeaffD. AamodtS. NguyenK. AnsaloniL. PetersT. VestreP.K. PappasD.K. VallsM.I. Remiro-BuenamañanaS. NorbyT. BjørheimT.S. SerraJ.M. KjølsethC. Single-step hydrogen production from NH 3, CH 4, and biogas in stacked proton ceramic reactors.Science2022376659139039310.1126/science.abj395135446633
    [Google Scholar]
  2. MaM.Y. YuH.Z. DengL.M. WangL.Q. LiuS.Y. PanH. RenJ.W. MaximovM.Y. HuF. PengS.J. Interfacial engineering of heterostructured carbon-supported molybdenum cobalt sulfides for efficient overall water splitting.Tungsten20235458959710.1007/s42864‑023‑00212‑6
    [Google Scholar]
  3. PengZ. LiS. LiR. SunK. LiJ. LiuY. LiuZ. WangY. GeJ. XiangK. A dynamic structure evolution and reaction pathway over Ni2P for enhancement toward furfural oxidation.Appl. Catal. B202434212345010.1016/j.apcatb.2023.123450
    [Google Scholar]
  4. WangB. ChenH. ZhangW. LiuH. ZhengZ. HuangF. LiuJ. LiuG. YanX. WengY.X. LiH. SheY. ChuP.K. XiaJ. Semimetallic bismuthene with edge-rich dangling bonds: Broad-spectrum-driven and edge-confined electron enhancement boosting CO2 hydrogenation reduction.Adv. Mater.20243619231267610.1002/adma.20231267638290714
    [Google Scholar]
  5. RezaeiM. Nezamzadeh-EjhiehA. MassahA.R. A comprehensive review on the boosted effects of anion vacancy in the photocatalytic solar water splitting: Focus on sulfur vacancy.Energy Fuels20243897637766410.1021/acs.energyfuels.4c00325
    [Google Scholar]
  6. LokeshS. SrivastavaR. Advanced two-dimensional materials for green hydrogen generation: Strategies toward corrosion resistance seawater electrolysis-review and future perspectives.Energy Fuels20223622134171345010.1021/acs.energyfuels.2c02013
    [Google Scholar]
  7. GuanD. WangB. ZhangJ. ShiR. JiaoK. LiL. WangY. XieB. ZhangQ. YuJ. ZhuY. ShaoZ. NiM. Hydrogen society: From present to future.Energy Environ. Sci.202316114926494310.1039/D3EE02695G
    [Google Scholar]
  8. JiangJ. LiF. BaiS. WangY. XiangK. WangH. ZouJ. HsuJ.P. Carbonitride MXene Ti3CN(OH)x@MoS2 hybrids as efficient electrocatalyst for enhanced hydrogen evolution.Nano Res.20231644656466310.1007/s12274‑022‑5112‑x
    [Google Scholar]
  9. SunW. WangY. XiangK. BaiS. WangH. ZouJ. CoP decorated on Ti3C2Tx MXene nanocomposites as robust electrocatalyst for hydrogen evolution reaction.Acta Phys. Chim. Sin.2024402308015
    [Google Scholar]
  10. SenguptaD. MelixP. BoseS. DuncanJ. WangX. MianM.R. KirlikovaliK.O. JoodakiF. IslamogluT. YildirimT. SnurrR.Q. FarhaO.K. Air-stable Cu(I) metal–organic framework for hydrogen storage.J. Am. Chem. Soc.202314537204922050210.1021/jacs.3c0639337672758
    [Google Scholar]
  11. WuL. LiM. ZhouY. HuH. Transition metal oxides as hydrogen evolution electrocatalyst: Scientometric analysis.Curr. Nanosci.202319448449210.2174/1574362417666220513152540
    [Google Scholar]
  12. XiangK. WangY. ZhuangZ. ZouJ. LiN. WangD. ZhaiT. JiangJ. Self-healing of active site in Co(OH)2/MXene electrocatalysts for hydrazine oxidation.J. Mater. Sci. Technol.202420310811710.1016/j.jmst.2024.03.038
    [Google Scholar]
  13. GathmannS.R. BartelC.J. GrabowL.C. AbdelrahmanO.A. FrisbieC.D. DauenhauerP.J. Dynamic promotion of the oxygen evolution reaction via programmable metal oxides.ACS Energy Lett.2024952013202310.1021/acsenergylett.4c00365
    [Google Scholar]
  14. ChengF. LuoH. JenkinsJ.D. LarsonE.D. Impacts of the inflation reduction act on the economics of clean hydrogen and synthetic liquid fuels.Environ. Sci. Technol.20235741153361534710.1021/acs.est.3c0306337647613
    [Google Scholar]
  15. FehrA.M.K. DeutschT.G. TomaF.M. WongM.S. MohiteA.D. Technoeconomic model and pathway to <$2/kg green hydrogen using integrated halide perovskite photoelectrochemical cells.ACS Energy Lett.20238124976498310.1021/acsenergylett.3c01865
    [Google Scholar]
  16. ParkS. LiuL. DemirkırÇ. van der HeijdenO. LohseD. KrugD. KoperM.T.M. Solutal Marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution.Nat. Chem.202315111532154010.1038/s41557‑023‑01294‑y37563325
    [Google Scholar]
  17. XiangK. WuD. DengX. LiM. ChenS. HaoP. GuoX. LuoJ.L. FuX.Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts.Adv. Funct. Mater.20203010190961010.1002/adfm.201909610
    [Google Scholar]
  18. XiangK. SongZ. WuD. DengX. WangX. YouW. PengZ. WangL. LuoJ.L. FuX.Z. Bifunctional Pt–Co 3 O 4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis.J. Mater. Chem. A Mater. Energy Sustain.20219106316632410.1039/D0TA10501E
    [Google Scholar]
  19. SehZ.W. KibsgaardJ. DickensC.F. ChorkendorffI. NørskovJ.K. JaramilloT.F. Combining theory and experiment in electrocatalysis: Insights into materials design.Science20173556321eaad499810.1126/science.aad499828082532
    [Google Scholar]
  20. ChenZ.W. LiJ. OuP. HuangJ.E. WenZ. ChenL. YaoX. CaiG. YangC.C. SinghC.V. JiangQ. Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions.Nat. Commun.202415135910.1038/s41467‑023‑44261‑438191599
    [Google Scholar]
  21. HuC. YueK. HanJ. LiuX. LiuL. LiuQ. KongQ. PaoC.W. HuZ. SuenagaK. SuD. ZhangQ. WangX. TanY. HuangX. Misoriented high-entropy iridium ruthenium oxide for acidic water splitting.Sci. Adv.2023937eadf914410.1126/sciadv.adf914437713495
    [Google Scholar]
  22. NayanaK. SunithaA.P. Analysis of electrocatalytic performance of nanostructured MoS2 in hydrogen evolution reaction.Curr. Nanosci.202319457558810.2174/1573413718666220825163052
    [Google Scholar]
  23. XiangK. GuoJ. XuJ. QuT. ZhangY. ChenS. HaoP. LiM. XieM. GuoX. DingW. Surface sulfurization of NiCo-Layered double hydroxide nanosheets enable superior and durable oxygen evolution electrocatalysis.ACS Appl. Energy Mater.2018184040404910.1021/acsaem.8b00723
    [Google Scholar]
  24. FüngerlingsA. WohlgemuthM. AntipinD. van der MinneE. KiensE.M. VillalobosJ. RischM. GunkelF. PentchevaR. BaeumerC. Crystal-facet-dependent surface transformation dictates the oxygen evolution reaction activity in lanthanum nickelate.Nat. Commun.2023141828410.1038/s41467‑023‑43901‑z38092726
    [Google Scholar]
  25. MagnierL. CossardG. MartinV. PascalC. RocheV. SibertE. ShchedrinaI. BousquetR. ParryV. ChatenetM. Fe–Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media.Nat. Mater.202423225226110.1038/s41563‑023‑01744‑538216724
    [Google Scholar]
  26. WanT.L. LiuJ. TanX. LiuM. SmithS. KouL. Bimetallic conjugated metal–organic frameworks as bifunctional electrocatalysts for overall water splitting.Nanoscale20231523101491015810.1039/D3NR00938F37265391
    [Google Scholar]
  27. XiangK. WuD. FanY. YouW. ZhangD. LuoJ.L. FuX.Z. Enhancing bifunctional electrodes of oxygen vacancy abundant ZnCo2O4 nanosheets for supercapacitor and oxygen evolution.Chem. Eng. J.202142513058310.1016/j.cej.2021.130583
    [Google Scholar]
  28. XiangK. MengL. ZhangY. Two-dimensional FeCo 2 O 4 nanosheets with oxygen vacancies enable boosted oxygen evolution.New J. Chem.20224635170731707910.1039/D2NJ03341K
    [Google Scholar]
  29. WangT. GuoM. ZhangX. CaoY. WuQ. TuJ. ZhangK. Defect-rich NiFeAl-layered double hydroxide nanosheets for efficient electrocatalytic oxygen evolution reaction.ACS Appl. Nano Mater.2023676002601010.1021/acsanm.3c00356
    [Google Scholar]
  30. HalesN. SchmidtT.J. FabbriE. Reversible and irreversible transformations of Ni-based electrocatalysts during the oxygen evolution reaction.Curr. Opin. Electrochem.20233810123110.1016/j.coelec.2023.101231
    [Google Scholar]
  31. BadruzzamanA. YudaA. AshokA. KumarA. Recent advances in cobalt based heterogeneous catalysts for oxygen evolution reaction.Inorg. Chim. Acta202051111985410.1016/j.ica.2020.119854
    [Google Scholar]
  32. AlidustyF. Nezamzadeh-EjhiehA. Considerable decrease in overvoltage of electro-catalytic oxidation of methanol by modification of carbon paste electrode with Cobalt(II)-clinoptilolite nanoparticles.Int. J. Hydrogen Energy201641156288629910.1016/j.ijhydene.2016.02.149
    [Google Scholar]
  33. Sheikh-MohseniM.H. Nezamzadeh-EjhiehA. Modification of carbon paste electrode with Ni-clinoptilolite nanoparticles for electrocatalytic oxidation of methanol.Electrochim. Acta201414757258110.1016/j.electacta.2014.09.123
    [Google Scholar]
  34. HuangM. LiuW. WangL. LiuJ. ChenG. YouW. ZhangJ. YuanL. ZhangX. CheR. Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution.Nano Res.202013381081710.1007/s12274‑020‑2701‑4
    [Google Scholar]
  35. TangJ. RuanQ. YuH. HuangC. Activating Co(OH)2 active sites by coupled with V2O5 to boost highly efficient oxygen evolution reaction.Adv. Sustain. Syst.202375220047310.1002/adsu.202200473
    [Google Scholar]
  36. TangJ. WanW. LiuS. LiW. RuanQ. HuangC. Activating Co sites activity in Co(OH)2 via VN coupling to facilitate highly efficient oxygen evolution reaction.Int. J. Hydrogen Energy20245624224710.1016/j.ijhydene.2023.12.144
    [Google Scholar]
  37. GuoH. ZhangM. GuanY. TangJ. Effect of Fe and Co incorporation on morphology and oxygen evolution reaction performance of β-Co(OH)2: An in situ electrochemical atomic force microscopy investigation.ACS Appl. Energy Mater.20236199875988410.1021/acsaem.3c01258
    [Google Scholar]
  38. KangH. QiaoX. JiaX. WangX. HouG. WuX. QinW. Modulating electronic structure of iridium single-atom anchored on 3D Fe-doped β-Ni(OH)2 catalyst with nanopyramid array structure for enhanced oxygen evolution reaction.Small20242024230970510.1002/smll.20230970538461528
    [Google Scholar]
  39. TangW. ZouJ. LiZ. ZhangX. XieT. LiJ. HeX. TangX. LiuX. ChuW. FaroukA. HamdyM.S. YangY. HuW. SunX. La doping greatly enhances electrochemical alkaline seawater oxidation over Ni(OH)2 nanosheet.Catal. Sci. Technol.2024142717272110.1039/D4CY00353E
    [Google Scholar]
  40. LiuC. ShiX.R. YueK. WangP. ZhanK. WangX. XiaB.Y. YanY. S-species-evoked high-valence Ni2+δ of the evolved β-Ni(OH)2 electrode for selective oxidation of 5-hydroxymethylfurfural.Adv. Mater.20233512221117710.1002/adma.20221117736606317
    [Google Scholar]
  41. MohanaP. SwathiS. YuvakkumarR. RaviG. MethaS.A. Ni(OH)2/Co(OH)2 nanocomposite as electrocatalyst towards water oxidation process.J. Sol-Gel Sci. Technol.202411019010210.1007/s10971‑024‑06341‑9
    [Google Scholar]
  42. ZhangJ. ZhouF. HuangA. WangY. ChuW. LuoW. A copper interface promotes the transformation of nickel hydroxide into high-valent nickel for an efficient oxygen evolution reaction.Inorg. Chem. Front.202310175111511610.1039/D3QI00980G
    [Google Scholar]
  43. HuangZ. Reda WolduA. PengX. ChuP.K. TongQ.X. HuL. Remarkably boosted water oxidation activity and dynamic stability at large-current–density of Ni(OH)2 nanosheet arrays by Fe ion association and underlying mechanism.Chem. Eng. J.202347714715510.1016/j.cej.2023.147155
    [Google Scholar]
  44. LiY. LiuJ. LiS. PengS. Codecoration of phosphate and iron for improving oxygen evolution reaction of layered Ni(OH)2/NiOOH.ACS Catal.20241474807481910.1021/acscatal.4c00229
    [Google Scholar]
  45. ZhaoJ. ChenF.W. ZhaoX.Y. WangX.J. LiY.P. LiF.T. Self-composition of hierarchical core–shell-structured NiCo2O4@NiCo2O4 microspheres with oxygen vacancies for efficient oxygen evolution electrocatalysis.Energy Fuels20233723181111811910.1021/acs.energyfuels.3c02331
    [Google Scholar]
  46. HuZ. DongS. HeQ. ChenZ. YuanD. Synergetic nanostructure engineering and electronic modulation of a 3d hollow heterostructured NiCo2O4@NiFe-LDH self-supporting electrode for rechargeable Zn–Air batteries.Inorg. Chem.202362197471748210.1021/acs.inorgchem.3c0077637125727
    [Google Scholar]
  47. MaN. SongY. HanF. WaterhouseG.I.N. LiY. AiS. Multifunctional NiCoTi catalyst derived from layered double hydroxides for selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran.Catal. Lett.2021151251752510.1007/s10562‑020‑03323‑8
    [Google Scholar]
  48. BoumeriameH. Da SilvaE.S. CherevanA.S. ChafikT. FariaJ.L. EderD. Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting.J. Energy Chem.20226440643110.1016/j.jechem.2021.04.050
    [Google Scholar]
  49. ShenL. WangJ. XuG. LiH. DouH. ZhangX. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors.Adv. Energy Mater.201553140097710.1002/aenm.201400977
    [Google Scholar]
  50. GongY. WangJ. LinY. YangZ. PanH. XuZ. Synthesis of 1D to 3D nanostructured NiCo2S4 on nickel foam and their application in oxygen evolution reaction.Appl. Surf. Sci.201947660060710.1016/j.apsusc.2019.01.100
    [Google Scholar]
  51. XiangK. XuZ. QuT. TianZ. ZhangY. WangY. XieM. GuoX. DingW. GuoX. Two dimensional oxygen-vacancy-rich Co 3 O 4 nanosheets with excellent supercapacitor performances.Chem. Commun.20175392124101241310.1039/C7CC07515D29098229
    [Google Scholar]
  52. HuangT. JiangY. ShenG. ChenD. Recent advances of two-dimensional nanomaterials for electrochemical capacitors.ChemSusChem20201361093111310.1002/cssc.20190326031943844
    [Google Scholar]
  53. JinH. GuoC. LiuX. LiuJ. VasileffA. JiaoY. ZhengY. QiaoS.Z. Emerging two-dimensional nanomaterials for electrocatalysis.Chem. Rev.2018118136337640810.1021/acs.chemrev.7b0068929552883
    [Google Scholar]
  54. WeiL. WuQ. LiJ. Review of NiCo2S4 nanostructures and their composites used in supercapacitors.J. Mater. Sci. Mater. Electron.20213210129661299010.1007/s10854‑021‑05916‑4
    [Google Scholar]
  55. WuY. LiuX. HanD. SongX. ShiL. SongY. NiuS. XieY. CaiJ. WuS. KangJ. ZhouJ. ChenZ. ZhengX. XiaoX. WangG. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis.Nat. Commun.201891142510.1038/s41467‑018‑03858‑w29651037
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137319139240614103935
Loading
/content/journals/cnano/10.2174/0115734137319139240614103935
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test