Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Gouty arthritis, characterized by excruciating pain and discomfort, poses a significant burden on patients. While nanomedicines have shown promise in addressing this ailment, their complicated synthesis processes often involve potentially toxic procedures, contributing to adverse side effects in disease management.

Methods

In this study, we introduce a straightforward and elegant solution by utilizing easily prepared gold platinum (AuPt) nanoparticles for the treatment of gouty arthritis. The synthesis of these nanoparticles involves the use of gold and platinum precursors in conjunction with NaBH4, simplifying the manufacturing process. Experimental models of gout were established in both and settings through lipopolysaccharide and monosodium urate crystal induction.

Results

Our findings revealed that AuPt nanoparticles exhibited potent anti-inflammatory effects against gout. This effect was attributed to their ability to activate the Nrf2/HO-1 pathway, resulting in pain alleviation and the inhibition of inflammation, ultimately leading to the reduction of joint edema. With their uncomplicated synthesis and promising therapeutic potential, these simply prepared AuPt nanoparticles emerge as a compelling candidate for pharmaceutical intervention in the treatment of gouty arthritis.

Conclusion

This approach not only holds the promise of delivering effective relief to patients but also minimizes the risk of unwanted side effects associated with complex nanomedicine synthesis processes.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137294469240702070418
2024-07-15
2025-04-24
Loading full text...

Full text loading...

References

  1. GalozziP. BindoliS. DoriaA. OlivieroF. SfrisoP. Autoinflammatory features in gouty arthritis.J. Clin. Med.2021109188010.3390/jcm1009188033926105
    [Google Scholar]
  2. WangL. HeC. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis.Front. Immunol.20221396719310.3389/fimmu.2022.96719336032081
    [Google Scholar]
  3. LiS. DaiQ. ZhangS. LiuY. YuQ. TanF. LuS. WangQ. ChenJ. HuangH. LiuP. LiM. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway.Acta Pharmacol. Sin.20183981294130410.1038/aps.2017.14329323338
    [Google Scholar]
  4. NaitoY. TakagiT. HigashimuraY. Heme oxygenase-1 and anti-inflammatory M2 macrophages.Arch. Biochem. Biophys.2014564838810.1016/j.abb.2014.09.00525241054
    [Google Scholar]
  5. JhangJ.J. ChengY.T. HoC.Y. YenG.C. Monosodium urate crystals trigger Nrf2- and heme oxygenase-1-dependent inflammation in THP-1 cells.Cell. Mol. Immunol.201512442443410.1038/cmi.2014.6525109682
    [Google Scholar]
  6. LiuY. ZhuH. ZhouW. YeQ. Anti-inflammatory and anti-gouty-arthritic effect of free Ginsenoside Rb1 and nano Ginsenoside Rb1 against MSU induced gouty arthritis in experimental animals.Chem. Biol. Interact.202033210928510.1016/j.cbi.2020.10928533038330
    [Google Scholar]
  7. WangQ. YangQ. CaoX. WeiQ. FirempongC.K. GuoM. ShiF. XuX. DengW. YuJ. Enhanced oral bioavailability and anti-gout activity of [6]-shogaol-loaded solid lipid nanoparticles.Int. J. Pharm.20185501-2243410.1016/j.ijpharm.2018.08.02830125653
    [Google Scholar]
  8. SunJ. ZhuangP. WenS. GeM. ZhouZ. LiD. LiuC. MeiX. Folic acid-modified lysozyme protected gold nanoclusters as an effective anti-inflammatory drug for rapid relief of gout flares in hyperuricemic rats.Mater. Des.202221711064210.1016/j.matdes.2022.110642
    [Google Scholar]
  9. KiyaniM.M. ButtM.A. RehmanH. AliH. HussainS.A. ObaidS. Arif HussainM. MahmoodT. BokhariS.A.I. Antioxidant and anti-gout effects of orally administered zinc oxide nanoparticles in gouty mice.J. Trace Elem. Med. Biol.20195616917710.1016/j.jtemb.2019.08.01231479800
    [Google Scholar]
  10. RodríguezE.P. VentosaA.M. VegaL.G. The physicochemical, biopharmaceutical, and in vitro efficacy properties of freeze-dried dexamethasone-loaded lipomers.Pharmaceutics2021138132210.3390/pharmaceutics130813223445228
    [Google Scholar]
  11. MohammadyM. Freeze-drying of pharmaceutical and nutraceutical nanoparticles: The effects of formulation and technique parameters on nanoparticles characteristics.J. Pharm. Sci.2020109113235324710.1016/j.xphs.2020.07.01532702373
    [Google Scholar]
  12. BorysiukV. LyashenkoI.A. PopovV.L. Thermal stability and melting dynamics of bimetallic au@pt@au core-shell nanoparticles.Sensors20232312547810.3390/s2312547837420645
    [Google Scholar]
  13. LiuH.B. PalU. AscencioJ.A. Thermodynamic stability and melting mechanism of bimetallic au−pt nanoparticles.J. Phys. Chem. C200811249191731917710.1021/jp802804u
    [Google Scholar]
  14. WangW. WangP. ShenF. Turn-on near-infrared phosphorescent recognition of anion based on self-assembly of cyclometalated platinum complexes that induce oncosis and monitor living cells.ACS Nano20241875656567110.1021/acsnano.3c11366
    [Google Scholar]
  15. WangY. SangX. ShaoR. QinH. ChenX. XueZ. LiL. WangY. ZhuY. ChangY. GaoX. ZhangB. ZhangH. YangJ. Xuanfei Baidu Decoction protects against macrophages induced inflammation and pulmonary fibrosis via inhibiting IL-6/STAT3 signaling pathway.J. Ethnopharmacol.202228311470110.1016/j.jep.2021.11470134606948
    [Google Scholar]
  16. ZhangJ.Z. ChenX.Y. WuY.J. Identification of active compounds from Yi nationality herbal formula Wosi influencing COX-2 and VCAM-1 signaling.Front. Pharmacol.20201156858510.3389/fphar.2020.56858533442381
    [Google Scholar]
  17. IllmanS. Hilbert'S fifth problem: Review.J. Math. Sci.200110521843184710.1023/A:1011323915468
    [Google Scholar]
  18. JoostenL.A.B. NeteaM.G. MylonaE. KoendersM.I. MalireddiR.K.S. OostingM. StienstraR. van de VeerdonkF.L. StalenhoefA.F. Giamarellos-BourboulisE.J. KannegantiT.D. van der MeerJ.W.M. Engagement of fatty acids with toll‐like receptor 2 drives interleukin‐1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal–induced gouty arthritis.Arthritis Rheum.201062113237324810.1002/art.2766720662061
    [Google Scholar]
  19. MartinonF. PétrilliV. MayorA. TardivelA. TschoppJ. Gout-associated uric acid crystals activate the NALP3 inflammasome.Nature2006440708123724110.1038/nature0451616407889
    [Google Scholar]
  20. ChenZ. ZhongH. WeiJ. LinS. ZongZ. GongF. HuangX. SunJ. LiP. LinH. WeiB. ChuJ. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis.Arthritis Res. Ther.201921130010.1186/s13075‑019‑2085‑631870428
    [Google Scholar]
  21. Percie du SertN. HurstV. AhluwaliaA. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research.Br. J. Pharmacol.2020177163617362410.1111/bph.1519332662519
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137294469240702070418
Loading
/content/journals/cnano/10.2174/0115734137294469240702070418
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test