Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

It has become essential to look into alternatives that effectively stop bacterial infections due to the exponential rise in antibiotic resistance. The field of nanotechnology has made significant strides in development by surmounting obstacles that have impeded success and advancement in other fields. Nanoparticles (NPs) are the key component in the burgeoning field of nanotechnology.

Objective

leaf extract (CLE) was used as a reducing and capping agent, with silver nitrate (AgNO) solution as a precursor for synthesizing silver nanoparticles (CLE-AgNPs). This study aimed to generate green silver nanoparticles (AgNPs) and assess their antioxidant and antibacterial capacities.

Methods

CLE-AgNPs were characterized utilizing UV–vis spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL). Using the radical scavenging assay 2,2-diphenyl-1-picrylhydrazyl (DPPH), the antioxidant activity of CLE-AgNPs was evaluated. Several assays were employed to examine the antibacterial effect of CLE-AgNPs against various gram-positive and negative bacteria.

Results

Upon analysis, the synthesis revealed 17 nm face-centered cubic CLE-AgNPs (λ= 431 nm). CLE-AgNPs manifested noticeable antioxidant activity and prominent inhibitory effects on the tested bacteria. The minimum inhibitory concentration (MIC) of the CLE-AgNPs was 31.25 µg/mL for the eight bacterial species. Besides, the results revealed that CLE-AgNPs effectively suppressed the development of bacterial biofilms and could eradicate them.

Conclusion

The present investigation introduced as a novel bioresource into green chemistry to produce AgNPs with antibacterial and antioxidant capabilities.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137310446240616164456
2024-07-05
2025-04-24
Loading full text...

Full text loading...

References

  1. KraemerS.A. RamachandranA. PerronG.G. Antibiotic pollution in the environment: From microbial ecology to public policy.Microorganisms20197618010.3390/microorganisms706018031234491
    [Google Scholar]
  2. ValodkarM. ModiS. PalA. ThakoreS. Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: A green approach.Mater. Res. Bull.201146338438910.1016/j.materresbull.2010.12.001
    [Google Scholar]
  3. TyavambizaC. ElbagoryA.M. MadieheA.M. MeyerM. MeyerS. The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from Cotyledon orbiculata Aqueous Extract.Nanomaterials2021115134310.3390/nano1105134334065254
    [Google Scholar]
  4. AhmedB. DwivediS. AbdinM.Z. AzamA. Al-ShaeriM. KhanM.S. SaquibQ. Al-KhedhairyA.A. MusarratJ. Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ Ions, ZnO-Bulk and ZnO-NPs treated Allium cepa roots.Sci. Rep.2017714068510.1038/srep4068528120857
    [Google Scholar]
  5. KaliaV.C. PatelS.K.S. KangY.C. LeeJ.K. Quorum sensing inhibitors as antipathogens: Biotechnological applications.Biotechnol. Adv.2019371689010.1016/j.biotechadv.2018.11.00630471318
    [Google Scholar]
  6. AgidewM.G. Phytochemical analysis of some selected traditional medicinal plants in Ethiopia.Bull. Natl. Res. Cent.20224618710.1186/s42269‑022‑00770‑8
    [Google Scholar]
  7. AygünA. GülbağçaF. NasM.S. AlmaM.H. ÇalımlıM.H. UstaogluB. AltunogluY.C. BaloğluM.C. CellatK. ŞenF. Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: A novel approach in phytonanotechnology.J. Pharm. Biomed. Anal.202017911301210.1016/j.jpba.2019.11301231791838
    [Google Scholar]
  8. SomeS. BulutO. BiswasK. KumarA. RoyA. SenI.K. MandalA. FrancoO.L. İnceİ.A. NeogK. DasS. PradhanS. DuttaS. BhattacharjyaD. SahaS. Das MohapatraP.K. BhuimaliA. UnniB.G. KatiA. MandalA.K. YilmazM.D. OcsoyI. Effect of feed supplementation with biosynthesized silver nanoparticles using leaf extract of Morus indica L. V1 on Bombyx mori L. (Lepidoptera: Bombycidae).Sci. Rep.2019911483910.1038/s41598‑019‑50906‑631619703
    [Google Scholar]
  9. EidA.M. FoudaA. NiedbałaG. HassanS.E.D. SalemS.S. AbdoA.M. F HettaH. ShaheenT.I. Endophytic Streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties.Antibiotics202091011810.3390/antibiotics910064132987922
    [Google Scholar]
  10. SperoniE. CervellatiR. CostaS. Dall’AcquaS. GuerraM.C. PanizzoloC. UtanA. InnocentiG. Analgesic and antiinflammatory activity of Cyclamen repandum S. et S.Phytother. Res.200721768468910.1002/ptr.214517444577
    [Google Scholar]
  11. TuranM. MammadovR. Antioxidant, antimicrobial, cytotoxic, larvicidal and anthelmintic activities and phenolic contents of Cyclamen alpinum.Pharmacol. Pharm.20189410011610.4236/pp.2018.94008
    [Google Scholar]
  12. El HosryL. Di GiorgioC. BirerC. HabibJ. TueniM. BunS.S. HerbetteG. De MeoM. OllivierE. EliasR. In vitro cytotoxic and anticlastogenic activities of saxifragifolin B and cyclamin isolated from Cyclamen persicum and Cyclamen libanoticum.Pharm. Biol.20145291134114010.3109/13880209.2013.87960024649909
    [Google Scholar]
  13. GulR. JanS.U. FaridullahS. SheraniS. JahanN. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to balochistan.ScientificWorldJournal201720171710.1155/2017/587364828386582
    [Google Scholar]
  14. ShresthaP. AdhikariS. LamichhaneB. ShresthaB. Phytochemical screening of the medicinal plants of Nepal.IOSR J. Environ. Sci. Toxicol. Food Technol.2015123192399
    [Google Scholar]
  15. SawantR. GodghateA. Qualitative phytochemical screening of rhizomes of Curcuma Longa Linn. Int. J. Sci. Environ. Technol.20132634641
    [Google Scholar]
  16. DasA.J. KumarR. GoutamS.P. Sunlight irradiation induced synthesis of silver nanoparticles using glycolipid bio-surfactant and exploring the antibacterial activity.J. Bioeng. Biomed. Sci.20166510.4172/2155‑9538.1000208
    [Google Scholar]
  17. ChenA. XiangW. LiuD. LiuC. YangL. Determination of total flavonoids and its antioxidant ability in Houttuynia cordata.J. Mat. Sci. Chem.Eng.20164213113610.4236/msce.2016.42014
    [Google Scholar]
  18. AkintolaA.O. KehindeB.D. AyoolaP.B. AdewoyinA.G. AdedosuO.T. AjayiJ.F. OgunsonaS.B. Antioxidant properties of silver nanoparticles biosynthesized from methanolic leaf extract of Blighia Sapida.IOP Conf. Ser. Mater. Sci. Eng.202080501200410.1088/1757‑899X/805/1/012004
    [Google Scholar]
  19. Haj BloukhS. EdisZ. ShaikhA.A. PathanH.M. A look behind the scenes at COVID-19: National strategies of infection control and their impact on mortality.Int. J. Environ. Res. Public Health20201715561610.3390/ijerph1715561632759816
    [Google Scholar]
  20. SuleimanM. Al-MasriM. Al AliA. ArefD. HusseinA. SaadeddinI. WaradI. Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities.J. Mater. Environ. Sci.201562513518
    [Google Scholar]
  21. ViswanathanS. PalaniyandiT. ShanmugamR. MT. RajendranB.K. SivajiA. Biomedical potential of silver nanoparticles capped with active ingredients of Hypnea valentiae, red algae species.Particul. Sci. Technol.202240668669610.1080/02726351.2021.1992059
    [Google Scholar]
  22. IseppiR. TardugnoR. BrighentiV. BenvenutiS. SabiaC. PellatiF. MessiP. Phytochemical composition and in vitro antimicrobial activity of essential oils from the Lamiaceae Family against Streptococcus agalactiae and Candida albicans Biofilms.Antibiotics20209959210.3390/antibiotics909059232927692
    [Google Scholar]
  23. BhandariS. KhadayatK. PoudelS. ShresthaS. ShresthaR. DevkotaP. KhanalS. MarasiniB.P. Phytochemical analysis of medicinal plants of Nepal and their antibacterial and antibiofilm activities against uropathogenic Escherichia coli. BMC Compl. Med. Therap.202121111610.1186/s12906‑021‑03293‑333836728
    [Google Scholar]
  24. FaroukA. ElbeheryH. EmbabyH. Abdel-azizN.F. Abd El-wahabT. AbouamerW. HusseinH. Phenolics from Nigella sativa L. straw: Characterization and insecticidal activity against Agrotis ipsilon (Hüfnagel).Heliyon2023912e2299510.1016/j.heliyon.2023.e2299538076155
    [Google Scholar]
  25. RispoF. De Negri AtanasioG. DemoriI. CostaG. MarcheseE. Perera-del-RosarioS. Serrano-CandelasE. Palomino-SchätzleinM. PerataE. RobinoF. FerrariP.F. FerrandoS. LetasiovaS. MarkusJ. Zanotti-RussoM. GrasselliE. An extensive review on phenolic compounds and their potential estrogenic properties on skin physiology.Front. Cell Dev. Biol.202411130583510.3389/fcell.2023.130583538250328
    [Google Scholar]
  26. SahaP. TalukdarA.D. NathR. SarkerS.D. NaharL. SahuJ. ChoudhuryM.D. Role of natural phenolics in hepatoprotection: A mechanistic review and analysis of regulatory network of associated genes.Front. Pharmacol.20191050910.3389/fphar.2019.0050931178720
    [Google Scholar]
  27. RakhaA. UmarN. RabailR. ButtM.S. KieliszekM. HassounA. AadilR.M. Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review.Biomed. Pharmacother.202215611394510.1016/j.biopha.2022.11394536411631
    [Google Scholar]
  28. RavishankarD. SalamahM. AkimbaevA. WilliamsH.F. AlbadawiD.A.I. VaiyapuriR. GrecoF. OsbornH.M.I. VaiyapuriS. Impact of specific functional groups in flavonoids on the modulation of platelet activation.Sci. Rep.201881952810.1038/s41598‑018‑27809‑z29934595
    [Google Scholar]
  29. KhanI. SharmaA. Major nanoparticles classifications and its applications.Adv. Appl. Math. Sci.2022211268876893
    [Google Scholar]
  30. DikkalaP.K. KakarlapudiJ. RokallaP. VedantamS.K. KaurA. KaurK. SharmaM. SridharK. Computational screening of phytochemicals for anti-diabetic drug discovery.Phytochem. Comput. Tool. Datab. Drug. Disc.2023305311Available from: https://doi.org/https://doi.org/10.1016/B978-0-323-90593-0.00009-5
    [Google Scholar]
  31. Ndezo BissoB. Njikang Epie NkwelleR. Tchuenguem TchuenteuR. DzoyemJ.P. Phytochemical screening, antioxidant, and antimicrobial activities of seven underinvestigated medicinal plants against microbial pathogens.Adv. Pharmacol. Pharm. Sci.202220221810.1155/2022/199880836263083
    [Google Scholar]
  32. GoelS. PariharP. MeshramV. Plant-derived quinones as a source of antibacterial and anticancer agents.Biological Natural Products in Drug DiscoverySpringerSingapore2020245279
    [Google Scholar]
  33. SharmaM. TandonS. AggarwalV. BhatK. KappadiD. ChandrashekharP. DorwalR. Evaluation of antibacterial activity of Calotropis gigentica against Streptococcus mutans and Lactobacillus acidophilus: An in vitro comparative study.J. Conserv. Dent.201518645746010.4103/0972‑0707.16880926752839
    [Google Scholar]
  34. ThatyanaM. DubeN.P. KemboiD. ManicumA.L.E. Mokgalaka-FleischmannN.S. TembuJ.V. Advances in phytonanotechnology: A plant-mediated green synthesis of metal nanoparticles using phyllanthus plant extracts and their antimicrobial and anticancer applications.Nanomaterials20231319261610.3390/nano1319261637836257
    [Google Scholar]
  35. SoltaniL. DarbemamiehM. Biosynthesis of silver nanoparticles using hydroethanolic extract of Cucurbita pepo L. fruit and their anti-proliferative and apoptotic activity against breast cancer cell line (MCF-7).Multidisciplinary Cancer Investigation20215311010.30699/mci.5.3.525‑1
    [Google Scholar]
  36. VijayabharathiR. SathyaA. GopalakrishnanS. Extracellular biosynthesis of silver nanoparticles using streptomyces griseoplanus SAI-25 and its antifungal activity against macrophomina phaseolina, the charcoal rot pathogen of sorghum.Biocatalysis and agricultural biotechnology.Elsevier Ltd2018166171Available from: https://doi.org/https://doi.org/10.1016/j.bcab.2018.03.006
    [Google Scholar]
  37. DiantoroM. FitrianingsihR. MuftiN. FuadA. Synthesis of silver nanoparticles by chemical reduction at various fraction of MSA and their structure characterization.AIP Conf. Proc.2014158925726110.1063/1.4868795
    [Google Scholar]
  38. AkterM. RahmanM.M. UllahA.K.M.A. SikderM.T. HosokawaT. SaitoT. KurasakiM. Brassica rapa var. japonica leaf extract mediated green synthesis of crystalline silver nanoparticles and evaluation of their stability, cytotoxicity and antibacterial activity.J. Inorg. Organomet. Polym. Mater.20182841483149310.1007/s10904‑018‑0818‑7
    [Google Scholar]
  39. HaroonM. ZaidiA. AhmedB. RizviA. KhanM.S. MusarratJ. Effective inhibition of phytopathogenic microbes by eco-friendly leaf extract mediated silver nanoparticles (AgNPs).Indian J. Microbiol.201959327328710.1007/s12088‑019‑00801‑531388204
    [Google Scholar]
  40. HachemZ. KashmarR. AbdallahA.M. AwadR. KhalilM.I. Characterization, antioxidant, antibacterial, and antibiofilm properties of biosynthesized Ag/AgCl nanoparticles using Origanum ehrenbergii Boiss.Resul. Mat.202421100550Available from: https://doi.org/https://doi.org/10.1016/j.rinma.2024.100550
    [Google Scholar]
  41. BindhuM.R. UmadeviM. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles.Spectrochim. Acta A Mol. Biomol. Spectrosc.201412159660410.1016/j.saa.2013.11.01924291437
    [Google Scholar]
  42. ZhangZ. ZhangX. XinZ. DengM. WenY. SongY. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.Nanotechnology2011224242560110.1088/0957‑4484/22/42/42560121937786
    [Google Scholar]
  43. JainD. MamtaniK. GustinV. GunduzS. CelikG. WaluyoI. HuntA. CoA.C. OzkanU.S. Enhancement in oxygen reduction reaction activity of nitrogen‐doped carbon nanostructures in acidic media through chloride‐ion exposure.ChemElectroChem20185141966197510.1002/celc.201800134
    [Google Scholar]
  44. ZhangG. XiaoY. YinQ. YanJ. ZangC. ZhangH. In Situ synthesis of silver nanoparticles on amino-grafted polyacrylonitrile fiber and its antibacterial activity.Nanoscale Res. Lett.20211613610.1186/s11671‑021‑03496‑033591425
    [Google Scholar]
  45. KrishnanP. LiuM. IttyP.A. LiuZ. RheinheimerV. ZhangM.H. MonteiroP.J.M. YuL.E. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy.Sci. Rep.2017714329810.1038/srep4329828240300
    [Google Scholar]
  46. AraujoJ.R. ArchanjoB.S. de SouzaK.R. KwapinskiW. FalcãoN.P.S. NovotnyE.H. AcheteC.A. Selective extraction of humic acids from an anthropogenic Amazonian dark earth and from a chemically oxidized charcoal.Biol. Fertil. Soils20145081223123210.1007/s00374‑014‑0940‑9
    [Google Scholar]
  47. SorbiunM. Shayegan MehrE. RamazaniA. Taghavi FardoodS. Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye.J. Mater. Sci. Mater. Electron.20182942806281410.1007/s10854‑017‑8209‑3
    [Google Scholar]
  48. JyotiK. BaunthiyalM. SinghA. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics.J. Radiat. Res. Appl. Sci.20169321722710.1016/j.jrras.2015.10.002
    [Google Scholar]
  49. ShreemaK. MathammalR. KalaiselviV. VijayakumarS. SelvakumarK. SenthilK. Green synthesis of silver doped zinc oxide nanoparticles using fresh leaf extract Morinda citrifoliaand its antioxidant potential.Mater. Today Proc.2021472126213110.1016/j.matpr.2021.04.627
    [Google Scholar]
  50. MihályJ. DeákR. SzigyártóI.C. BótaA. Beke-SomfaiT. VargaZ. Characterization of extracellular vesicles by IR spectroscopy: Fast and simple classification based on amide and C H stretching vibrations.Biochim. Biophys. Acta Biomembr.20171859345946610.1016/j.bbamem.2016.12.00527989744
    [Google Scholar]
  51. PanamgamaL.A. PeramuneP.R.U.S.K. Extraction and modification of lignin biopolymer.2017 Moratuwa Engineering Research Conference (MERCon),Moratuwa, Sri Lanka 2017131610.1109/MERCon.2017.7980448
    [Google Scholar]
  52. SjahfirdiL. NasikinM. Protein identification using fourier transform infrared.Int. J. Res. Rev. Appl. Sci.2012103418421
    [Google Scholar]
  53. FayazM. TiwaryC.S. KalaichelvanP.T. VenkatesanR. Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf. B Biointerfaces201075117517810.1016/j.colsurfb.2009.08.02819783414
    [Google Scholar]
  54. LeungY.H. ChenX.Y. NgA.M.C. GuoM.Y. LiuF.Z. DjurišićA.B. ChanW.K. ShiX.Q. Van HoveM.A. Green emission in ZnO nanostructures—Examination of the roles of oxygen and zinc vacancies.Appl. Surf. Sci.201327120220910.1016/j.apsusc.2013.01.160
    [Google Scholar]
  55. PramanikS. MondalS. MandalA.C. MukherjeeS. DasS. GhoshT. NathR. GhoshM. KuiriP.K. Role of oxygen vacancies on the green photoluminescence of microwave-assisted grown ZnO nanorods.J. Alloys Compd.202084915668410.1016/j.jallcom.2020.156684
    [Google Scholar]
  56. BenedecD. OnigaI. CuibusF. SevastreB. StiufiucG. DumaM. HanganuD. IacovitaC. StiufiucR. LucaciuC.M. Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties.Int. J. Nanomedicine2018131041105810.2147/IJN.S14981929503540
    [Google Scholar]
  57. FrickmannH. ZautnerA.E. MoterA. KikhneyJ. HagenR.M. StenderH. PoppertS. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: A review.Crit. Rev. Microbiol.201743326329310.3109/1040841X.2016.116999028129707
    [Google Scholar]
  58. TavanM. HanachiP. MirjaliliM.H. Dashtbani-RoozbehaniA. Comparative assessment of the biological activity of the green synthesized silver nanoparticles and aqueous leaf extract of Perilla frutescens (L.).Sci. Rep.2023131639110.1038/s41598‑023‑33625‑x37076588
    [Google Scholar]
  59. ChahardoliA. KarimiN. FattahiA. Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy.Adv. Powder Technol.201829120221010.1016/j.apt.2017.11.003
    [Google Scholar]
  60. LiuY-S. ChangY-C. ChenH-H. Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants.Yao Wu Shi Pin Fen Xi201826264965629567234
    [Google Scholar]
  61. ThirumalS. In vitro antioxidant, total phenolic, total flavonoid content and biosynthesis of silver nanoparticles using cassia auriculata leaves extracts using cassia auriculata leaves extracts.Int. J. Bot. Stud.202163476480
    [Google Scholar]
  62. PhullA-R. AbbasQ. AliA. RazaH. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata.Fut. J. Pharmac. Sci.2016213136Available from: https://doi.org/https://doi.org/10.1016/j.fjps.2016.03.001
    [Google Scholar]
  63. LiaqatN. JahanN. Khalil-ur-Rahman AnwarT. QureshiH. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay.Front Chem.20221095200610.3389/fchem.2022.95200636105303
    [Google Scholar]
  64. LuoQ. SuW. LiH. XiongJ. WangW. YangW. DuJ. Antibacterial activity and catalytic activity of biosynthesised silver nanoparticles by flavonoids from petals of Lilium Casa Blanca. Micro \&.Nano Lett.2018136824828Available from: https://doi.org/https://doi.org/10.1049/mnl.2018.0055
    [Google Scholar]
  65. LogaranjanK. RaizaA.J. GopinathS.C.B. ChenY. PandianK. Shape and size-controlled synthesis of silver nanoparticles using aloe vera plant extract and their antimicrobial activity.Nanoscale Res. Lett.201611152010.1186/s11671‑016‑1725‑x27885623
    [Google Scholar]
  66. ChaudharyP. JanmedaP. DoceaA.O. YeskaliyevaB. Abdull RazisA.F. ModuB. CalinaD. Sharifi-RadJ. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases.Front Chem.202311115819810.3389/fchem.2023.115819837234200
    [Google Scholar]
  67. Abdel-AzizM.S. ShaheenM.S. El-NekeetyA.A. Abdel-WahhabM.A. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract.J. Saudi Chem. Soc.201418435636310.1016/j.jscs.2013.09.011
    [Google Scholar]
  68. ThirumalS. Phytochemical screening and GC-MS Analysis of bioactive compounds and biosynthesis of silver nanoparticles using sprout extracts of VIGNA RADIATA L. and their antioxidant and antibacterial activity.Asian J. Pharm. Clin. Res.201812218018410.22159/ajpcr.2019.v12i2.29253
    [Google Scholar]
  69. SalariS. Esmaeilzadeh BahabadiS. Samzadeh-KermaniA. YosefzaeiF. In-vitro evaluation of antioxidant and antibacterial potential of greensynthesized silver nanoparticles using Prosopis farcta fruit extract.Iran. J. Pharm. Res.201918143045531089378
    [Google Scholar]
  70. OnuohaP.N. OganeziN.C. OkoronkwoC.U. NkirukaU.L. OnwualuP.A. Comparison of antioxidant activities of silver nanoparticles and methanol extracts of three indigenous nigeria herbal seeds.Food Nutr. Sci.202213770271910.4236/fns.2022.137051
    [Google Scholar]
  71. ParvekarP. PalaskarJ. MetgudS. MariaR. DuttaS. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus.Biomat. Invest. Dent.20207110510910.1080/26415275.2020.179667432939454
    [Google Scholar]
  72. MiriA. DoraniN. DarroudiM. SaraniM. Green synthesis of silver nanoparticles using Salvadora persica L. and its antibacterial activity.Cell. Mol. Biol.2016629465010.14715/cmb/2016.62.9.827585261
    [Google Scholar]
  73. ErdemB. DayangaçA. KırayE. DuyguD. Biosynthesis of silver nanoparticles from Aeromonas sobria and antibacterial activity against fish pathogens.Int. J. Environ. Sci. Technol.20191695125513010.1007/s13762‑018‑1944‑z
    [Google Scholar]
  74. AlshareefA. LairdK. CrossR.B.M. Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium.Appl. Surf. Sci.201742431031510.1016/j.apsusc.2017.03.176
    [Google Scholar]
  75. El-RafieM.H. AhmedH.B. ZahranM.K. Characterization of nanosilver coated cotton fabrics and evaluation of its antibacterial efficacy.Carbohydr. Polym.201410717418110.1016/j.carbpol.2014.02.02424702933
    [Google Scholar]
  76. NoronhaV.T. PaulaA.J. DuránG. GalembeckA. Cogo-MüllerK. Franz-MontanM. DuránN. Silver nanoparticles in dentistry.Dent. Mater.201733101110112610.1016/j.dental.2017.07.00228779891
    [Google Scholar]
  77. CorrêaJ.M. MoriM. SanchesH.L. CruzA.D. PoiateE.Jr PoiateI.A.V.P. Silver nanoparticles in dental biomaterials.Int. J. Biomater.201520151910.1155/2015/48527525667594
    [Google Scholar]
  78. ChengL. WeirM.D. XuH.H.K. AntonucciJ.M. KraigsleyA.M. LinN.J. Lin-GibsonS. ZhouX. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles.Dent. Mater.201228556157210.1016/j.dental.2012.01.00522305716
    [Google Scholar]
  79. LiF. WeirM.D. ChenJ. XuH.H.K. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity.Dent. Mater.201329445046110.1016/j.dental.2013.01.01223428077
    [Google Scholar]
  80. Abeer MohammedA.B. Abd ElhamidM.M. KhalilM.K.M. AliA.S. AbbasR.N. The potential activity of biosynthesized silver nanoparticles of Pseudomonas aeruginosa as an antibacterial agent against multidrug-resistant isolates from intensive care unit and anticancer agent.Environ. Sci. Eur.202234110910.1186/s12302‑022‑00684‑2
    [Google Scholar]
  81. KaviyaS. SanthanalakshmiJ. ViswanathanB. MuthumaryJ. SrinivasanK. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity.Spectroch. Acta. Part A: Molec. Biomolec. Spectros.2011793594598Available from: https://doi.org/https://doi.org/10.1016/j.saa.2011.03.040
    [Google Scholar]
  82. AlyousefA.A. ArshadM. AlAkeelR. AlqasimA. Biogenic silver nanoparticles by Myrtus communis plant extract: Biosynthesis, characterization and antibacterial activity.Biotechnol. Biotechnol. Equip.201933193193610.1080/13102818.2019.1629840
    [Google Scholar]
  83. NaqviQ.A. KanwalA. QaseemS. NaeemM. AliS.R. ShaffiqueM. MaqboolM. Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles.J. Biol. Phys.201945214715910.1007/s10867‑019‑9520‑430721424
    [Google Scholar]
  84. MenichettiA. Mavridi-PrinteziA. MordiniD. MontaltiM. Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles.J. Funct. Biomater.202314524410.3390/jfb1405024437233354
    [Google Scholar]
  85. SwidanN.S. HashemY.A. ElkhatibW.F. YassienM.A. Antibiofilm activity of green synthesized silver nanoparticles against biofilm associated enterococcal urinary pathogens.Sci. Rep.2022121386910.1038/s41598‑022‑07831‑y35264654
    [Google Scholar]
  86. Rodríguez-SerranoC. Guzmán-MorenoJ. Ángeles-ChávezC. Rodríguez-GonzálezV. Ortega-SigalaJ.J. Ramírez-SantoyoR.M. Vidales-RodríguezL.E. Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms.PLoS One2020153e023027510.1371/journal.pone.023027532163495
    [Google Scholar]
  87. Verduzco-ChaviraK. Vallejo-CardonaA.A. González-GaribayA.S. Torres-GonzálezO.R. Sánchez-HernándezI.M. Flores-FernándezJ.M. Padilla-CamberosE. Antibacterial and antibiofilm activity of chemically and biologically synthesized silver nanoparticles.Antibiotics2023127108410.3390/antibiotics1207108437508180
    [Google Scholar]
  88. SheikhS. TaleV. Green synthesis of silver nanoparticles : Its effect on quorum sensing inhibition of urinary tract infection pathogens.Asian J. Pharm. Clin. Res.2017105485110.22159/ajpcr.2017.v10i5.16949
    [Google Scholar]
  89. QingY. ChengL. LiR. LiuG. ZhangY. TangX. WangJ. LiuH. QinY. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies.Int. J. Nanomedicine2018133311332710.2147/IJN.S16512529892194
    [Google Scholar]
  90. YinI.X. ZhangJ. ZhaoI.S. MeiM.L. LiQ. ChuC.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry.Int. J. Nanomedicine2020152555256210.2147/IJN.S24676432368040
    [Google Scholar]
  91. HamidaR.S. AliM.A. GodaD.A. KhalilM.I. Al-ZabanM.I. Novel biogenic silver nanoparticle-induced reactive oxygen species inhibit the biofilm formation and virulence activities of methicillin-resistant Staphylococcus aureus (MRSA) strain.Front. Bioeng. Biotechnol.20208May43310.3389/fbioe.2020.0043332548095
    [Google Scholar]
  92. LiaoC. LiY. TjongS. Bactericidal and cytotoxic properties of silver nanoparticles.Int. J. Mol. Sci.201920244910.3390/ijms2002044930669621
    [Google Scholar]
  93. IbrahimS. AhmadZ. ManzoorM.Z. MujahidM. FaheemZ. AdnanA. Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential.Sci. Rep.202111177010.1038/s41598‑020‑80805‑033436966
    [Google Scholar]
  94. KuppusamyP. YusoffM.M. ManiamG.P. GovindanN. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications : An updated report.Saudi Pharm. J.201624447348410.1016/j.jsps.2014.11.01327330378
    [Google Scholar]
  95. HannaA.L. HamoudaH.M. GodaH.A. SadikM.W. MoghanmF.S. GhoneimA.M. AleneziM.A. AlnomasyS.F. AlamP. ElsayedT.R. Biosynthesis and characterization of silver nanoparticles produced by Phormidium ambiguum and Desertifilum tharense cyanobacteria.Bioinorg. Chem. Appl.2022202211410.1155/2022/907250835265106
    [Google Scholar]
  96. Hujjatul IslamM. PaulM.T.Y. BurheimO.S. PolletB.G. Recent developments in the sonoelectrochemical synthesis of nanomaterials.Ultrason. Sonochem.20195910471110.1016/j.ultsonch.2019.10471131421622
    [Google Scholar]
  97. ChouhanN. Silver nanoparticles : Fabrication, characterization and applicationsintechopen2018128810.5772/intechopen.75611
    [Google Scholar]
  98. KhanS. ZahoorM. Sher KhanR. IkramM. IslamN.U. The impact of silver nanoparticles on the growth of plants: The agriculture applications.Heliyon202396e1692810.1016/j.heliyon.2023.e1692837346326
    [Google Scholar]
  99. SriramM.I. KalishwaralalK. GurunathanS. Biosynthesis of silver and gold nanoparticles using Bacillus licheniformis.Methods Mol. Biol.2012906334310.1007/978‑1‑61779‑953‑2_322791422
    [Google Scholar]
  100. GhorbaniH.R. Biosynthesis of silver nanoparticles using Salmonella typhirium.J. Nanostructure Chem.2013312910.1186/2193‑8865‑3‑29
    [Google Scholar]
  101. KanmaniP. LimS.T. Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens.Process Biochem.20134871099110610.1016/j.procbio.2013.05.011
    [Google Scholar]
  102. Soltani NejadM. KhatamiM. Shahidi BonjarG. Streptomyces somaliensis mediated green synthesis of silver nanoparticles.Nanomed. J.201522321722210.7508/nmj.2015.03.007
    [Google Scholar]
  103. ManimaranM. KannabiranK. Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: Progress and challenges.Lett. Appl. Microbiol.201764640140810.1111/lam.1273028267874
    [Google Scholar]
  104. AbdeenS. GeoS. SukanyaS. PraseethaP.K. DhanyaR.P. Biosynthesis of silver nanoparticles from actinomycetes for therapeutic applications.Int. J. Nanodimens.20145215516210.7508/ijnd.2014.02.008
    [Google Scholar]
  105. KorbekandiH. MohseniS. Mardani JouneghaniR. PourhosseinM. IravaniS. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.Artif. Cells Nanomed. Biotechnol.201644123523910.3109/21691401.2014.93787025101816
    [Google Scholar]
  106. MouratoA. GadanhoM. LinoA.R. TenreiroR. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts.Bioinorg. Chem. Appl.201120111810.1155/2011/54607421912532
    [Google Scholar]
  107. RajeshkumarS. MalarkodiC. PaulkumarK. VanajaM. GnanajobithaG. AnnaduraiG. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens.Int. J. Met.201420141810.1155/2014/692643
    [Google Scholar]
  108. KathiravenT. SundaramanickamA. ShanmugamN. BalasubramanianT. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens.Appl. Nanosci.20155449950410.1007/s13204‑014‑0341‑2
    [Google Scholar]
  109. AdebayoE.A. AzeezM.A. AlaoM.B. OkeA.M. AinaD.A. Fungi as veritable tool in current advances in nanobiotechnology.Heliyon2021711e0848010.1016/j.heliyon.2021.e0848034901509
    [Google Scholar]
  110. VelusamyP. KumarG.V. JeyanthiV. DasJ. PachaiappanR. Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application.Toxicol. Res.20163229510210.5487/TR.2016.32.2.09527123159
    [Google Scholar]
  111. ZielonkaA. Klimek-OchabM. Fungal synthesis of size-defined nanoparticles.Adv. Nat. Sci.Nanosci. Nanotechnol.20178404300110.1088/2043‑6254/aa84d4
    [Google Scholar]
  112. RoyN. GaurA. JainA. BhattacharyaS. RaniV. Green synthesis of silver nanoparticles: An approach to overcome toxicity.Environ. Toxicol. Pharmacol.201336380781210.1016/j.etap.2013.07.00523958974
    [Google Scholar]
  113. MubayiA. ChatterjiS. RaiP.M. WatalG. Evidence based green synthesis of nanoparticles.Adv. Mater. Lett.20123651952510.5185/amlett.2012.icnano.353
    [Google Scholar]
  114. VanajaM. AnnaduraiG. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity.Appl. Nanosci.20133321722310.1007/s13204‑012‑0121‑9
    [Google Scholar]
  115. KhatamiM. PourseyediS. KhatamiM. HamidiH. ZaeifiM. SoltaniL. Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity.Bioresour. Bioprocess.2015211910.1186/s40643‑015‑0043‑y
    [Google Scholar]
  116. LogeswariP. SilambarasanS. AbrahamJ. Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties.Sci. Iran.201320310491054Available from: https://doi.org/https://doi.org/10.1016/j.scient.2013.05.016
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137310446240616164456
Loading
/content/journals/cnano/10.2174/0115734137310446240616164456
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test