Skip to content
2000
image of Transforming Biologics Delivery through Microneedles

Abstract

This review explores the potential of microneedles (MNs) in enhancing the delivery of biologics vital for treating conditions, including infectious diseases, cancer, and autoimmune disorders. The COVID-19 pandemic has amplified the demand for biologics, prompting research and development. The global biologics market is expected to grow substantially due to the rise of personalized medicine. Large, complex molecules, including proteins, peptides, and vaccines, are known as biologics, and a potential technique for their delivery is microneedles. MNs come in various forms: solid, hollow, coated, dissolvable, and hydrogel MNs. Traditional drug delivery methods have limitations, while transdermal drug delivery Microneedles offers a promising alternative. Microneedles painlessly penetrate the skin's barrier, forming temporary microchannels for effective medication administration. This minimally invasive, self-administered technique increases patient comfort and compliance and eliminates the complications of oral medications and injections, indicating a bright future for biologic drug administration. Microneedles hold the promise to reshape healthcare delivery by facilitating broader access to vaccines, insulin, and other crucial biologics.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137317813241014113421
2024-10-25
2024-12-28
Loading full text...

Full text loading...

References

  1. Baumgart D.C. Misery L. Naeyaert S. Taylor P.C. Biological therapies in immune-mediated inflammatory diseases: Can biosimilars reduce access inequities? Front. Pharmacol. 2019 10 279 [http://dx.doi.org/10.3389/fphar.2019.00279]. [PMID: 30983996].
    [Google Scholar]
  2. Plichta J. Kuna P. Panek M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: Recent developments and future perspectives. Front. Immunol. 2023 14 1207641 [http://dx.doi.org/10.3389/fimmu.2023.1207641]. [PMID: 37334374].
    [Google Scholar]
  3. Hilpert K. Peptides in COVID-19 clinical trials — A snapshot. Biologics 2021 1 3 300 311 [http://dx.doi.org/10.3390/biologics1030018].
    [Google Scholar]
  4. Karadeniz Saygılı S. Szymanowska A. Lopez-Berestein G. Rodriguez-Aguayo C. Amero P. Aptamers as insights for targeting SARS-CoV-2. Biologics 2023 3 2 116 137 [http://dx.doi.org/10.3390/biologics3020007].
    [Google Scholar]
  5. Chavda V. Hossain M. Beladiya J. Apostolopoulos V. Nucleic acid vaccines for COVID-19: A paradigm shift in the vaccine development arena. Biologics 2021 1 3 337 356 [http://dx.doi.org/10.3390/biologics1030020].
    [Google Scholar]
  6. https://www.grandviewresearch.com/industry-analysis/biologics-market
  7. Sully R.E. Moore C.J. Garelick H. Loizidou E. Podoleanu A.G. Gubala V. Nanomedicines and microneedles: A guide to their analysis and application. Anal. Methods 2021 13 30 3326 3347 [http://dx.doi.org/10.1039/D1AY00954K]. [PMID: 34313266].
    [Google Scholar]
  8. Wen H. Jung H. Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J. 2015 17 6 1327 1340 [http://dx.doi.org/10.1208/s12248-015-9814-9]. [PMID: 26276218].
    [Google Scholar]
  9. Ramadon D. McCrudden M.T.C. Courtenay A.J. Donnelly R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res. 2022 12 4 758 791 [http://dx.doi.org/10.1007/s13346-021-00909-6]. [PMID: 33474709].
    [Google Scholar]
  10. Alqahtani M.S. Kazi M. Alsenaidy M.A. Ahmad M.Z. Advances in oral drug delivery. Front. Pharmacol. 2021 12 618411 [http://dx.doi.org/10.3389/fphar.2021.618411]. [PMID: 33679401].
    [Google Scholar]
  11. Kulkarni D. Damiri F. Rojekar S. Zehravi M. Ramproshad S. Dhoke D. Musale S. Mulani A.A. Modak P. Paradhi R. Recent advancements in microneedle technology for multifaceted biomedical applications. Pharmaceutics 2022 14 5 1097 [http://dx.doi.org/10.3390/pharmaceutics14051097]. [PMID: 35631683].
    [Google Scholar]
  12. Bariya S.H. Gohel M.C. Mehta T.A. Sharma O.P. Microneedles: An emerging transdermal drug delivery system. J. Pharm. Pharmacol. 2011 64 1 11 29 [http://dx.doi.org/10.1111/j.2042-7158.2011.01369.x]. [PMID: 22150668].
    [Google Scholar]
  13. Zhao Z. Chen Y. Shi Y. Microneedles: A potential strategy in transdermal delivery and application in the management of psoriasis. RSC Advances 2020 10 24 14040 14049 [http://dx.doi.org/10.1039/D0RA00735H]. [PMID: 35498446].
    [Google Scholar]
  14. 2023 https://www.cdc.gov/childrensmentalhealth/features/needle-fears-and-phobia.html#print
  15. Alsbrooks K. Hoerauf K. Prevalence, causes, impacts, and management of needle phobia: An international survey of a general adult population. PLoS One 2022 17 11 e0276814 [http://dx.doi.org/10.1371/journal.pone.0276814]. [PMID: 36409734].
    [Google Scholar]
  16. Aldawood F.K. Andar A. Desai S. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers (Basel) 2021 13 16 2815 [http://dx.doi.org/10.3390/polym13162815]. [PMID: 34451353].
    [Google Scholar]
  17. Waghule T. Singhvi G. Dubey S.K. Pandey M.M. Gupta G. Singh M. Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019 109 1249 1258 [http://dx.doi.org/10.1016/j.biopha.2018.10.078]. [PMID: 30551375].
    [Google Scholar]
  18. Jung J.H. Jin S.G. Microneedle for transdermal drug delivery: Current trends and fabrication. J. Pharm. Investig. 2021 51 5 503 517 [http://dx.doi.org/10.1007/s40005-021-00512-4]. [PMID: 33686358].
    [Google Scholar]
  19. Zheng M. Sheng T. Yu J. Gu Z. Xu C. Microneedle biomedical devices.
    [Google Scholar]
  20. Zhao M. Zhou M. Gao P. Zheng X. Yu W. Wang Z. Li J. Zhang J. AgNPs/nGOx/Apra nanocomposites for synergistic antimicrobial therapy and scarless skin recovery. J. Mater. Chem. B Mater. Biol. Med. 2022 10 9 1393 1402 [http://dx.doi.org/10.1039/D1TB01991K]. [PMID: 35132982].
    [Google Scholar]
  21. Bhatnagar S. Bankar N.G. Kulkarni M.V. Venuganti V.V.K. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. Int. J. Pharm. 2019 556 263 275 [http://dx.doi.org/10.1016/j.ijpharm.2018.12.022]. [PMID: 30557681].
    [Google Scholar]
  22. Avcil M. Çelik A. Microneedles in drug delivery: Progress and challenges. Micromachines (Basel) 2021 12 11 1321 [http://dx.doi.org/10.3390/mi12111321]. [PMID: 34832733].
    [Google Scholar]
  23. Chambers R. Microdissection studies, III. Some problems in the maturation and fertilization of the echinoderm egg. Biol. Bull. 1921 41 6 318 350 [http://dx.doi.org/10.2307/1536756].
    [Google Scholar]
  24. Chambers R. Some physical properties of the cell nucleus. Science 1914 40 1040 824 827 [http://dx.doi.org/10.1126/science.40.1040.824]. [PMID: 17829007].
    [Google Scholar]
  25. Gerstel M.S. Place V.A. 1976
  26. Henry S. McAllister D.V. Allen M.G. Prausnitz M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 1998 87 8 922 925 [http://dx.doi.org/10.1021/js980042+]. [PMID: 9687334].
    [Google Scholar]
  27. Mikszta J.A. Alarcon J.B. Brittingham J.M. Sutter D.E. Pettis R.J. Harvey N.G. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 2002 8 4 415 419 [http://dx.doi.org/10.1038/nm0402-415]. [PMID: 11927950].
    [Google Scholar]
  28. McAllister D.V. Wang P.M. Davis S.P. Park J.H. Canatella P.J. Allen M.G. Prausnitz M.R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proc. Natl. Acad. Sci. USA 2003 100 24 13755 13760 [http://dx.doi.org/10.1073/pnas.2331316100]. [PMID: 14623977].
    [Google Scholar]
  29. Miyano T. Tobinaga Y. Kanno T. Matsuzaki Y. Takeda H. Wakui M. Hanada K. Sugar micro needles as transdermic drug delivery system. Biomed. Microdevices 2005 7 3 185 188 [http://dx.doi.org/10.1007/s10544-005-3024-7]. [PMID: 16133805].
    [Google Scholar]
  30. Wang P.M. Cornwell M. Prausnitz M.R. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Ther. 2005 7 1 131 141 [http://dx.doi.org/10.1089/dia.2005.7.131]. [PMID: 15738711].
    [Google Scholar]
  31. Fernandes D. Minimally invasive percutaneous collagen induction. Oral Maxillofac. Surg. Clin. North Am. 2005 17 1 51 63 [vi.].
    [Google Scholar]
  32. Mukerjee E.V. Collins S.D. Isseroff R.R. Smith R.L. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens. Actuators A Phys. 2004 114 2-3 267 275 [http://dx.doi.org/10.1016/j.sna.2003.11.008].
    [Google Scholar]
  33. Donnelly R.F. Morrow D.I.J. McCarron P.A. Woolfson A.D. Morrissey A. Juzenas P. Juzeniene A. Iani V. McCarthy H.O. Moan J. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: Potential for enhanced topical photodynamic therapy. J. Control. Release 2008 129 3 154 162 [http://dx.doi.org/10.1016/j.jconrel.2008.05.002]. [PMID: 18556084].
    [Google Scholar]
  34. Donnelly R.F. Morrow D.I.J. McCarron P.A. David Woolfson A. Morrissey A. Juzenas P. Juzeniene A. Iani V. McCarthy H.O. Moan J. Microneedle arrays permit enhanced intradermal delivery of a preformed photosensitizer. Photochem. Photobiol. 2009 85 1 195 204 [http://dx.doi.org/10.1111/j.1751-1097.2008.00417.x]. [PMID: 18764907].
    [Google Scholar]
  35. Bhatnagar S. Dave K. Venuganti V.V.K. Microneedles in the clinic. J. Control. Release 2017 260 164 182 [http://dx.doi.org/10.1016/j.jconrel.2017.05.029]. [PMID: 28549948].
    [Google Scholar]
  36. Bao L. Park J. Bonfante G. Kim B. Recent advances in porous microneedles: Materials, fabrication, and transdermal applications. Drug Deliv. Transl. Res. 2022 12 2 395 414 [http://dx.doi.org/10.1007/s13346-021-01045-x]. [PMID: 34415566].
    [Google Scholar]
  37. Tamez-Tamez J.I. Vázquez-Lepe E. Rodriguez C.A. Martínez-López J.I. García-López E. Assessment of geometrical dimensions and puncture feasibility of microneedles manufactured by micromilling. Int. J. Adv. Manuf. Technol. 2023 126 11-12 4983 4996 [http://dx.doi.org/10.1007/s00170-023-11467-1].
    [Google Scholar]
  38. Kathuria H. Kang K. Cai J. Kang L. Rapid microneedle fabrication by heating and photolithography. Int. J. Pharm. 2020 575 118992 [http://dx.doi.org/10.1016/j.ijpharm.2019.118992]. [PMID: 31884060].
    [Google Scholar]
  39. Li Y. Aoude H. Blast response of beams built with high-strength concrete and high-strength ASTM A1035 bars. Int. J. Impact Eng. 2019 130 41 67 [http://dx.doi.org/10.1016/j.ijimpeng.2019.02.007].
    [Google Scholar]
  40. Nejad H.R. Sadeqi A. Kiaee G. Sonkusale S. Low-cost and cleanroom-free fabrication of microneedles. Microsyst. Nanoeng. 2018 4 1 17073 [http://dx.doi.org/10.1038/micronano.2017.73].
    [Google Scholar]
  41. Chen H. Wu B. Zhang M. Yang P. Yang B. Qin W. Wang Q. Wen X. Chen M. Quan G. Pan X. Wu C. A novel scalable fabrication process for the production of dissolving microneedle arrays. Drug Deliv. Transl. Res. 2019 9 1 240 248 [http://dx.doi.org/10.1007/s13346-018-00593-z]. [PMID: 30341765].
    [Google Scholar]
  42. Donnelly R.F. Majithiya R. Singh T.R.R. Morrow D.I.J. Garland M.J. Demir Y.K. Migalska K. Ryan E. Gillen D. Scott C.J. Woolfson A.D. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res. 2011 28 1 41 57 [http://dx.doi.org/10.1007/s11095-010-0169-8]. [PMID: 20490627].
    [Google Scholar]
  43. Lim J. Tahk D. Yu J. Min D.H. Jeon N.L. Design rules for a tunable merged-tip microneedle. Microsyst. Nanoeng. 2018 4 1 29 [http://dx.doi.org/10.1038/s41378-018-0028-z]. [PMID: 31057917].
    [Google Scholar]
  44. Economidou S.N. Lamprou D.A. Douroumis D. 3D printing applications for transdermal drug delivery. Int. J. Pharm. 2018 544 2 415 424 [http://dx.doi.org/10.1016/j.ijpharm.2018.01.031]. [PMID: 29355656].
    [Google Scholar]
  45. Loh J.M. Lim Y.J.L. Tay J.T. Cheng H.M. Tey H.L. Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact. Mater. 2024 32 222 241 [http://dx.doi.org/10.1016/j.bioactmat.2023.09.022]. [PMID: 37869723].
    [Google Scholar]
  46. Xue P. Zhang X. Chuah Y.J. Wu Y. Kang Y. Flexible PEGDA-based microneedle patches with detachable PVP–CD arrowheads for transdermal drug delivery. RSC Advances 2015 5 92 75204 75209 [http://dx.doi.org/10.1039/C5RA09329E].
    [Google Scholar]
  47. Detamornrat U. McAlister E. Hutton A.R.J. Larrañeta E. Donnelly R.F. The role of 3D printing technology in microengineering of microneedles. Small 2022 18 18 2106392 [http://dx.doi.org/10.1002/smll.202106392]. [PMID: 35362226].
    [Google Scholar]
  48. 2023 https://www.straitstimes.com/multimedia/graphics/2023/05/singapore-3d-printing-prosthetics/index.html
  49. Zhu H. Mah Jian Qiang J. Wang C.G. Chan C.Y. Zhu Q. Ye E. Li Z. Loh X.J. Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact. Mater. 2022 18 471 491 [http://dx.doi.org/10.1016/j.bioactmat.2022.03.034]. [PMID: 35415299].
    [Google Scholar]
  50. Miller P.R. Gittard S.D. Edwards T.L. Lopez D.M. Xiao X. Wheeler D.R. Monteiro-Riviere N.A. Brozik S.M. Polsky R. Narayan R.J. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 2011 5 1 013415 [http://dx.doi.org/10.1063/1.3569945]. [PMID: 21522504].
    [Google Scholar]
  51. Gittard S.D. Miller P.R. Jin C. Martin T.N. Boehm R.D. Chisholm B.J. Stafslien S.J. Daniels J.W. Cilz N. Monteiro-Riviere N.A. Nasir A. Narayan R.J. Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles. J. Miner. Met. Mater. Soc. 2011 63 6 59 68 [http://dx.doi.org/10.1007/s11837-011-0093-3].
    [Google Scholar]
  52. Boehm R.D. Miller P.R. Hayes S.L. Monteiro-Riviere N.A. Narayan R.J. Modification of microneedles using inkjet printing. AIP Adv. 2011 1 2 022139 [http://dx.doi.org/10.1063/1.3602461]. [PMID: 22125759].
    [Google Scholar]
  53. Luo Y. Dolder C.K. Walker J.M. Mishra R. Dean D. Becker M.L. Synthesis and biological evaluation of well-defined poly(propylene fumarate) oligomers and their use in 3D printed scaffolds. Biomacromolecules 2016 17 2 690 697 [http://dx.doi.org/10.1021/acs.biomac.6b00014]. [PMID: 26771388].
    [Google Scholar]
  54. Lim S.H. Ng J.Y. Kang L. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger. Biofabrication 2017 9 1 015010 [http://dx.doi.org/10.1088/1758-5090/9/1/015010]. [PMID: 28071597].
    [Google Scholar]
  55. Lim S.H. Tiew W.J. Zhang J. Ho P.C.L. Kachouie N.N. Kang L. Geometrical optimisation of a personalised microneedle eye patch for transdermal delivery of anti-wrinkle small peptide. Biofabrication 2020 12 3 035003 [http://dx.doi.org/10.1088/1758-5090/ab6d37]. [PMID: 31952064].
    [Google Scholar]
  56. El-Sayed N. Vaut L. Schneider M. Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. Eur. J. Pharm. Biopharm. 2020 154 166 174 [http://dx.doi.org/10.1016/j.ejpb.2020.07.005]. [PMID: 32659323].
    [Google Scholar]
  57. Yao W. Li D. Zhao Y. Zhan Z. Jin G. Liang H. Yang R. 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing. Micromachines (Basel) 2019 11 1 17 [http://dx.doi.org/10.3390/mi11010017]. [PMID: 31877987].
    [Google Scholar]
  58. Tuan-Mahmood T.M. McCrudden M.T.C. Torrisi B.M. McAlister E. Garland M.J. Singh T.R.R. Donnelly R.F. Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci. 2013 50 5 623 637 [http://dx.doi.org/10.1016/j.ejps.2013.05.005]. [PMID: 23680534].
    [Google Scholar]
  59. Rouphael N.G. Paine M. Mosley R. Henry S. McAllister D.V. Kalluri H. Pewin W. Frew P.M. Yu T. Thornburg N.J. Kabbani S. Lai L. Vassilieva E.V. Skountzou I. Compans R.W. Mulligan M.J. Prausnitz M.R. Beck A. Edupuganti S. Heeke S. Kelley C. Nesheim W. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 2017 390 10095 649 658 [http://dx.doi.org/10.1016/S0140-6736(17)30575-5]. [PMID: 28666680].
    [Google Scholar]
  60. Vassilieva E.V. Wang S. Li S. Prausnitz M.R. Compans R.W. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine. Sci. Rep. 2017 7 1 17855 [http://dx.doi.org/10.1038/s41598-017-18140-0]. [PMID: 29259264].
    [Google Scholar]
  61. Esser E.S. Romanyuk A. Vassilieva E.V. Jacob J. Prausnitz M.R. Compans R.W. Skountzou I. Tetanus vaccination with a dissolving microneedle patch confers protective immune responses in pregnancy. J. Control. Release 2016 236 47 56 [http://dx.doi.org/10.1016/j.jconrel.2016.06.026]. [PMID: 27327766].
    [Google Scholar]
  62. Chen F. Yan Q. Yu Y. Wu M.X. BCG vaccine powder-laden and dissolvable microneedle arrays for lesion-free vaccination. J. Control. Release 2017 255 36 44 [http://dx.doi.org/10.1016/j.jconrel.2017.03.397]. [PMID: 28390901].
    [Google Scholar]
  63. Gala R.P. Zaman R.U. D’Souza M.J. Zughaier S.M. Novel whole-cell inactivated Neisseria gonorrhoeae microparticles as vaccine formulation in microneedle-based transdermal immunization. Vaccines (Basel) 2018 6 3 60 [http://dx.doi.org/10.3390/vaccines6030060]. [PMID: 30181504].
    [Google Scholar]
  64. Bhatnagar S. Chawla S.R. Kulkarni O.P. Venuganti V.V.K. Zein microneedles for transcutaneous vaccine delivery: Fabrication, characterization, and in vivo evaluation using ovalbumin as the model antigen. ACS Omega 2017 2 4 1321 1332 [http://dx.doi.org/10.1021/acsomega.7b00343]. [PMID: 30023631].
    [Google Scholar]
  65. Rodgers A.M. Cordeiro A.S. Donnelly R.F. Technology update: Dissolvable microneedle patches for vaccine delivery. Med. Devices (Auckl.) 2019 12 379 398 [http://dx.doi.org/10.2147/MDER.S198220]. [PMID: 31572025].
    [Google Scholar]
  66. Mangla B. Javed S. Sultan M.H. Ahsan W. Aggarwal G. Kohli K. Nanocarriers-assisted needle-free vaccine delivery through oral and intranasal transmucosal routes: A novel therapeutic conduit. Front. Pharmacol. 2022 12 757761 [http://dx.doi.org/10.3389/fphar.2021.757761]. [PMID: 35087403].
    [Google Scholar]
  67. Shin C.I. Jeong S.D. Rejinold N.S. Kim Y.C. Microneedles for vaccine delivery: Challenges and future perspectives. Ther. Deliv. 2017 8 6 447 460 [http://dx.doi.org/10.4155/tde-2017-0032]. [PMID: 28530151].
    [Google Scholar]
  68. Resnik D. Možek M. Pečar B. Janež A. Urbančič V. Iliescu C. Vrtačnik D. in vivo experimental study of noninvasive insulin microinjection through hollow si microneedle array. Micromachines (Basel) 2018 9 1 40 [http://dx.doi.org/10.3390/mi9010040]. [PMID: 30393315].
    [Google Scholar]
  69. https://my.clevelandclinic.org/health/body/22601-insulin
  70. Zhao J. Xu G. Yao X. Zhou H. Lyu B. Pei S. Wen P. Microneedle-based insulin transdermal delivery system: Current status and translation challenges. Drug Deliv. Transl. Res. 2022 12 10 2403 2427 [http://dx.doi.org/10.1007/s13346-021-01077-3]. [PMID: 34671948].
    [Google Scholar]
  71. Vinayakumar K.B. Kulkarni P.G. Nayak M.M. Dinesh N.S. Hegde G.M. Ramachandra S.G. Rajanna K. A hollow stainless steel microneedle array to deliver insulin to a diabetic rat. J. Micromech. Microeng. 2016 26 6 065013 [http://dx.doi.org/10.1088/0960-1317/26/6/065013].
    [Google Scholar]
  72. Zhang N. Zhou X. Liu L. Zhao L. Xie H. Yang Z. Dissolving polymer microneedles for transdermal delivery of insulin. Front. Pharmacol. 2021 12 719905 [http://dx.doi.org/10.3389/fphar.2021.719905]. [PMID: 34630098].
    [Google Scholar]
  73. Yu W. Jiang G. Zhang Y. Liu D. Xu B. Zhou J. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater. Sci. Eng. C 2017 80 187 196 [http://dx.doi.org/10.1016/j.msec.2017.05.143]. [PMID: 28866156].
    [Google Scholar]
  74. Mishra R. Maiti T.K. Bhattacharyya T.K. Feasibility studies on nafion membrane actuated micropump integrated with hollow microneedles for insulin delivery device. J. Microelectromech. Syst. 2019 28 6 987 996 [http://dx.doi.org/10.1109/JMEMS.2019.2939189].
    [Google Scholar]
  75. Griss P. Stemme G. Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. J. Microelectromech. Syst. 2003 12 3 296 301 [http://dx.doi.org/10.1109/JMEMS.2003.809959].
    [Google Scholar]
  76. Davis S.P. Landis B.J. Adams Z.H. Allen M.G. Prausnitz M.R. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J. Biomech. 2004 37 8 1155 1163 [http://dx.doi.org/10.1016/j.jbiomech.2003.12.010]. [PMID: 15212920].
    [Google Scholar]
  77. Kim Y.C. Park J.H. Prausnitz M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012 64 14 1547 1568 [http://dx.doi.org/10.1016/j.addr.2012.04.005]. [PMID: 22575858].
    [Google Scholar]
  78. Fakhraei Lahiji S. Jang Y. Huh I. Yang H. Jang M. Jung H. Exendin-4–encapsulated dissolving microneedle arrays for efficient treatment of type 2 diabetes. Sci. Rep. 2018 8 1 1170 [http://dx.doi.org/10.1038/s41598-018-19789-x]. [PMID: 29348573].
    [Google Scholar]
  79. Fakhraei Lahiji S. Jang Y. Ma Y. Dangol M. Yang H. Jang M. Jung H. Effects of dissolving microneedle fabrication parameters on the activity of encapsulated lysozyme. Eur. J. Pharm. Sci. 2018 117 290 296 [http://dx.doi.org/10.1016/j.ejps.2018.03.003]. [PMID: 29505815].
    [Google Scholar]
  80. Yu J. Zhang Y. Sun W. Kahkoska A.R. Wang J. Buse J.B. Gu Z. Insulin‐responsive glucagon delivery for prevention of hypoglycemia. Small 2017 13 19 1603028 [http://dx.doi.org/10.1002/smll.201603028]. [PMID: 28318091].
    [Google Scholar]
  81. Liu D. Yu B. Jiang G. Yu W. Zhang Y. Xu B. Fabrication of composite microneedles integrated with insulin-loaded CaCO3 microparticles and PVP for transdermal delivery in diabetic rats. Mater. Sci. Eng. C 2018 90 180 188 [http://dx.doi.org/10.1016/j.msec.2018.04.055]. [PMID: 29853081].
    [Google Scholar]
  82. Chen M.C. Ling M.H. Kusuma S.J. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Acta Biomater. 2015 24 106 116 [http://dx.doi.org/10.1016/j.actbio.2015.06.021]. [PMID: 26102333].
    [Google Scholar]
  83. Yang S. Wu F. Liu J. Fan G. Welsh W. Zhu H. Jin T. Phase‐transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv. Funct. Mater. 2015 25 29 4633 4641 [http://dx.doi.org/10.1002/adfm.201500554].
    [Google Scholar]
  84. Donnelly R.F. Singh T.R.R. Garland M.J. Migalska K. Majithiya R. McCrudden C.M. Kole P.L. Mahmood T.M.T. McCarthy H.O. Woolfson A.D. Hydrogel‐forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 2012 22 23 4879 4890 [http://dx.doi.org/10.1002/adfm.201200864]. [PMID: 23606824].
    [Google Scholar]
  85. Zhu M. Liu Y. Jiang F. Cao J. Kundu S.C. Lu S. Combined silk fibroin microneedles for insulin delivery. ACS Biomater. Sci. Eng. 2020 6 6 3422 3429 [http://dx.doi.org/10.1021/acsbiomaterials.0c00273]. [PMID: 33463180].
    [Google Scholar]
  86. Rege N.K. Phillips N.F.B. Weiss M.A. Development of glucose-responsive ‘smart’ insulin systems. Curr. Opin. Endocrinol. Diabetes Obes. 2017 24 4 267 278 [http://dx.doi.org/10.1097/MED.0000000000000345]. [PMID: 28509691].
    [Google Scholar]
  87. Wang J. Wang Z. Yu J. Kahkoska A.R. Buse J.B. Gu Z. Glucose‐responsive insulin and delivery systems: Innovation and translation. Adv. Mater. 2020 32 13 1902004 [http://dx.doi.org/10.1002/adma.201902004]. [PMID: 31423670].
    [Google Scholar]
  88. Chen G. Yu J. Gu Z. Glucose-responsive microneedle patches for diabetes treatment. J. Diabetes Sci. Technol. 2019 13 1 41 48 [http://dx.doi.org/10.1177/1932296818778607]. [PMID: 29848105].
    [Google Scholar]
  89. Matsumoto A. Tanaka M. Matsumoto H. Ochi K. Moro-oka Y. Kuwata H. Yamada H. Shirakawa I. Miyazawa T. Ishii H. Kataoka K. Ogawa Y. Miyahara Y. Suganami T. Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv. 2017 3 11 eaaq0723 [http://dx.doi.org/10.1126/sciadv.aaq0723]. [PMID: 29202033].
    [Google Scholar]
  90. Yu J. Zhang Y. Ye Y. DiSanto R. Sun W. Ranson D. Ligler F.S. Buse J.B. Gu Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA 2015 112 27 8260 8265 [http://dx.doi.org/10.1073/pnas.1505405112]. [PMID: 26100900].
    [Google Scholar]
  91. Bankar S.B. Bule M.V. Singhal R.S. Ananthanarayan L. Glucose oxidase — An overview. Biotechnol. Adv. 2009 27 4 489 501 [http://dx.doi.org/10.1016/j.biotechadv.2009.04.003]. [PMID: 19374943].
    [Google Scholar]
  92. Ullah A. Choi H.J. Jang M. An S. Kim G.M. Smart microneedles with porous polymer layer for glucose-responsive insulin delivery. Pharmaceutics 2020 12 7 606 [http://dx.doi.org/10.3390/pharmaceutics12070606]. [PMID: 32629825].
    [Google Scholar]
  93. Saravanakumar G. Kim J. Kim W.J. Reactive‐oxygen‐species‐responsive drug delivery systems: Promises and challenges. Adv. Sci. (Weinh.) 2017 4 1 1600124 [http://dx.doi.org/10.1002/advs.201600124]. [PMID: 28105390].
    [Google Scholar]
  94. Yang X.X. Feng P. Cao J. Liu W. Tang Y. Composition-engineered metal–organic framework-based microneedles for glucose-mediated transdermal insulin delivery. ACS Appl. Mater. Interfaces 2020 12 12 13613 13621 [http://dx.doi.org/10.1021/acsami.9b20774]. [PMID: 32138507].
    [Google Scholar]
  95. Yu J. Wang J. Zhang Y. Chen G. Mao W. Ye Y. Kahkoska A.R. Buse J.B. Langer R. Gu Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 2020 4 5 499 506 [http://dx.doi.org/10.1038/s41551-019-0508-y]. [PMID: 32015407].
    [Google Scholar]
  96. Garg N. Khaudiyal S. Kumar S. Kumar Das S. Research trends in phase change materials (PCM) for high-performance sustainable construction. Mater. Today Proc. 2023 [http://dx.doi.org/10.1016/j.matpr.2023.06.445].
    [Google Scholar]
  97. He X. Sun J. Zhuang J. Xu H. Liu Y. Wu D. Microneedle system for transdermal drug and vaccine delivery: Devices, safety, and prospects. Dose Response 2019 17 4 [http://dx.doi.org/10.1177/1559325819878585]. [PMID: 31662709].
    [Google Scholar]
  98. O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed. Microdevices 2014 16 3 333 343 [http://dx.doi.org/10.1007/s10544-014-9836-6]. [PMID: 24487507].
    [Google Scholar]
  99. Ali R. Mehta P. Arshad M.S. Kucuk I. Chang M-W. Ahmad Z. Transdermal microneedles — A materials perspective. AAPS PharmSciTech 2020 21 1 12 [http://dx.doi.org/10.1208/s12249-019-1560-3]. [PMID: 31807980].
    [Google Scholar]
  100. Chu L.Y. Choi S.O. Prausnitz M.R. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs. J. Pharm. Sci. 2010 99 10 4228 4238 [http://dx.doi.org/10.1002/jps.22140]. [PMID: 20737630].
    [Google Scholar]
  101. Lee J.W. Han M.R. Park J.H. Polymer microneedles for transdermal drug delivery. J. Drug Target. 2013 21 3 211 223 [http://dx.doi.org/10.3109/1061186X.2012.741136]. [PMID: 23167609].
    [Google Scholar]
  102. Al-Qallaf B. Das D.B. Optimization of square microneedle arrays for increasing drug permeability in skin. Chem. Eng. Sci. 2008 63 9 2523 2535 [http://dx.doi.org/10.1016/j.ces.2008.02.007].
    [Google Scholar]
  103. Millard D.R. Maisels D.O. Silicon granuloma of the skin and subcutaneous tissues. Am. J. Surg. 1966 112 1 119 123 [http://dx.doi.org/10.1016/S0002-9610(66)91294-3]. [PMID: 5936639].
    [Google Scholar]
  104. Pavlou A.K. Reichert J.M. Recombinant protein therapeutics — Success rates, market trends and values to 2010. Nat. Biotechnol. 2004 22 12 1513 1519 [http://dx.doi.org/10.1038/nbt1204-1513]. [PMID: 15583654].
    [Google Scholar]
  105. Lall D. Naim M.O.H.D.J. Rathore S. An emerging transdermal drug delivery system: Fabrication and characterization of natural and biodegradable polymeric microneedles transdermal patch. J. Pharm. Res. Int. 2021 46 54 [http://dx.doi.org/10.9734/jpri/2021/v33i35B31897].
    [Google Scholar]
  106. Antosova Z. Mackova M. Kral V. Macek T. Therapeutic application of peptides and proteins: Parenteral forever? Trends Biotechnol. 2009 27 11 628 635 [http://dx.doi.org/10.1016/j.tibtech.2009.07.009]. [PMID: 19766335].
    [Google Scholar]
  107. Brown L.R. Commercial challenges of protein drug delivery. Expert Opin. Drug Deliv. 2005 2 1 29 42 [http://dx.doi.org/10.1517/17425247.2.1.29]. [PMID: 16296733].
    [Google Scholar]
  108. Saurer E.M. Flessner R.M. Sullivan S.P. Prausnitz M.R. Lynn D.M. Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules 2010 11 11 3136 3143 [http://dx.doi.org/10.1021/bm1009443]. [PMID: 20942396].
    [Google Scholar]
  109. Cui; Kumar, A.; Cui; Li, X.; Sandoval, M.A.; Rodriguez, L.B.; Sloat, B.R. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin. Int. J. Nanomedicine 2011 1253 1253 [http://dx.doi.org/10.2147/IJN.S20413].
    [Google Scholar]
  110. Han T. Das D.B. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles. J. Pharm. Sci. 2013 102 10 3614 3622 [http://dx.doi.org/10.1002/jps.23662]. [PMID: 23873449].
    [Google Scholar]
  111. Zhang S. Qiu Y. Gao Y. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment. Acta Pharm. Sin. B 2014 4 1 100 104 [http://dx.doi.org/10.1016/j.apsb.2013.12.011]. [PMID: 26579370].
    [Google Scholar]
  112. Zhao X. Coulman S.A. Hanna S.J. Wong F.S. Dayan C.M. Birchall J.C. Formulation of hydrophobic peptides for skin delivery via coated microneedles. J. Control. Release 2017 265 2 13 [http://dx.doi.org/10.1016/j.jconrel.2017.03.015]. [PMID: 28286315].
    [Google Scholar]
  113. Caudill C.L. Perry J.L. Tian S. Luft J.C. DeSimone J.M. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J. Control. Release 2018 284 122 132 [http://dx.doi.org/10.1016/j.jconrel.2018.05.042]. [PMID: 29894710].
    [Google Scholar]
  114. Dillon C. Hughes H. O’Reilly N.J. McLoughlin P. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides. Int. J. Pharm. 2017 526 1-2 125 136 [http://dx.doi.org/10.1016/j.ijpharm.2017.04.066]. [PMID: 28461268].
    [Google Scholar]
  115. Vora L.K. Courtenay A.J. Tekko I.A. Larrañeta E. Donnelly R.F. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int. J. Biol. Macromol. 2020 146 290 298 [http://dx.doi.org/10.1016/j.ijbiomac.2019.12.184]. [PMID: 31883883].
    [Google Scholar]
  116. Mönkäre J. Reza Nejadnik M. Baccouche K. Romeijn S. Jiskoot W. Bouwstra J.A. IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. J. Control. Release 2015 218 53 62 [http://dx.doi.org/10.1016/j.jconrel.2015.10.002]. [PMID: 26437262].
    [Google Scholar]
  117. Chen J. Qiu Y. Zhang S. Gao Y. Dissolving microneedle-based intradermal delivery of interferon-α-2b. Drug Dev. Ind. Pharm. 2016 42 6 890 896 [http://dx.doi.org/10.3109/03639045.2015.1096282]. [PMID: 26467418].
    [Google Scholar]
  118. Chen B. Wei J. Iliescu C. Sonophoretic enhanced microneedles array (SEMA) — Improving the efficiency of transdermal drug delivery. Sens. Actuators B Chem. 2010 145 1 54 60 [http://dx.doi.org/10.1016/j.snb.2009.11.013].
    [Google Scholar]
  119. Golombek S. Pilz M. Steinle H. Kochba E. Levin Y. Lunter D. Schlensak C. Wendel H.P. Avci-Adali M. Intradermal delivery of synthetic mRNA using hollow microneedles for efficient and rapid production of exogenous proteins in skin. Mol. Ther. Nucleic Acids 2018 11 382 392 [http://dx.doi.org/10.1016/j.omtn.2018.03.005]. [PMID: 29858073].
    [Google Scholar]
  120. Courtenay A.J. McCrudden M.T.C. McAvoy K.J. McCarthy H.O. Donnelly R.F. Microneedle-mediated transdermal delivery of bevacizumab. Mol. Pharm. 2018 15 8 3545 3556 [http://dx.doi.org/10.1021/acs.molpharmaceut.8b00544]. [PMID: 29996645].
    [Google Scholar]
  121. Dodd R.B. Wilkinson T. Schofield D.J. Therapeutic monoclonal antibodies to complex membrane protein targets: Antigen generation and antibody discovery strategies. BioDrugs 2018 32 4 339 355 [http://dx.doi.org/10.1007/s40259-018-0289-y]. [PMID: 29934752].
    [Google Scholar]
  122. dos Santos M.L. Quintilio W. Manieri T.M. Tsuruta L.R. Moro A.M. Advances and challenges in therapeutic monoclonal antibodies drug development. Braz. J. Pharm. Sci. 2018 ••• 54 [Spe].
    [Google Scholar]
  123. Slastnikova T.A. Ulasov A.V. Rosenkranz A.A. Sobolev A.S. Targeted intracellular delivery of antibodies: The state of the art. Front. Pharmacol. 2018 9 1208 [http://dx.doi.org/10.3389/fphar.2018.01208]. [PMID: 30405420].
    [Google Scholar]
  124. Jarvi N.L. Balu-Iyer S.V. Immunogenicity challenges associated with subcutaneous delivery of therapeutic proteins. BioDrugs 2021 35 2 125 146 [http://dx.doi.org/10.1007/s40259-020-00465-4]. [PMID: 33523413].
    [Google Scholar]
  125. https://www.who.int/teams/immunization-vaccines-and-biologicals/product-and-delivery-research/monoclonal-antibodies-%28mabs%29-for-infectious-diseases
  126. Patel A. Bah M.A. Weiner D.B. In vivo delivery of nucleic acid-encoded monoclonal antibodies. BioDrugs 2020 34 3 273 293 [http://dx.doi.org/10.1007/s40259-020-00412-3]. [PMID: 32157600].
    [Google Scholar]
  127. Awan K.H. The therapeutic usage of botulinum toxin (Botox) in non-cosmetic head and neck conditions – An evidence based review. Saudi Pharm. J. 2017 25 1 18 24 [http://dx.doi.org/10.1016/j.jsps.2016.04.024]. [PMID: 28223858].
    [Google Scholar]
  128. Park M.Y. Ahn K.Y. Scientific review of the aesthetic uses of botulinum toxin type A. Arch. Craniofac. Surg. 2021 22 1 1 10 [http://dx.doi.org/10.7181/acfs.2021.00003]. [PMID: 33714246].
    [Google Scholar]
  129. Han X. Samizadeh S. Botulinum toxin A: Treatment principles. Non-Surgical Rejuvenation of Asian Faces. Samizadeh S. Cham Springer 2022 183 192 [http://dx.doi.org/10.1007/978-3-030-84099-0_12]
    [Google Scholar]
  130. Zhang S. Peng Y. Fan H. Zhang Y. Min P. Microneedle delivery of botulinum toxin type A combined with hyaluronic acid for the synergetic management of multiple sternal keloids with oily skin: A retrospective clinical investigation. J. Cosmet. Dermatol. 2022 21 11 5601 5609 [http://dx.doi.org/10.1111/jocd.15216]. [PMID: 35796638].
    [Google Scholar]
  131. Torrisi B.M. Zarnitsyn V. Prausnitz M.R. Anstey A. Gateley C. Birchall J.C. Coulman S.A. Pocketed microneedles for rapid delivery of a liquid-state botulinum toxin A formulation into human skin. J. Control. Release 2013 165 2 146 152 [http://dx.doi.org/10.1016/j.jconrel.2012.11.010]. [PMID: 23178949].
    [Google Scholar]
  132. Yan G. Arelly N. Farhan N. Lobo S. Li H. Enhancing DNA delivery into the skin with a motorized microneedle device. Eur. J. Pharm. Sci. 2014 52 215 222 [http://dx.doi.org/10.1016/j.ejps.2013.11.015]. [PMID: 24291361].
    [Google Scholar]
  133. Liu G. Deng Y. Song Y. Sui Y. Cen J. Shao Z. Li H. Tang T. Transdermal delivery of adipocyte phospholipase A2 siRNA using microneedles to treat thyroid associated ophthalmopathy-related proptosis. Cell Transplant. 2021 ••• 30 [http://dx.doi.org/10.1177/09636897211010633]. [PMID: 33880967].
    [Google Scholar]
  134. Liang X. Zhang J. Ou H. Chen J. Mitragotri S. Chen M. Skin delivery of siRNA using sponge spicules in combination with cationic flexible liposomes. Mol. Ther. Nucleic Acids 2020 20 639 648 [http://dx.doi.org/10.1016/j.omtn.2020.04.003]. [PMID: 32380414].
    [Google Scholar]
  135. Dul M. Stefanidou M. Porta P. Serve J. O’Mahony C. Malissen B. Henri S. Levin Y. Kochba E. Wong F.S. Dayan C. Coulman S.A. Birchall J.C. Hydrodynamic gene delivery in human skin using a hollow microneedle device. J. Control. Release 2017 265 120 131 [http://dx.doi.org/10.1016/j.jconrel.2017.02.028]. [PMID: 28254630].
    [Google Scholar]
  136. DeMuth P.C. Min Y. Huang B. Kramer J.A. Miller A.D. Barouch D.H. Hammond P.T. Irvine D.J. Polymer multilayer tattooing for enhanced DNA vaccination. Nat. Mater. 2013 12 4 367 376 [http://dx.doi.org/10.1038/nmat3550]. [PMID: 23353628].
    [Google Scholar]
  137. González-González E. Kim Y.C. Speaker T.J. Hickerson R.P. Spitler R. Birchall J.C. Lara M.F. Hu R. Liang Y. Kirkiles-Smith N. Prausnitz M.R. Milstone L.M. Contag C.H. Kaspar R.L. Visualization of plasmid delivery to keratinocytes in mouse and human epidermis. Sci. Rep. 2011 1 1 158 [http://dx.doi.org/10.1038/srep00158]. [PMID: 22355673].
    [Google Scholar]
  138. Daddona P.E. Matriano J.A. Mandema J. Maa Y.F. Parathyroid hormone (1-34)-coated microneedle patch system: Clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm. Res. 2011 28 1 159 165 [http://dx.doi.org/10.1007/s11095-010-0192-9]. [PMID: 20567999].
    [Google Scholar]
  139. Dugam S. Tade R. Dhole R. Nangare S. Emerging era of microneedle array for pharmaceutical and biomedical applications: Recent advances and toxicological perspectives. Future J. Pharm. Sci. 2021 7 1 19 [http://dx.doi.org/10.1186/s43094-020-00176-1].
    [Google Scholar]
  140. Bediz B. Korkmaz E. Khilwani R. Donahue C. Erdos G. Falo L.D. Ozdoganlar O.B. Dissolvable microneedle arrays for intradermal delivery of biologics: Fabrication and application. Pharm. Res. 2014 31 1 117 135 [http://dx.doi.org/10.1007/s11095-013-1137-x]. [PMID: 23904139].
    [Google Scholar]
  141. Kirkby M. Hutton A.R.J. Donnelly R.F. Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: Current status and future considerations. Pharm. Res. 2020 37 6 117 [http://dx.doi.org/10.1007/s11095-020-02844-6]. [PMID: 32488611].
    [Google Scholar]
  142. Chen B.Z. Zhao Z.Q. Shahbazi M.A. Guo X.D. Microneedle-based technology for cell therapy: Current status and future directions. Nanoscale Horiz. 2022 7 7 715 728 [http://dx.doi.org/10.1039/D2NH00188H]. [PMID: 35674378].
    [Google Scholar]
  143. Menon I. Bagwe P. Gomes K.B. Bajaj L. Gala R. Uddin M.N. D’Souza M.J. Zughaier S.M. Microneedles: A new generation vaccine delivery system. Micromachines (Basel) 2021 12 4 435 [http://dx.doi.org/10.3390/mi12040435]. [PMID: 33919925].
    [Google Scholar]
  144. Xue P. Zhang L. Xu Z. Yan J. Gu Z. Kang Y. Blood sampling using microneedles as a minimally invasive platform for biomedical diagnostics. Appl. Mater. Today 2018 13 144 157 [http://dx.doi.org/10.1016/j.apmt.2018.08.013].
    [Google Scholar]
  145. Mc Crudden M.T.C. Larrañeta E. Clark A. Jarrahian C. Rein-Weston A. Creelman B. Moyo Y. Lachau-Durand S. Niemeijer N. Williams P. McCarthy H.O. Zehrung D. Donnelly R.F. Design, formulation, and evaluation of novel dissolving microarray patches containing rilpivirine for intravaginal delivery. Adv. Healthc. Mater. 2019 8 9 1801510 [http://dx.doi.org/10.1002/adhm.201801510]. [PMID: 30838804].
    [Google Scholar]
  146. Kearney M.C. Caffarel-Salvador E. Fallows S.J. McCarthy H.O. Donnelly R.F. Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimer’s disease. Eur. J. Pharm. Biopharm. 2016 103 43 50 [http://dx.doi.org/10.1016/j.ejpb.2016.03.026]. [PMID: 27018330].
    [Google Scholar]
  147. Laurent A. Mistretta F. Bottigioli D. Dahel K. Goujon C. Nicolas J.F. Hennino A. Laurent P.E. Echographic measurement of skin thickness in adults by high frequency ultrasound to assess the appropriate microneedle length for intradermal delivery of vaccines. Vaccine 2007 25 34 6423 6430 [http://dx.doi.org/10.1016/j.vaccine.2007.05.046]. [PMID: 17640778].
    [Google Scholar]
  148. Alimardani V. Abolmaali S.S. Yousefi G. Rahiminezhad Z. Abedi M. Tamaddon A. Ahadian S. Microneedle arrays combined with nanomedicine approaches for transdermal delivery of therapeutics. J. Clin. Med. 2021 10 2 181 [http://dx.doi.org/10.3390/jcm10020181]. [PMID: 33419118].
    [Google Scholar]
  149. Tas C. Joyce J.C. Nguyen H.X. Eangoor P. Knaack J.S. Banga A.K. Prausnitz M.R. Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy. J. Control. Release 2017 268 159 165 [http://dx.doi.org/10.1016/j.jconrel.2017.10.021]. [PMID: 29051065].
    [Google Scholar]
  150. Xie X. Pascual C. Lieu C. Oh S. Wang J. Zou B. Xie J. Li Z. Xie J. Yeomans D.C. Wu M.X. Xie X.S. Analgesic microneedle patch for neuropathic pain therapy. ACS Nano 2017 11 1 395 406 [http://dx.doi.org/10.1021/acsnano.6b06104]. [PMID: 28001346].
    [Google Scholar]
  151. Nguyen T.T. Park J.H. Human studies with microneedles for evaluation of their efficacy and safety. Expert Opin. Drug Deliv. 2018 15 3 235 245 [http://dx.doi.org/10.1080/17425247.2018.1410138]. [PMID: 29169288].
    [Google Scholar]
  152. Milewski M. Brogden N.K. Stinchcomb A.L. Current aspects of formulation efforts and pore lifetime related to microneedle treatment of skin. Expert Opin. Drug Deliv. 2010 7 5 617 629 [http://dx.doi.org/10.1517/17425241003663228]. [PMID: 20205604].
    [Google Scholar]
  153. Glover K. Mishra D. Gade S. Vora L.K. Wu Y. Paredes A.J. Donnelly R.F. Singh T.R.R. Microneedles for advanced ocular drug delivery. Adv. Drug Deliv. Rev. 2023 201 115082 [http://dx.doi.org/10.1016/j.addr.2023.115082]. [PMID: 37678648].
    [Google Scholar]
  154. Jeong H.R. Lee H.S. Choi I.J. Park J.H. Considerations in the use of microneedles: Pain, convenience, anxiety and safety. J. Drug Target. 2017 25 1 29 40 [http://dx.doi.org/10.1080/1061186X.2016.1200589]. [PMID: 27282644].
    [Google Scholar]
  155. Rzhevskiy A.S. Singh T.R.R. Donnelly R.F. Anissimov Y.G. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J. Control. Release 2018 270 184 202 [http://dx.doi.org/10.1016/j.jconrel.2017.11.048]. [PMID: 29203415].
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137317813241014113421
Loading
/content/journals/cnano/10.2174/0115734137317813241014113421
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test