Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Carbon nanotube films are utilized in various fields, particularly electric heating, owing to their exceptional thermal and electrical properties. However, quantitative research on the electrothermal characteristics of carbon nanotube film is insufficient, and glass fiber-reinforced epoxy-resin composites prepared through the electrothermal method of carbon nanotube films (., the out-of-autoclave technique) have not yet been reported.

Material and Methods

Herein, according to a mathematical model and experimental demonstration, a quantitative relationship, T = T + (t/L2)·(V2σ)·(1/α), was proposed to explain the electrothermal properties of carbon nanotube films. Glass fiber-reinforced composites with an outstanding tensile strength of 535.6 MPa and an elongation-at-break of 1.6% were prepared through the out-of-autoclave technique using the designed carbon nanotube film.

Results

The composites outperformed previous mechanical composites in terms of energy consumption. Experimental investigations and molecular simulations revealed the mechanical mechanisms of the composites.

Conclusion

These findings quantitatively revealed the electrothermal properties of carbon nanotube films, advancing their application in the out-of-autoclave manufacturing of high-performance resin-matrix composites.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137296780240529172003
2024-07-05
2025-04-13
Loading full text...

Full text loading...

References

  1. ShobinL.R. ManivannanS. Enhancement of electrothermal performance in single-walled carbon nanotube transparent heaters by room temperature post treatment.Sol. Energy Mater. Sol. Cells201817446947710.1016/j.solmat.2017.09.041
    [Google Scholar]
  2. ZhangQ. YuY. YangK. ZhangB. ZhaoK. XiongG. ZhangX. Mechanically robust and electrically conductive graphene-paper/glass-fibers/epoxy composites for stimuli-responsive sensors and Joule heating deicers.Carbon201712429630710.1016/j.carbon.2017.09.001
    [Google Scholar]
  3. YaoX. HawkinsS.C. FalzonB.G. An advanced anti-icing/de-icing system utilizing highly aligned carbon nanotube webs.Carbon201813613013810.1016/j.carbon.2018.04.039
    [Google Scholar]
  4. JangS.H. ParkY.L. Carbon nanotube-reinforced smart composites for sensing freezing temperature and deicing by self-heating.Nanomaterials and Nanotechnology201813613013810.1177/1847980418776473
    [Google Scholar]
  5. WangF.X. LiangW.Y. WangZ.Q. YangB. HeL. ZhangK. Preparation and property investigation of multi-walled carbon nanotube (MWCNT)/epoxy composite films as high-performance electric heating (resistive heating) element.Express Polym. Lett.201812428529510.3144/expresspolymlett.2018.26
    [Google Scholar]
  6. AlirezaN.E. NedaM. Application of a new potentiometric method for determination of phosphate based on a surfactant-modified zeolite carbon-paste electrode (SMZ-CPE).Anal. Chim. Acta20106581687410.1016/j.aca.2009.10.06420082776
    [Google Scholar]
  7. LeilaA.M. AlirezaN.E. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen.Mater. Sci. Eng. C20154949310.1016/j.msec.2015.01.028
    [Google Scholar]
  8. AlirezaN.E. ZohrehN. Surfactant modified zeolite carbon paste electrode (SMZ-CPE) as a nitrate selective electrode.Electrochim. Acta201156833410.1016/j.electacta.2011.07.013
    [Google Scholar]
  9. SamiraS. AlirezaN.E. Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid.Mater. Sci. Eng. C20165851010.1016/j.msec.2015.08.071
    [Google Scholar]
  10. NotanK. SanjeevK.G. Progress and application of phase change material in solar thermal energy: An overview.Mater. Today Proc.20214427110.1016/j.matpr.2020.09.465
    [Google Scholar]
  11. NotanK. SanjeevK.G. VikasK.S. Application of phase change material for thermal energy storage: An overview of recent advancesMater. Today Proc.20214436810.1016/j.matpr.2020.09.745
    [Google Scholar]
  12. WuZ.P. WangJ.N. Preparation of large-area double-walled carbon nanotube films and application as film heater.Physica E2009421778110.1016/j.physe.2009.09.003
    [Google Scholar]
  13. WeglikowskaU.D. KaempgenM. HornbostelB. SkakalovaV. WangJ. LiangJ. RothS. Conducting and transparent SWNT/polymer composites.Phys. Status Solidi, B Basic Res.2006243344010.1002/pssb.200669188
    [Google Scholar]
  14. KimY. LeeH.R. SaitoT. NishiY. Ultra-thin and high-response transparent and flexible heater based on carbon nanotube film.Appl. Phys. Lett.20171101515330110.1063/1.4978596
    [Google Scholar]
  15. IijimaS. Helical microtubules of graphitic carbon.Nature19913546348565810.1038/354056a0
    [Google Scholar]
  16. YoonY.H. SongJ.W. KimD. KimJ. ParkJ.K. OhS.K. HanC.S. Transparent film heater using single‐walled carbon nanotubes.Adv. Mater.200719234284428710.1002/adma.200701173
    [Google Scholar]
  17. EbbesenT.W. LezecH.J. HiuraH. BennettJ.W. GhaemiH.F. ThioT. Electrical conductivity of individual carbon nanotubes.Nature19963826586545610.1038/382054a0
    [Google Scholar]
  18. TreacyM.M.J. EbbesenT.W. GibsonJ.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes.Nature1996381658467868010.1038/381678a0
    [Google Scholar]
  19. BaughmanR.H. ZakhidovA.A. de HeerW.A. Carbon nanotubes--the route toward applications.Science2002297558278779210.1126/science.106092812161643
    [Google Scholar]
  20. LeeS.H. LeeD.H. LeeW.J. KimS.O. Tailored assembly of carbon nanotubes and graphene.Adv. Funct. Mater.20112181338135410.1002/adfm.201002048
    [Google Scholar]
  21. LeeJ. SteinI.Y. KesslerS.S. WardleB.L. Aligned carbon nanotube film enables thermally induced state transformations in layered polymeric materials.ACS Appl. Mater. Interfaces20157168900890510.1021/acsami.5b0154425872577
    [Google Scholar]
  22. LeeJ. KesslerS.S. WardleB.L. Void‐free layered polymeric architectures via capillary‐action of nanoporous films.Adv. Mater. Interfaces202074190142710.1002/admi.201901427
    [Google Scholar]
  23. ZhangQ. ZhouW. XiaX. LiK. ZhangN. WangY. XiaoZ. FanQ. KauppinenE.I. XieS. Transparent and freestanding single‐walled carbon nanotube films synthesized directly and continuously via a blown aerosol technique.Adv. Mater.20203239200427710.1002/adma.20200427732851708
    [Google Scholar]
  24. AouragheM.A. XuF. LiuX. QiuY. Flexible, quickly responsive and highly efficient E-heating carbon nanotube film.Compos. Sci. Technol.201918310782410.1016/j.compscitech.2019.107824
    [Google Scholar]
  25. GbordzoeS. MalikR. AlvarezN. WolfR. ShanovV. Flexible low-voltage carbon nanotube heaters and their applications.IntechOpen201612310.5772/64054
    [Google Scholar]
  26. JangH.S. JeonS.K. NahmS.H. The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes.Carbon201149111111610.1016/j.carbon.2010.08.049
    [Google Scholar]
  27. JanasD. KoziolK.K. Rapid electrothermal response of high-temperature carbon nanotube film heaters.Carbon20135945746310.1016/j.carbon.2013.03.039
    [Google Scholar]
  28. YanJ. JeongY.G. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements.Appl. Phys. Lett.2014105505190710.1063/1.4892545
    [Google Scholar]
  29. LeeT.W. LeeS.E. JeongY.G. Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding.Compos. Sci. Technol.2016131778710.1016/j.compscitech.2016.06.003
    [Google Scholar]
  30. KimY.J. YuS.J. JeongY.G. Carbon nanotube/polyimide bilayer thin films with high structural stability, optical transparency, and electric heating performance.RSC Advances2016636301063011410.1039/C6RA03912J
    [Google Scholar]
  31. KwakH.S. KimK. ShonB.C. LeeH. HanC.S. Thermal characteristics of a transparent film heater using single-walled carbon nanotubes.J. Nanosci. Nanotechnol.20101053512351510.1166/jnn.2010.228220358989
    [Google Scholar]
  32. KangT.J. KimT. SeoS.M. ParkY.J. KimY.H. Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating.Carbon20114941087109310.1016/j.carbon.2010.11.012
    [Google Scholar]
  33. JangJ. ImH.G. LimD. BaeB.S. Preparation of high-performance transparent glass-fiber reinforced composites based on refractive index-tunable epoxy-functionalized siloxane hybrid matrix.Compos. Sci. Technol.202120110852710.1016/j.compscitech.2020.108527
    [Google Scholar]
  34. KumarS. FalzonB. G. KunJ. WilsonE. GraningerG. HawkinsS. C. High performance multiscale glass fibre epoxy composites integrated with cellulose nanocrystals for advanced structural applications.Composites Part A: Applied Science and Manufacturing202013110580110.1016/j.compositesa.2020.105801
    [Google Scholar]
  35. AlirezaA. MehdiG. AkramF. Glass fiber-reinforced epoxy composite with surface-modified graphene oxide: enhancement of interlaminar fracture toughness and thermo-mechanical performance.Polym. Bull.20197625910.1007/s00289‑018‑2387‑x
    [Google Scholar]
  36. WeiB. CaoH. SongS. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater.Corros. Sci.201153142643110.1016/j.corsci.2010.09.053
    [Google Scholar]
  37. HameedN. SreekumarP.A. ValsarajV.S. ThomasS. High‐performance composite from epoxy and glass fibers: Morphology, mechanical, dynamic mechanical, and thermal analysis.Polym. Compos.200930798299210.1002/pc.20644
    [Google Scholar]
  38. ChangC.Y. ChenW.R. Influence of processing variables on quality of unsaturated polyester/E-glass fiber composites manufactured by double-bag progressive compression method.Adv. Mech. Eng.201810910.1177/1687814018798531
    [Google Scholar]
  39. ChenQ. ZhangL. YoonM.K. WuX.F. ArefinR.H. FongH. Preparation and evaluation of nano‐epoxy composite resins containing electrospun glass nanofibers.J. Appl. Polym. Sci.2012124144445110.1002/app.35111
    [Google Scholar]
  40. ThomasM.M. JosephB. KardosJ.L. Experimental characterization of autoclave‐cured glass‐epoxy composite laminates: Cure cycle effects upon thickness, void content, and related phenomena.Polym. Compos.199718328329910.1002/pc.10282
    [Google Scholar]
  41. AbrahamD. MatthewsS. McilhaggerR. A. A comparison of physical properties of glass fibre epoxy composites produced by wet lay-up with autoclave consolidation and resin transfer moulding.Compos. Part. A-Appl. S.199829779580110.1016/S1359‑835X(98)00055‑4
    [Google Scholar]
  42. KupkeM. WentzelH.P. SchulteK. Electrically conductive glass fibre reinforced epoxy resin.Mater. Res. Innov.19982316416910.1007/s100190050079
    [Google Scholar]
  43. NguyenN. HaoA. ParkJ.G. LiangR. In situ curing and out‐of‐autoclave of interply carbon fiber/carbon nanotube buckypaper hybrid composites using electrical current.Adv. Eng. Mater.201618111906191210.1002/adem.201600307
    [Google Scholar]
  44. XuW. ChenY. ZhanH. WangJ.N. High-strength carbon nanotube film from improving alignment and densification.Nano Lett.201616294695210.1021/acs.nanolett.5b0386326757031
    [Google Scholar]
  45. ShinodaJ. KazanciO.B. TanabeS. OlesenB.W. A review of the surface heat transfer coefficients of radiant heating and cooling systems.Build. Environ.201915910615610.1016/j.buildenv.2019.05.034
    [Google Scholar]
  46. JaraÁ.R. FlorF.J.S. CasadoA.R. MaestreI.R. Estimating the influence of outdoor convective heat transfer coefficient on thermal loads.13th International Conference of the International Building Performance Simulation Association (BS2013)Chambéry, France, August 26-28, 2013.
    [Google Scholar]
  47. WuS. ChaS. HouH. XueX. Sizes dependence of electrothermal temperature of carbon nanotube films and evaluation method of electrical conductivity by thermal parameter.Beilstein Arch.2021202111310.3762/bxiv.2021.13.v1
    [Google Scholar]
  48. TahminehT. AlirezaN.E. Sensitive voltammetric determination of bromate by using ion-exchange property of a Sn(II)-clinoptilolite-modified carbon paste electrode.J. Solid State Electrochem.20192314310.1007/s10008‑018‑4119‑4
    [Google Scholar]
  49. TahminehT. AlirezaN.E. Electrocatalytic behavior of AgBr NPs as modifier of carbon past electrode in the presence of methanol and ethanol in aqueous solution: A kinetic study.J. Taiwan Inst. Chem. Eng.201910413010.1016/j.jtice.2019.08.021
    [Google Scholar]
  50. MotahareN. AlirezaN.E. An indirect application aspect of zeolite modified electrodes for voltammetric determination of iodate.J. Electroanal. Chem.201881011910.1016/j.jelechem.2017.12.075
    [Google Scholar]
  51. ParkJ. JeongY.G. Investigation of microstructure and electric heating behavior of hybrid polymer composite films based on thermally stable polybenzimidazole and multiwalled carbon nanotube.Polymer20155910210910.1016/j.polymer.2015.01.003
    [Google Scholar]
  52. JanasD. KoziolK.K. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications.Nanoscale2014663037304510.1039/c3nr05636h24519536
    [Google Scholar]
  53. KangJ. KimH. KimK.S. LeeS.K. BaeS. AhnJ.H. KimY.J. ChoiJ.B. HongB.H. High-performance graphene-based transparent flexible heaters.Nano Lett.201111125154515810.1021/nl202311v22082041
    [Google Scholar]
  54. CheongW. S. KimY. H. LeeJ. M. HongC. H. ChoiH. Y. KwakY. J. High-performance transparent electrodes for automobile windshield heaters prepared by combining metal grids and oxide/metal/oxide transparent electrodes.Adv. Mat. Tech.2019441800550
    [Google Scholar]
  55. HudayaC. JeonB.J. LeeJ.K. High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots.ACS Appl Mater Interfaces2015715761
    [Google Scholar]
  56. ZhaoP. KimS. YoonS. SongP. Characteristics of indium zinc oxide/silver/indium zinc oxide multilayer thin films prepared by magnetron sputtering as flexible transparent film heaters.Thin Solid Films201866513714210.1016/j.tsf.2018.09.018
    [Google Scholar]
  57. CheongH.G. SongD.W. ParkJ.W. Transparent film heaters with highly enhanced thermal efficiency using silver nanowires and metal/metal-oxide blankets.Microelectron. Eng.2015146111810.1016/j.mee.2015.02.029
    [Google Scholar]
  58. LeeS. Y. HwangJ. Y. Transparent heater with meshed amorphous oxide/metal/amorphous oxide for electric vehicle applications.Sci Rep202010969710.1038/s41598‑020‑66514‑8
    [Google Scholar]
  59. KimF.F. LeeM.J. HongS.J. A flexible transparent heater with ultrahigh thermal efficiency and fast thermal response speed based on a simple solution-processed indium tin oxide nanoparticles-silver nanowires composite structure on photo-polymeric film.Compos. Sci. Technol.2018157107
    [Google Scholar]
  60. HuynhK.A. HwangD.K. ChoiW.J. LeeT.I. Near-infrared transparent transition-metal-doped indium oxide thin-film heater for LiDAR.ACS Appl. Mater. Interfaces20241611187119710.1021/acsami.3c1703138126816
    [Google Scholar]
  61. ChoY.H. RamanV. BeigtanM. KimY. KimH.K. Solution-processed multistacked tin-doped indium oxide nanoparticle conductors for cost-effective thin film heaters.ACS Appl. Electron. Mater.2021372953296510.1021/acsaelm.1c00052
    [Google Scholar]
  62. HongS.J. ChaS.J. LeeJ.Y. Highly dispersed indium‑tin-oxide nanoparticles synthesized using in-situ reverse reduction method and their application to transparent heater for extremely high temperature.Powder Technol.2018332566210.1016/j.powtec.2018.03.036
    [Google Scholar]
  63. DevendraK. RangaswamyT. Strength characterization of E-glass fiber reinforced epoxy composites with filler materials.J. Miner. Mater. Charact. Eng.20131635335710.4236/jmmce.2013.16054
    [Google Scholar]
  64. JagannathaT.D. HarishG. Mechanical properties of carbon/glass fiber reinforced epoxy hybrid polymer composites.Int. J. Mech. Eng. Robot. Res.201542278
    [Google Scholar]
  65. KhanZ.I. ArsadA. MohamadZ. HabibU. ZainiM.A.A. Comparative study on the enhancement of thermo-mechanical properties of carbon fiber and glass fiber reinforced epoxy composites.Mater. Today Proc.20213995695810.1016/j.matpr.2020.04.223
    [Google Scholar]
  66. El-BakyM.A.A. AttiaM.A. AbdelhaleemM.M. HassanM.A. Flax/basalt/E-glass fibers reinforced epoxy composites with enhanced mechanical properties.J. Nat. Fibers20208110.1080/15440478.2020.1775750
    [Google Scholar]
  67. LeeJ. BhattacharyyaD. ZhangM.Q. YuanY.C. Mechanical properties of a self-healing fibre reinforced epoxy composites.Compos., Part B Eng.20157851551910.1016/j.compositesb.2015.04.014
    [Google Scholar]
  68. SanthanamV. DhanarajR. ChandrasekaranM. VenkateshwaraN. BaskarS. Experimental investigation on the mechanical properties of woven hybrid fiber reinforced epoxy composite.Mater. Today Proc.202137185010.1016/j.matpr.2020.07.444
    [Google Scholar]
  69. VijayakumarS. PalanikumarK. Mechanical property evaluation of hybrid reinforced epoxy composite.Mater. Today Proc.20191643043810.1016/j.matpr.2019.05.111
    [Google Scholar]
  70. McBrideA. TurekS. ZaghiA. BurkeK. Mechanical behavior of hybrid glass/steel fiber reinforced epoxy composites.Polymers201791215110.3390/polym904015130970830
    [Google Scholar]
  71. ShrivastavaR. TelangA. RanaR.S. PurohitR. Mechanical properties of Coir/ G lass fiber epoxy resin hybrid composite.Mater. Today Proc.2017423477348310.1016/j.matpr.2017.02.237
    [Google Scholar]
  72. AnnappaA.R. BasavarajappaS. DavimJ.P. Effect of organoclays on mechanical properties of glass fiber-reinforced epoxy nanocomposite.Polym. Bull.20227975085510310.1007/s00289‑021‑03759‑x
    [Google Scholar]
  73. AsiO. An experimental study on the bearing strength behavior of Al2O3 particle filled glass fiber reinforced epoxy composites pinned joints.Compos. Struct.201092235436310.1016/j.compstruct.2009.08.014
    [Google Scholar]
  74. IbaH. ChangT. KagawaY. Optically transparent continuous glass fibre-reinforced epoxy matrix composite: Fabrication, optical and mechanical properties.Compos. Sci. Technol.200262152043205210.1016/S0266‑3538(02)00156‑2
    [Google Scholar]
  75. GopalrajS.K. KrkiT. A study to investigate the mechanical properties of recycled carbon fibre/glass fibre-reinforced epoxy composites using a novel thermal recycling process.Processes20208895410.3390/pr8080954
    [Google Scholar]
  76. AsiO. Mechanical properties of glass-fiber reinforced epoxy composites filled with Al 2O3 particles.J. Reinf. Plast. Compos.200928232861286710.1177/0731684408093975
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137296780240529172003
Loading
/content/journals/cnano/10.2174/0115734137296780240529172003
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test