Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Nanoparticles derived from copper (Cu), zinc (Zn), and silver (Ag) have bactericidal activities, are biocompatible, and are malleable to different structural designs/shapes, making them attractive as antibacterial agents. The development of new antibacterial agents is particularly important because the emergence of multidrug-resistant (MDR) bacteria driven by overuse, misuse, and abuse of antibiotics has become a global problem. Drug resistance results in higher mortality and morbidity, increase in treatment cost, and longer hospital stays. Unfortunately, over the past three decades, the lack of adequate investments in developing new drugs to replace current and ineffective ones has compounded the problem. This review provides a comprehensive insight into the investigation of nanoparticles derived from Cu, Zn, and Ag as antibacterial agents, especially when combined with antibiotics. It provides mechanistic details about the activities of the nanoparticles and their limited structure-activity relationships. In addition, the effect of doping and its impact on the antibacterial activity of the nanomaterials is discussed, as well as the nanoparticles’ ability to inhibit or reduce bacterial growth on surfaces and prevent the development of antibiotic resistance by biofilms.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137301010240507101533
2024-05-23
2025-03-30
Loading full text...

Full text loading...

References

  1. Galib; Barve, M.; Mashru, M.; Jagtap, C.; Patgiri, B.J.; Prajapati, P.K. Therapeutic potentials of metals in ancient india: A review through charaka samhita.J. Ayurveda Integr. Med.201122556310.4103/0975‑9476.82523
    [Google Scholar]
  2. EvansA. KavanaghK.A. Evaluation of metal-based antimicrobial compounds for the treatment of bacterial pathogens.J. Med. Microbiol.202170500136310.1099/jmm.0.001363 33961541
    [Google Scholar]
  3. LippertB. Uses of Metal Compounds in Medicine.Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.Elsevier Inc.20131410.1016/B978‑0‑12‑409547‑2.05375‑0
    [Google Scholar]
  4. PatwardhanB. Ayurveda: The “designer” medicine: A review of ethnopharmacology and bioprospecting research.Ind. Dru.2000375213227
    [Google Scholar]
  5. SkjelverD.M. ArnoldD. BroedelH.P. GlascoS.B. KimB. BroedelS.D. History of Applied Science & Technology: An Open Access Textbook The Digital Press @ UND: Grand Forks,ND20212017
    [Google Scholar]
  6. ProkschJ.K. Paracelcus Uber Die Venerischen Krankheiten Unde Die Hydrargose.eine Literatur; J K Proksch: Historische study von.202360
    [Google Scholar]
  7. O’SheaJ.G. ‘Two minutes with venus, two years with mercury’--mercury as an antisyphilitic chemotherapeutic agent.J. R. Soc. Med.199083639239510.1177/014107689008300619 2199676
    [Google Scholar]
  8. HajduS.I. A note from history: two pioneering chemists, three hundred years apart.Ann. Clin. Lab. Sci.2005351105107 15830718
    [Google Scholar]
  9. HarrisF.G. The parasitology of syphilis.J. Am. Med. Assoc.1909LIII1075710.1001/jama.1909.92550100001001a
    [Google Scholar]
  10. KanW.L.T. MaB. LinG. Sulfur fumigation processing of traditional chinese medicinal herbs: beneficial or detrimental?Front. Pharmacol.201128410.3389/fphar.2011.00084 22207851
    [Google Scholar]
  11. LandsteinerK. JacobsJ. Studies on the sensation of animals with simple chemical compounds: III. anaphylaxis induced by arsphenamine.J. Exp. Med.193664571772110.1084/jem.64.5.717 19870563
    [Google Scholar]
  12. WilliamsK.J. The introduction of ‘chemotherapy’ using arsphenamine - the first magic bullet.J. R. Soc. Med.2009102834334810.1258/jrsm.2009.09k036 19679737
    [Google Scholar]
  13. RossM.J. Investigation into Catalytic Metallodrugs That Target Hepatitis C IRES RNA:Development, Characterization, and Mechanism; Doctoral Thesis, Ohio State University,2015
    [Google Scholar]
  14. SilvermanR.B. HolladayM.W. The Organic Chemistry of Drug Design and Drug Action.Academic Press20141410.21019/9781582121123.ch3
    [Google Scholar]
  15. GensiniG.F. ContiA.A. LippiD. The contributions of paul ehrlich to infectious disease.J. Infect.200754322122410.1016/j.jinf.2004.05.022 16567000
    [Google Scholar]
  16. PaulsenB. S. Highlights through the history of plant medicine.Bioact. Compd. plants-benefits risks man Anim.201016
    [Google Scholar]
  17. SarkerS.D. LatifZ. GrayA.I. An Introduction to Natural Products Isolation.Methods Mol. Biol.200686412510.1007/978‑1‑61779‑624‑1_1
    [Google Scholar]
  18. JiH.F. LiX.J. ZhangH.Y. Natural products and drug discovery.EMBO Rep.200910319420010.1038/embor.2009.12 19229284
    [Google Scholar]
  19. WalshC. Antibiotics: Actions, Origins, Resistance; American Society for Microbiology.Washington, DCASM Press200334510.1128/9781555817886
    [Google Scholar]
  20. ZaffiriL. GardnerJ. Toledo-PereyraL.H. History of antibiotics. From salvarsan to cephalosporins.J. Invest. Surg.2012252677710.3109/08941939.2012.664099 22439833
    [Google Scholar]
  21. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. Robles AguilarG. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. Kashef HamadaniB.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. Clotaire DonatienR. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. Duong BichT. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. Young SharmaT.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑0 35065702
    [Google Scholar]
  22. MannA. NehraK. RanaJ.S. DahiyaT. Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance.Curr. Res. Microb. Sci.2021210003010.1016/j.crmicr.2021.100030
    [Google Scholar]
  23. HermsenR. DerisJ.B. HwaT. On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient.Proc. Natl. Acad. Sci. 201210927107751078010.1073/pnas.1117716109 22711808
    [Google Scholar]
  24. WHO WHO WHO Model List of Essential Medicines for Children: 6th List (March 2017, Amended August 2017).2017Available from www.who.int/medicines/publications/essentialmedicines/en/index.html
    [Google Scholar]
  25. AtifM. MalikI. DawoudD. GilaniA. AhmedN. BabarZ. U. D. Essential medicine list, policies, and the world health organization.Encycl. Pharm. Pract. Clin. Pharm.201923924910.1016/B978‑0‑128‑12735‑3.00061‑3
    [Google Scholar]
  26. KadriS.S. Key takeaways from the U.S. CDC’s 2019 antibiotic resistance threats report for frontline providers.Crit. Care Med.202048793994510.1097/CCM.0000000000004371 32282351
    [Google Scholar]
  27. Centers for disease control and prevention. about antimicrobial resistance.2022Available from: https://www.cdc.gov/drugresistance/about.html
  28. TeuberM. Veterinary use and antibiotic resistance.Curr. Opin. Microbiol.20014549349910.1016/S1369‑5274(00)00241‑1 11587923
    [Google Scholar]
  29. SingerR.S. FinchR. WegenerH.C. BywaterR. WaltersJ. LipsitchM. The lancet infectious diseases.Lancet Infect. Dis.200331110.1016/S1473‑3099(03)00496‑1 12505009
    [Google Scholar]
  30. GlickB.R. The enhancement of plant growth by free-living bacteria.Can. J. Microbiol.199541210911710.1139/m95‑015
    [Google Scholar]
  31. KloepperJ.W. LifshitzR. ZablotoviczR.M. Free-living bacteria inocula for enhancing crop productivity.Trends Biotechnol.198973944
    [Google Scholar]
  32. GottliebY. GhanimM. GueguenG. KontsedalovS. VavreF. FleuryF. Zchori-FeinE. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies.FASEB J.20082272591259910.1096/fj.07‑101162 18285399
    [Google Scholar]
  33. MoranN.A. WernegreenJ.J. 1-S2.0-S0169534700019029-Main.Results Phys.2000158321326
    [Google Scholar]
  34. AmannR. SpringerN. SchönhuberW. LudwigW. SchmidE.N. MüllerK.D. MichelR. Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp.Appl. Environ. Microbiol.199763111512110.1128/aem.63.1.115‑121.1997 8979345
    [Google Scholar]
  35. OliverW.W. WherryW.B. Notes on some bacterial parasites of the human mucous membranes.J. Infect. Dis.192128434134410.1093/infdis/28.4.341
    [Google Scholar]
  36. BeardC.B. DotsonE.M. PenningtonP.M. EichlerS. Cordon-RosalesC. DurvasulaR.V. Bacterial symbiosis and paratransgenic control of vector-borne Chagas disease.Int. J. Parasitol.2001315-662162710.1016/S0020‑7519(01)00165‑5 11334952
    [Google Scholar]
  37. LoescheW.J. Oxygen sensitivity of various anaerobic bacteria.Appl. Microbiol.196918572372710.1128/am.18.5.723‑727.1969 5370458
    [Google Scholar]
  38. SmithL.D. HoldemanL.V. The pathogenic anaerobic bacteria.Pathog. Anaerob. Bact,2nd; Springfield, Illinois1975430
    [Google Scholar]
  39. ShibaT. SimiduU. TagaN. Distribution of aerobic bacteria which contain bacteriochlorophyll a.Appl. Environ. Microbiol.1979381434510.1128/aem.38.1.43‑45.1979 16345414
    [Google Scholar]
  40. KushnerD.J. Halophilic bacteria.Adv. Appl. Microbiol.196810739910.1016/S0065‑2164(08)70189‑8 4882861
    [Google Scholar]
  41. KamekuraM. Diversity of extremely halophilic bacteria.Extremophiles19982328929510.1007/s007920050071 9783176
    [Google Scholar]
  42. VentosaA. NietoJ.J. OrenA. Biology of moderately halophilic aerobic bacteria.Microbiol. Mol. Biol. Rev.199862250454410.1128/MMBR.62.2.504‑544.1998 9618450
    [Google Scholar]
  43. KikaniB.A. SinghS.P. Amylases from thermophilic bacteria: structure and function relationship.Crit. Rev. Biotechnol.202242332534110.1080/07388551.2021.1940089 34420464
    [Google Scholar]
  44. BergeyD.H. Thermophilic bacteria.J. Bacteriol.19194430130610.1128/jb.4.4.301‑306.1919 16558843
    [Google Scholar]
  45. ZeikusJ.G. Thermophilic bacteria: Ecology, physiology and technology.Enzyme Microb. Technol.19791424325210.1016/0141‑0229(79)90043‑7
    [Google Scholar]
  46. KrulwichT.A. Bioenergetics of alkalophilic bacteria.J. Membr. Biol.198689211312510.1007/BF01869707 2871195
    [Google Scholar]
  47. KrulwichT.A. GuffantiA.A. Alkalophilic bacteria.Annu. Rev. Microbiol.198943143546310.1146/annurev.mi.43.100189.002251 2679360
    [Google Scholar]
  48. DopsonM. Physiological and Phylogenetic Diversity of Acidophilic Bacteria.In: Acidophiles: Life in Extremely Acidic Environments. QuatriniR. JohnsonD.B. U.K.Caister Academic Press2016799210.21775/9781910190333.05
    [Google Scholar]
  49. JohnsonD.B. Biodiversity and ecology of acidophilic microorganisms.FEMS Microbiol. Ecol.199827430731710.1111/j.1574‑6941.1998.tb00547.x
    [Google Scholar]
  50. HarrisonA.P.Jr The acidophilic thiobacilli and other acidophilic bacteria that share their habitat.Annu. Rev. Microbiol.198438126529210.1146/annurev.mi.38.100184.001405 6388492
    [Google Scholar]
  51. PrakashB. VeeregowdaB.M. KrishnappaG. Biofilms: A survival strategy of bacteria.Curr. Sci.200312991307
    [Google Scholar]
  52. LewisK. Riddle of biofilm resistance.Antimicrob. Agents Chemother.2001454999100710.1128/AAC.45.4.999‑1007.2001 11257008
    [Google Scholar]
  53. EstelaC.R.L. AlejandroP.R. Antibiotic resistant bacteria-a continuous challenge in the new millennium.Biofilms A Surviv. Resist. Mech. MicroorgPana, M., Ed.; InTech, Mex2012159178
    [Google Scholar]
  54. McAuliffeL. EllisR.J. MilesK. AylingR.D. NicholasR.A.J. Biofilm formation by mycoplasma species and its role in environmental persistence and survival.Microbiology2006152491392210.1099/mic.0.28604‑0 16549656
    [Google Scholar]
  55. SharmaD. MisbaL. KhanA.U. Antibiotics versus biofilm: an emerging battleground in microbial communities.Antimicrob. Resist. Infect. Control2019817610.1186/s13756‑019‑0533‑3 31131107
    [Google Scholar]
  56. TomarasA.P. DorseyC.W. EdelmannR.E. ActisL.A. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system.Microbiology2003149123473348410.1099/mic.0.26541‑0 14663080
    [Google Scholar]
  57. OttoM. Bacterial evasion of antimicrobial peptides by biofilm formation.Pept. Hum. Dis.200625125810.1007/3‑540‑29916‑5_10
    [Google Scholar]
  58. SalmonJ.A. GarlandL.G. HoyleB.D. CostertonJ.W. SeilerN. RaeburnD. KarlssonJ-A. PolakA. HartmanP.G. RohmerM. Bacterial resistance to antibiotics: The role of biofilms.Prog. Drug Res. der Arzneimittelforschung/Progrès des Rech. Pharm199191105
    [Google Scholar]
  59. TremblayY.D.N. LévesqueC. SegersR.P.A.M. JacquesM. Method to grow Actinobacillus pleuropneumoniae biofilm on a biotic surface.BMC Vet. Res.20139121310.1186/1746‑6148‑9‑213 24139070
    [Google Scholar]
  60. DangH. LovellC.R. Microbial surface colonization and biofilm development in marine environments.Microbiol. Mol. Biol. Rev.20168019113810.1128/MMBR.00037‑15 26700108
    [Google Scholar]
  61. BramhachariP.V. Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry.SingaporeSpringer201932110.1007/978‑981‑32‑9409‑7
    [Google Scholar]
  62. FlemmingH.C. NeuT.R. WozniakD.J. The EPS matrix: the “house of biofilm cells”.J. Bacteriol.2007189227945794710.1128/JB.00858‑07 17675377
    [Google Scholar]
  63. WingenderJ. NeuT.R. FlemmingH-C. What Are Bacterial Extracellular Polymeric Substances?Microbial Extracellular Polymeric Substances.Berlin, HeidelbergSpringer199911910.1007/978‑3‑642‑60147‑7_1
    [Google Scholar]
  64. SalamaY. ChennaouiM. SyllaA. MountadarM. RihaniM. AssobheiO. Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: a review.Desalination Water Treat.20165735162201623710.1080/19443994.2015.1077739
    [Google Scholar]
  65. FlemmingH.C. WingenderJ. The biofilm matrix.Nat. Rev. Microbiol.20108962363310.1038/nrmicro2415 20676145
    [Google Scholar]
  66. MuhammadM.H. IdrisA.L. FanX. GuoY. YuY. JinX. QiuJ. GuanX. HuangT. Beyond risk: Bacterial biofilms and their regulating approaches.Front. Microbiol.20201192810.3389/fmicb.2020.00928 32508772
    [Google Scholar]
  67. SauerK. StoodleyP. GoeresD.M. Hall-StoodleyL. BurmølleM. StewartP.S. BjarnsholtT. The biofilm life cycle: expanding the conceptual model of biofilm formation.Nat. Rev. Microbiol.2022201060862010.1038/s41579‑022‑00767‑0 35922483
    [Google Scholar]
  68. CiorneiC.D. NovikovA. BeloinC. FittingC. CaroffM. GhigoJ.M. CavaillonJ.M. Adib-ConquyM. Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes.Innate Immun.201016528830110.1177/1753425909341807 19710099
    [Google Scholar]
  69. ChalabaevS. ChauhanA. NovikovA. IyerP. SzczesnyM. BeloinC. CaroffM. GhigoJ.M. Biofilms formed by gram-negative bacteria undergo increased lipid a palmitoylation, enhancing in vivo survival.MBio201454e01116e1410.1128/mBio.01116‑14 25139899
    [Google Scholar]
  70. BoginoP. OlivaM. SorrocheF. GiordanoW. The role of bacterial biofilms and surface components in plant-bacterial associations.Int. J. Mol. Sci.2013148158381585910.3390/ijms140815838 23903045
    [Google Scholar]
  71. SutherlandI. W. Biofilm Exopolysaccharides.Microb. Extracell. Polym. Subst. Charact. Struct. Funct.1999739210.1007/978‑3‑642‑60147‑7_4
    [Google Scholar]
  72. NimtzM. MortA. DomkeT. WrayV. ZhangY. QiuF. CoplinD. GeiderK. Structure of amylovoran, the capsular exopolysaccharide from the fire blight pathogen Erwinia amylovora.Carbohydr. Res.19962871597610.1016/0008‑6215(96)00070‑5 8765060
    [Google Scholar]
  73. GeierG. GeiderK. Characterization and influence on virulence of the levansucrase gene from the fireblight pathogen Erwinia amylovora.Physiol. Mol. Plant Pathol.199342638740410.1006/pmpp.1993.1029
    [Google Scholar]
  74. WolcottR. DowdS. The role of biofilms: are we hitting the right target?Plast. Reconstr. Surg.2011127Suppl. 128S35S10.1097/PRS.0b013e3181fca244 21200270
    [Google Scholar]
  75. VestbyL.K. GrønsethT. SimmR. NesseL.L. Bacterial biofilm and its role in the pathogenesis of disease.Antibiotics 2020925910.3390/antibiotics9020059 32028684
    [Google Scholar]
  76. VelmourouganeK. PrasannaR. SaxenaA.K. Agriculturally important microbial biofilms: Present status and future prospects.J. Basic Microbiol.201757754857310.1002/jobm.201700046 28407275
    [Google Scholar]
  77. BeheraB. DasT.K. RajR. GhoshS. RazaM.B. SenS. Microbial consortia for sustaining productivity of non-legume crops: prospects and challenges.Agric. Res.202110111410.1007/s40003‑020‑00482‑3
    [Google Scholar]
  78. LengR.A. Unravelling methanogenesis in ruminants, horses and kangaroos: the links between gut anatomy, microbial biofilms and host immunity.Anim. Prod. Sci.20185871175119110.1071/AN15710
    [Google Scholar]
  79. RosewarneC.P. PopeP.B. DenmanS.E. McSweeneyC.S. O’CuivP. MorrisonM. High-yield and phylogenetically robust methods of DNA recovery for analysis of microbial biofilms adherent to plant biomass in the herbivore gut.Microb. Ecol.201161244845410.1007/s00248‑010‑9745‑z 20838785
    [Google Scholar]
  80. LiaoJ. SchurrM.J. SauerK. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms.J. Bacteriol.2013195153352336310.1128/JB.00318‑13 23687276
    [Google Scholar]
  81. AssefaM. AmareA. Biofilm-associated multi-drug resistance in hospital-acquired infections: a review.Infect. Drug Resist.2022155061506810.2147/IDR.S379502 36068834
    [Google Scholar]
  82. SavageV.J. ChopraI. O’NeillA.J. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance.Antimicrob. Agents Chemother.20135741968197010.1128/AAC.02008‑12 23357771
    [Google Scholar]
  83. MalikA. MohammadZ. AhmadJ. The diabetic foot infections: Biofilms and antimicrobial resistance.Diabetes Metab. Syndr.20137210110710.1016/j.dsx.2013.02.006 23680250
    [Google Scholar]
  84. McInnesR.L. CullenB.M. HillK.E. PriceP.E. HardingK.G. ThomasD.W. StephensP. MoseleyR. Contrasting host immuno‐inflammatory responses to bacterial challenge within venous and diabetic ulcers.Wound Repair Regen.2014221586910.1111/wrr.12133 24354589
    [Google Scholar]
  85. ZhaoG. UsuiM.L. LippmanS.I. JamesG.A. StewartP.S. FleckmanP. OlerudJ.E. Biofilms and inflammation in chronic wounds.Adv. Wound Care20132738939910.1089/wound.2012.0381 24527355
    [Google Scholar]
  86. VeerachamyS. YarlagaddaT. ManivasagamG. YarlagaddaP.K.D.V. Bacterial adherence and biofilm formation on medical implants: A review.Proc. Inst. Mech. Eng. H2014228101083109910.1177/0954411914556137 25406229
    [Google Scholar]
  87. ReeveS.M. LombardoM.N. AndersonA.C. Understanding the structural mechanisms of antibiotic resistance sets the platform for new discovery.Future Microbiol.201510111727173310.2217/fmb.15.78 26516790
    [Google Scholar]
  88. KapoorG. SaigalS. ElongavanA. Action and resistance mechanisms of antibiotics: A guide for clinicians.J. Anaesthesiol. Clin. Pharmacol.201733330030510.4103/joacp.JOACP_349_15 29109626
    [Google Scholar]
  89. MelanderR.J. MelanderC. The challenge of overcoming antibiotic resistance: an adjuvant approach?ACS Infect. Dis.20173855956310.1021/acsinfecdis.7b00071 28548487
    [Google Scholar]
  90. BreijyehZ. JubehB. KaramanR. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it.Molecules2020256134010.3390/molecules25061340 32187986
    [Google Scholar]
  91. KeppK.P. A quantitative scale of oxophilicity and thiophilicity.Inorg. Chem.201655189461947010.1021/acs.inorgchem.6b01702 27580183
    [Google Scholar]
  92. PanZ. WangR. ChenJ. Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts: Geometric and electronic effects of oxophilic Zn.Appl. Catal. B20182248810010.1016/j.apcatb.2017.10.040
    [Google Scholar]
  93. BasuS. StrobelS.A. Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4-P6 domain.RNA19995111399140710.1017/S135583829999115X 10580468
    [Google Scholar]
  94. GuptaN.K. GhaffariY. KimS. BaeJ. KimK.S. SaifuddinM. Photocatalytic degradation of organic pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles at neutral pH.Sci. Rep.2020101494210.1038/s41598‑020‑61930‑2 32188893
    [Google Scholar]
  95. HobbsL.W. Point defect stabilization in ionic crystals at high defect concentrations.Le J. Phys. Colloq.197637C732610.1051/jphyscol:1976702
    [Google Scholar]
  96. ChengW. ChengC. KeB. The effect of carbon defects in the coal-pyrite vacancy on the electronic structure and optical properties: A DFT + U study.Minerals202010981510.3390/min10090815
    [Google Scholar]
  97. BurdettJ.K. SevovS. Stability of the oxidation states of copper.J. Am. Chem. Soc.199511751127881279210.1021/ja00156a016
    [Google Scholar]
  98. LevasonW. SpicerM.D. The chemistry of copper and silver in their higher oxidation states.Coord. Chem. Rev.1987764512010.1016/0010‑8545(87)85002‑6
    [Google Scholar]
  99. TudelaD. Silver(II) oxide or silver(I,III) oxide?J. Chem. Educ.200885686310.1021/ed085p863
    [Google Scholar]
  100. McMillanJ.A. Higher oxidation states of silver.Chem. Rev.1962621658010.1021/cr60215a004
    [Google Scholar]
  101. GohS.W. BuckleyA.N. LambR.N. RosenbergR.A. MoranD. The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air.Geochim. Cosmochim. Acta20067092210222810.1016/j.gca.2006.02.007
    [Google Scholar]
  102. SelbinJ. UsateguiM. Higher oxidation states of silver—I.J. Inorg. Nucl. Chem.1961201-2919910.1016/0022‑1902(61)80465‑X
    [Google Scholar]
  103. AvalosA. HazaA.I. MateoD. MoralesP. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells.J. Appl. Toxicol.201434441342310.1002/jat.2957 24243578
    [Google Scholar]
  104. SuH.L. ChouC.C. HungD.J. LinS.H. PaoI.C. LinJ.H. HuangF.L. DongR.X. LinJ.J. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay.Biomaterials200930305979598710.1016/j.biomaterials.2009.07.030 19656561
    [Google Scholar]
  105. GuoW. YeS. CaoN. HuangJ. GaoJ. ChenQ. ROS-mediated autophagy was involved in cancer cell death induced by novel copper(II) complex.Exp. Toxicol. Pathol.201062557758210.1016/j.etp.2009.08.001 19758794
    [Google Scholar]
  106. ManzlC. EnrichJ. EbnerH. DallingerR. KrumschnabelG. Copper-induced formation of reactive oxygen species causes cell death and disruption of calcium homeostasis in trout hepatocytes.Toxicology20041961-2576410.1016/j.tox.2003.11.001 15036756
    [Google Scholar]
  107. PerepichkaD.F. BryceM.R. Molecules with exceptionally small HOMO-LUMO gaps.Angew. Chem. Int. Ed.200544345370537310.1002/anie.200500413 16034992
    [Google Scholar]
  108. DerouicheH. DjaraV. Impact of the energy difference in LUMO and HOMO of the bulk heterojunctions components on the efficiency of organic solar cells.Sol. Energy Mater. Sol. Cells200791131163116710.1016/j.solmat.2007.03.015
    [Google Scholar]
  109. YeJ.D. GuS.L. ZhuS.M. LiuS.M. ZhengY.D. ZhangR. ShiY. Fermi-level band filling and band-gap renormalization in Ga-doped ZnO.Appl. Phys. Lett.2005861919211110.1063/1.1928322
    [Google Scholar]
  110. MorikawaT. AsahiR. OhwakiT. AokiK. TagaY. Band-gap narrowing of titanium dioxide by nitrogen doping.Jpn. J. Appl. Phys.2001406AL56110.1143/JJAP.40.L561
    [Google Scholar]
  111. BorghsG. BhattacharyyaK. DeneffeK. Van MieghemP. MertensR. Band-gap narrowing in highly doped n - and p -type GaAs studied by photoluminescence spectroscopy.J. Appl. Phys.19896694381438610.1063/1.343958
    [Google Scholar]
  112. RothA.P. WebbJ.B. WilliamsD.F. Band-gap narrowing in heavily defect-doped ZnO.Phys. Rev. B Condens. Matter198225127836783910.1103/PhysRevB.25.7836
    [Google Scholar]
  113. TongZ. PengT. SunW. LiuW. GuoS. ZhaoX.Z. Introducing an intermediate band into dye-sensitized solar cells by W 6+ doping into TiO 2 nanocrystalline photoanodes.J. Phys. Chem. C201411830168921689510.1021/jp500412e
    [Google Scholar]
  114. AntunesA.C. AntunesS.M. PianaroS.A. LongoE. VarelaJ.A. Effect of Ta2O5 doping on the electrical properties of 0.99SnO20.01CoO ceramic.J. Mater. Sci.20003561453145810.1023/A:1004748006457
    [Google Scholar]
  115. ZhaoJ. WangB. LuK. Influence of Ta2O5 doping and microwave sintering on TiO2-based varistor properties.Ceram. Int.2014409142291423410.1016/j.ceramint.2014.06.012
    [Google Scholar]
  116. ChenF. LuQ. FanT. FangR. LiY. Ionic liquid [Bmim][AuCl4] encapsulated in ZIF-8 as precursors to synthesize N-decorated Au catalysts for selective aerobic oxidation of alcohols.Catal. Today20183519410210.1016/j.cattod.2018.11.078
    [Google Scholar]
  117. TsapenkoA.P. GoldtA.E. ShulgaE. PopovZ.I. MaslakovK.I. AnisimovA.S. SorokinP.B. NasibulinA.G. Highly conductive and transparent films of HAuCl4-doped single-walled carbon nanotubes for flexible applications.Carbon201813044845710.1016/j.carbon.2018.01.016
    [Google Scholar]
  118. XuL. LiX. YuanJ. Effect of K-doping on structural and optical properties of ZnO thin films.Superlattices Microstruct.200844327628110.1016/j.spmi.2008.04.004
    [Google Scholar]
  119. KumariR. SahaiA. GoswamiN. Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles.Prog. Nat. Sci.201525430030910.1016/j.pnsc.2015.08.003
    [Google Scholar]
  120. PatilA.D. KambleS.R. RamshettiR.S. JadhavS.P. AlgudeS.G. PatilA.B. ShindeT.J. PatangeS.M. Influence of Ta2O5 doping on electrical and dielectric properties of nanocrystalline NiCuZn spinel ferrite. Macromolecular Symposia.Wiley Online Library2020Vol. 393p. 1900161
    [Google Scholar]
  121. XuW. LiH. ZhengY. LeiW. WangZ. ChengY. QiR. PengH. LinH. YueF. HuangR. Atomic insights into Ti doping on the stability enhancement of truncated octahedron LiMn2O4 nanoparticles.Nanomaterials (Basel)202111250810.3390/nano11020508 33671361
    [Google Scholar]
  122. XiaoJ. KucA. PokhrelS. SchowalterM. ParlapalliS. RosenauerA. FrauenheimT. MädlerL. PetterssonL.G.M. HeineT. Evidence for Fe(2+) in wurtzite coordination: iron doping stabilizes ZnO nanoparticles.Small20117202879288610.1002/smll.201100963 21913325
    [Google Scholar]
  123. LinZ. CaoY. ZouJ. ZhuF. GaoY. ZhengX. WangH. ZhangT. WuT. Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement.Mater. Sci. Eng. C202011411103210.1016/j.msec.2020.111032 32993975
    [Google Scholar]
  124. WuQ. MiaoW. ZhangY. GaoH. HuiD. Mechanical properties of nanomaterials: A review.Nanotechnol. Rev.20209125927310.1515/ntrev‑2020‑0021
    [Google Scholar]
  125. ChongW.J. ShenS. LiY. TrinchiA. PejakD. KyratzisI.L. SolaA. WenC. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: benefits, limitations and open challenges.J. Mater. Sci. Technol.202211112015110.1016/j.jmst.2021.09.039
    [Google Scholar]
  126. WangJ. LiuP. FuX. LiZ. HanW. WangX. Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in Nafion membranes.Langmuir20092521218122310.1021/la803370z 19090662
    [Google Scholar]
  127. N, V. Application of functional nanoparticle finishes on cotton textiles.Trends in Textile Engineering & Fashion Technology20183410.31031/TTEFT.2018.03.000568
    [Google Scholar]
  128. AndreiniC. BertiniI. A bioinformatics view of zinc enzymes.J. Inorg. Biochem.201211115015610.1016/j.jinorgbio.2011.11.020 22209023
    [Google Scholar]
  129. SchmidbaurH. Metallo-Drugs: Development and Action of Anticancer Agents.De Gruyter2018
    [Google Scholar]
  130. KambeT. MatsunagaM. TakedaT. Understanding the contribution of zinc transporters in the function of the early secretory pathway.Int. J. Mol. Sci.20171810217910.3390/ijms18102179 29048339
    [Google Scholar]
  131. HuangC. CuiX. SunX. YangJ. LiM. Zinc transporters are differentially expressed in human non-small cell lung cancer.Oncotarget2016741669356694310.18632/oncotarget.11884 27611948
    [Google Scholar]
  132. BinB-H. SeoJ. KimS.T. Function, structure, and transport aspects of ZIP and ZnT zinc transporters in immune cells.J. Immunol. Res.201820189365747
    [Google Scholar]
  133. Kolaj-RobinO. RussellD. HayesK.A. PembrokeJ.T. SoulimaneT. Cation diffusion facilitator family: Structure and function.FEBS Lett.2015589121283129510.1016/j.febslet.2015.04.007 25896018
    [Google Scholar]
  134. CotrimC.A. JarrottR.J. MartinJ.L. DrewD. A structural overview of the zinc transporters in the cation diffusion facilitator family.Acta Crystallogr. D Struct. Biol.201975435736710.1107/S2059798319003814 30988253
    [Google Scholar]
  135. EideD.J. Zinc transporters and the cellular trafficking of zinc.Biochim. Biophys. Acta Mol. Cell Res.20061763771172210.1016/j.bbamcr.2006.03.005 16675045
    [Google Scholar]
  136. LiuzziJ.P. CousinsR.J. Mammalian zinc transporters.Annu. Rev. Nutr.200424115117210.1146/annurev.nutr.24.012003.132402 15189117
    [Google Scholar]
  137. ThingholmT.E. RönnstrandL. RosenbergP.A. Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation.Cell. Mol. Life Sci.202077163085310210.1007/s00018‑020‑03473‑3 32076742
    [Google Scholar]
  138. BraggW.L. LXII. The crystalline structure of zinc oxide.Lond. Edinb. Dublin Philos. Mag. J. Sci.19203923464765110.1080/14786440608636079
    [Google Scholar]
  139. SegetsD. GradlJ. TaylorR.K. VassilevV. PeukertW. Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy.ACS Nano2009371703171010.1021/nn900223b 19507865
    [Google Scholar]
  140. BagnallD.M. ChenY.F. ZhuZ. YaoT. KoyamaS. ShenM.Y. GotoT. Optically pumped lasing of ZnO at room temperature.Appl. Phys. Lett.199770172230223210.1063/1.118824
    [Google Scholar]
  141. HuangM.H. MaoS. FeickH. YanH. WuY. KindH. WeberE. RussoR. YangP. Room-temperature ultraviolet nanowire nanolasers.Science200129255231897189910.1126/science.1060367
    [Google Scholar]
  142. WanQ. LiQ.H. ChenY.J. WangT.H. HeX.L. LiJ.P. LinC.L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors.Appl. Phys. Lett.200484183654365610.1063/1.1738932
    [Google Scholar]
  143. MinneS.C. ManalisS.R. QuateC.F. Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators.Appl. Phys. Lett.199567263918392010.1063/1.115317
    [Google Scholar]
  144. Kołodziejczak-RadzimskaA. JesionowskiT. Zinc oxide—from synthesis to application: A review.Materials2014742833288110.3390/ma7042833 28788596
    [Google Scholar]
  145. WeintraubB. ZhouZ. LiY. DengY. Solution synthesis of one-dimensional ZnO nanomaterials and their applications.Nanoscale2010291573158710.1039/c0nr00047g 20820688
    [Google Scholar]
  146. GuiZ. LiuJ. WangZ. SongL. HuY. FanW. ChenD. From Multicomponent precursor to nanoparticle nanoribbons of ZnO.J. Phys. Chem. B200510931113111710.1021/jp047088d 16851068
    [Google Scholar]
  147. GaoP. WangZ.L. Self-Assembled Nanowire−Nanoribbon Junction Arrays of ZnO.J. Phys. Chem. B200210649126531265810.1021/jp0265485
    [Google Scholar]
  148. RusdiR. RahmanA.A. MohamedN.S. KamarudinN. KamarulzamanN. Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures.Powder Technol.20112101182210.1016/j.powtec.2011.02.005
    [Google Scholar]
  149. ZhangY. RamM.K. StefanakosE.K. GoswamiD.Y. Synthesis, characterization, and applications of Zno nanowires.J. Nanomater.2012201212210.1155/2012/624520
    [Google Scholar]
  150. XuT. JiP. HeM. LiJ. Growth and structure of pure ZnO micro/Nanocombs.J. Nanomater.201220121510.1155/2012/797935
    [Google Scholar]
  151. VermaA. ChaudharyP. TripathiR.K. YadavB.C. Transient photodetection studies on 2D ZnO nanostructures prepared by simple organic-solvent assisted route.Sens. Actuators A Phys.202132111260010.1016/j.sna.2021.112600
    [Google Scholar]
  152. GautamC. VermaA. ChaudharyP. YadavB.C. Development of 2D based ZnO-MoS2 nanocomposite for photodetector with light-induced current study.Opt. Mater.202212311186010.1016/j.optmat.2021.111860
    [Google Scholar]
  153. CaoB. CaiW. From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions.J. Phys. Chem. C2008112368068510.1021/jp076870l
    [Google Scholar]
  154. LiuX. ZhangJ. WangL. YangT. GuoX. WuS. WangS. 3D hierarchically porous ZnO structures and their functionalization by Aunanoparticles for gas sensors.J. Mater. Chem.201121234935610.1039/C0JM01800G
    [Google Scholar]
  155. TiginyanuI. GhimpuL. GröttrupJ. PostolacheV. MecklenburgM. Stevens-KalceffM.A. UrsakiV. PayamiN. FeidenhanslR. SchulteK. AdelungR. MishraY.K. Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites.Sci. Rep.2016613291310.1038/srep32913 27616632
    [Google Scholar]
  156. ShiL. WangZ. BaiL. YangG. Preparation of 3D nanoflower-like Zno/graphene oxide decorated with au@aupt bimetallic nanoparticles for electrochemical determination of doxorubicin hydrochloride.Int. J. Electrochem. Sci.202217122014410.20964/2022.1.45
    [Google Scholar]
  157. ShiL.N. ZhouY. ChenZ. MegharajM. NaiduR. Simultaneous adsorption and degradation of Zn2+ and Cu2+ from wastewaters using nanoscale zero-valent iron impregnated with clays.Environ. Sci. Pollut. Res. Int.20132063639364810.1007/s11356‑012‑1272‑7 23114838
    [Google Scholar]
  158. SmirnovaJ. GavrilovaJ. NoormägiA. ValmsenK. PupartH. LuoJ. TõuguV. PalumaaP. evaluation of Zn2+- and Cu2+-binding affinities of native Cu,Zn-SOD1 and its G93A mutant by LC-ICP MS.Molecules20222710316010.3390/molecules27103160 35630637
    [Google Scholar]
  159. FredenburghJ.C. LeslieB.A. StaffordA.R. LimT. ChanH.H. WeitzJ.I. Zn2+ mediates high affinity binding of heparin to the αC domain of fibrinogen.J. Biol. Chem.201328841293942940210.1074/jbc.M113.469916 23990470
    [Google Scholar]
  160. HorensteinJ. AkabasM.H. Location of a high affinity Zn2+ binding site in the channel of alpha1β1 γ-aminobutyric acid. A receptors.Mol. Pharmacol.1998535870877 9584213
    [Google Scholar]
  161. SimonsonT. CalimetN. Cysx Hisy Zn 2+ interactions: Thiol vs. thiolate coordination.Proteins2002491374810.1002/prot.10200 12211014
    [Google Scholar]
  162. PaceN. WeerapanaE. Zinc-binding cysteines: diverse functions and structural motifs.Biomolecules20144241943410.3390/biom4020419 24970223
    [Google Scholar]
  163. PearisoK. GouldingC.W. HuangS. MatthewsR.G. Penner-HahnJ.E. Characterization of the zinc binding site in methionine synthase enzymes of escherichia coli: the role of zinc in the methylation of homocysteine.J. Am. Chem. Soc.1998120338410841610.1021/ja980581g
    [Google Scholar]
  164. OberholzerA.E. BumannM. HegeT. RussoS. BaumannU. Metzincin’s canonical methionine is responsible for the structural integrity of the zinc-binding site.Biol. Chem.2009390987588110.1515/BC.2009.100
    [Google Scholar]
  165. WilcoxD.E. SchenkA.D. FeldmanB.M. XuY. Oxidation of zinc-binding cysteine residues in transcription factor proteins.Antioxid. Redox Signal.20013454956410.1089/15230860152542925 11554444
    [Google Scholar]
  166. KumarN. BhallaV. KumarM. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes.Coord. Chem. Rev.202142721355010.1016/j.ccr.2020.213550
    [Google Scholar]
  167. MatthewáLeevy, W. Selective recognition of bacterial membranes by zinc (II)-.Coordination Complexes. Chem. Commun.20061515951597
    [Google Scholar]
  168. McIntoshD.B. SalehO.A. Salt species-dependent electrostatic effects on ssDNA elasticity.Macromolecules20114472328233310.1021/ma1028196
    [Google Scholar]
  169. GudkovS.V. BurmistrovD.E. SerovD.A. RebezovM.B. SemenovaA.A. LisitsynA.B. A mini review of antibacterial properties of ZnO nanoparticles.Front. Phys.2021964148110.3389/fphy.2021.641481
    [Google Scholar]
  170. NovickR.P. Analysis by transduction of mutations affecting penicillinase formation in staphylococcus aureus.J. Gen. Microbiol.196333112113610.1099/00221287‑33‑1‑121 14072829
    [Google Scholar]
  171. SawaiJ. ShojiS. IgarashiH. HashimotoA. KokuganT. ShimizuM. KojimaH. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry.J. Ferment. Bioeng.199886552152210.1016/S0922‑338X(98)80165‑7
    [Google Scholar]
  172. PatiR. MehtaR.K. MohantyS. PadhiA. SenguptaM. VaseeharanB. GoswamiC. SonawaneA. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.Nanomedicine20141061195120810.1016/j.nano.2014.02.012 24607937
    [Google Scholar]
  173. DuttaR.K. NenavathuB.P. GangishettyM.K. ReddyA.V.R. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.Colloids Surf. B Biointerfaces20129414315010.1016/j.colsurfb.2012.01.046 22348987
    [Google Scholar]
  174. NisarP. AliN. RahmanL. AliM. ShinwariZ.K. Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action.J. Biol. Inorg. Chem.201924792994110.1007/s00775‑019‑01717‑7 31515623
    [Google Scholar]
  175. SinghR. ChengS. SinghS. Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on deinococcus radiodurans.3 Biotech202010113
    [Google Scholar]
  176. RatyJ.Y. GalliG. BostedtC. van BuurenT. TerminelloL. Quantum confinement and fullerenelike surface reconstructions in nanodiamonds.Phys. Rev. Lett.200390303740110.1103/PhysRevLett.90.037401 12570521
    [Google Scholar]
  177. ZhuS. SongY. WangJ. WanH. ZhangY. NingY. YangB. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state.Nano Today201713101410.1016/j.nantod.2016.12.006
    [Google Scholar]
  178. VittalR. Bai AswathanarayanJ. Nanoparticles and their potential application as antimicrobials.Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv.201116
    [Google Scholar]
  179. XieY. HeY. IrwinP.L. JinT. ShiX. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni.Appl. Environ. Microbiol.20117772325233110.1128/AEM.02149‑10 21296935
    [Google Scholar]
  180. SinghS. BarickK.C. BahadurD. Shape-controlled hierarchical ZnO architectures: photocatalytic and antibacterial activities.CrystEngComm201315234631463910.1039/c3ce27084j
    [Google Scholar]
  181. RamaniM. PonnusamyS. MuthamizhchelvanC. CullenJ. KrishnamurthyS. MarsiliE. Morphology-directed synthesis of ZnO nanostructures and their antibacterial activity.Colloids Surf. B Biointerfaces2013105243010.1016/j.colsurfb.2012.12.056 23352944
    [Google Scholar]
  182. QiK. ChengB. YuJ. HoW. Review on the improvement of the photocatalytic and antibacterial activities of ZnO.J. Alloys Compd.201772779282010.1016/j.jallcom.2017.08.142
    [Google Scholar]
  183. HeW. KimH.K. WamerW.G. MelkaD. CallahanJ.H. YinJ.J. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity.J. Am. Chem. Soc.2014136275075710.1021/ja410800y 24354568
    [Google Scholar]
  184. WangQ. ZhouY.M. XingC.Y. LiW.C. ShenY. YanP. GuoJ.S. FangF. ChenY.P. Encapsulins from Ca. Brocadia fulgida: An effective tool to enhance the tolerance of engineered bacteria (pET-28a-cEnc) to Zn2+.J. Hazard. Mater.202243512895410.1016/j.jhazmat.2022.128954 35462189
    [Google Scholar]
  185. Samper-MartínB. SarriasA. LázaroB. Pérez-MonteroM. Rodríguez-RodríguezR. RibeiroM.P.C. BañónA. WolfgeherD. JessenH.J. AlsinaB. ClotetJ. KronS.J. SaiardiA. JiménezJ. BruS. Polyphosphate degradation by Nudt3-Zn2+ mediates oxidative stress response.Cell Rep.202137711000410.1016/j.celrep.2021.110004 34788624
    [Google Scholar]
  186. ZervosenA. SauvageE. FrèreJ.M. CharlierP. LuxenA. Development of new drugs for an old target: the penicillin binding proteins.Molecules20121711124781250510.3390/molecules171112478 23095893
    [Google Scholar]
  187. HancockR.E.W. Aminoglycoside uptake and mode of action-with special reference to streptomycin and gentamicin. II. Effects of aminoglycosides on cells.J. Antimicrob. Chemother.19818642944510.1093/jac/8.6.429 7037727
    [Google Scholar]
  188. Ahmadi ShadmehriA. NamvarF. A review on green synthesis, cytotoxicity mechanism and antibacterial activity of Zno-NPs.J. Res. Appl. Basic Med. Sci.2020612331
    [Google Scholar]
  189. ShiL.E. LiZ.H. ZhengW. ZhaoY.F. JinY.F. TangZ.X. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201431217318610.1080/19440049.2013.865147 24219062
    [Google Scholar]
  190. TayelA.A. El-TrasW.F. MoussaS. El-BazA.F. MahrousH. SalemM.F. BrimerL. Antibacterial action of zinc oxide nanoparticles against foodborne pathogens.J. Food Saf.201131221121810.1111/j.1745‑4565.2010.00287.x
    [Google Scholar]
  191. JiangY. ZhangL. WenD. DingY. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli.Mater. Sci. Eng. C2016691361136610.1016/j.msec.2016.08.044 27612837
    [Google Scholar]
  192. PonnuveluD.V. SuriyarajS.P. VijayaraghavanT. SelvakumarR. PullithadathailB. Enhanced cell-wall damage mediated, antibacterial activity of core-shell ZnO@Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa.J. Mater. Sci. Mater. Med.201526720410.1007/s10856‑015‑5535‑y 26152512
    [Google Scholar]
  193. KjærgaardK. SchembriM.A. KlemmP. Novel Zn(2+)-chelating peptides selected from a fimbria-displayed random peptide library.Appl. Environ. Microbiol.200167125467547310.1128/AEM.67.12.5467‑5473.2001 11722894
    [Google Scholar]
  194. ConradyD.G. BresciaC.C. HoriiK. WeissA.A. HassettD.J. HerrA.B. A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms.Proc. Natl. Acad. Sci. USA200810549194561946110.1073/pnas.0807717105 19047636
    [Google Scholar]
  195. RibutS.H. Che AbdullahC.A. MustafaM. Mohd YusoffM.Z. Ahmad AzmanS.N. Influence of pH variations on zinc oxide nanoparticles and their antibacterial activity.Mater. Res. Express20186202501610.1088/2053‑1591/aaecbc
    [Google Scholar]
  196. KhosraviF. Mansouri-TorshiziH. Antibacterial combination therapy using Co 3+, Cu 2+, Zn 2+ and Pd 2+ complexes: Their calf thymus DNA binding studies.J. Biomol. Struct. Dyn.201836251253110.1080/07391102.2017.1281171 28090811
    [Google Scholar]
  197. AhmedB. DwivediS. AbdinM.Z. AzamA. Al-ShaeriM. KhanM.S. SaquibQ. Al-KhedhairyA.A. MusarratJ. Mitochondrial and chromosomal damage induced by oxidative stress in zn2+ ions, zno-bulk and zno-nps treated allium cepa roots.Sci. Rep.2017714068510.1038/srep40685 28120857
    [Google Scholar]
  198. ChoW.S. DuffinR. HowieS.E.M. ScottonC.J. WallaceW.A.H. MacNeeW. BradleyM. MegsonI.L. DonaldsonK. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes.Part. Fibre Toxicol.2011812710.1186/1743‑8977‑8‑27 21896169
    [Google Scholar]
  199. LiM. ZhuL. LinD. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components.Environ. Sci. Technol.20114551977198310.1021/es102624t 21280647
    [Google Scholar]
  200. ShohetS.B. PittJ. BaehnerR.L. PoplackD.G. Lipid peroxidation in the killing of phagocytized pneumococci.Infect. Immun.19741061321132810.1128/iai.10.6.1321‑1328.1974 4154921
    [Google Scholar]
  201. KishinoS. TakeuchiM. ParkS.B. HirataA. KitamuraN. KunisawaJ. KiyonoH. IwamotoR. IsobeY. AritaM. AraiH. UedaK. ShimaJ. TakahashiS. YokozekiK. ShimizuS. OgawaJ. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition.Proc. Natl. Acad. Sci. USA201311044178081781310.1073/pnas.1312937110 24127592
    [Google Scholar]
  202. Da CostaM.S. AlbuquerqueL. NobreM.F. WaitR. The Identification of Fatty Acids in Bacteria.Methods in microbiologyElsevier2011Vol. 38183196
    [Google Scholar]
  203. AdamsL.K. LyonD.Y. AlvarezP.J.J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions.Water Res.200640193527353210.1016/j.watres.2006.08.004 17011015
    [Google Scholar]
  204. ReddyK.M. FerisK. BellJ. WingettD.G. HanleyC. PunnooseA. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems.Appl. Phys. Lett.2007902121390210.1063/1.2742324 18160973
    [Google Scholar]
  205. BraynerR. Ferrari-IliouR. BrivoisN. DjediatS. BenedettiM.F. FiévetF. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium.Nano Lett.20066486687010.1021/nl052326h 16608300
    [Google Scholar]
  206. JiangW. MashayekhiH. XingB. Bacterial toxicity comparison between nano- and micro-scaled oxide particles.Environ. Pollut.200915751619162510.1016/j.envpol.2008.12.025 19185963
    [Google Scholar]
  207. HeinlaanM. IvaskA. BlinovaI. DubourguierH.C. KahruA. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus.Chemosphere20087171308131610.1016/j.chemosphere.2007.11.047 18194809
    [Google Scholar]
  208. LiuY. HeL. MustaphaA. LiH. HuZ.Q. LinM. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7.J. Appl. Microbiol.200910741193120110.1111/j.1365‑2672.2009.04303.x 19486396
    [Google Scholar]
  209. KadiyalaU. Turali-EmreE.S. BahngJ.H. KotovN.A. VanEppsJ.S. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA).Nanoscale201810104927493910.1039/C7NR08499D 29480295
    [Google Scholar]
  210. Lallo da SilvaB. AbuçafyM.P. Berbel ManaiaE. OshiroJunior J.A. Chiari-AndréoB.G. PietroR.C.L.R. ChiavacciL.A. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview.Int. J. Nanomedicine2019149395941010.2147/IJN.S216204 31819439
    [Google Scholar]
  211. ManzoorU. IslamM. TabassamL. RahmanS.U. Quantum confinement effect in ZnO nanoparticles synthesized by co-precipitate method. Phys. Low-dimensional Syst.Nanostructures200941916691672
    [Google Scholar]
  212. FakhroueianZ. HarsiniF.M. ChalabianF. KatouzianF. ShafiekhaniA. EsmaeilzadehP. Influence of modified Zno quantum dots and nanostructures as new antibacterials.Adv. Nanopart.20132324725810.4236/anp.2013.23035
    [Google Scholar]
  213. SchoenhalzA.L. ArantesJ.T. FazzioA. DalpianG.M. Surface and quantum confinement effects in ZnO nanocrystals.J. Phys. Chem. C201011443182931829710.1021/jp103768v
    [Google Scholar]
  214. GarciaI.M. LeituneV.C.B. VisioliF. SamuelS.M.W. CollaresF.M. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin.J. Dent.201873576010.1016/j.jdent.2018.04.003 29653139
    [Google Scholar]
  215. BasnetP. ChatterjeeS. Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review.Nano-Structures & Nano-Objects20202210042610.1016/j.nanoso.2020.100426
    [Google Scholar]
  216. StankovićA. DimitrijevićS. UskokovićD. Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents.Colloids Surf. B Biointerfaces2013102212810.1016/j.colsurfb.2012.07.033 23010107
    [Google Scholar]
  217. TalebianN. AmininezhadS.M. DoudiM. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties.J. Photochem. Photobiol. B2013120667310.1016/j.jphotobiol.2013.01.004 23428888
    [Google Scholar]
  218. FanP. MaZ. PartowA.J. KimM. ShoemakerG.M. TanR. TongZ. NelsonC.D. JangY. JeongK.C. A novel combination therapy for multidrug resistant pathogens using chitosan nanoparticles loaded with β-lactam antibiotics and β-lactamase inhibitors.Int. J. Biol. Macromol.202219550651410.1016/j.ijbiomac.2021.12.035 34920071
    [Google Scholar]
  219. MasimenM.A.A. HarunN.A. MaulidianiM. IsmailW.I.W. Overcoming methicillin-resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles.Antibiotics202211795110.3390/antibiotics11070951 35884205
    [Google Scholar]
  220. Abo-ShamaU.H. El-GendyH. MousaW.S. HamoudaR.A. YousufW.E. HettaH.F. AbdeenE.E. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms.Infect. Drug Resist.20201335136210.2147/IDR.S234425 32104007
    [Google Scholar]
  221. GuoB.L. HanP. GuoL.C. CaoY.Q. LiA.D. KongJ.Z. ZhaiH.F. WuD. The antibacterial activity of ta-doped zno nanoparticles.Nanoscale Res. Lett.201510133610.1186/s11671‑015‑1047‑4 26293495
    [Google Scholar]
  222. KongJ.Z. LiA.D. ZhaiH.F. GongY.P. LiH. WuD. Preparation, characterization of the Ta-doped ZnO nanoparticles and their photocatalytic activity under visible-light illumination.J. Solid State Chem.200918282061206710.1016/j.jssc.2009.03.022
    [Google Scholar]
  223. MittalM. SharmaM. PandeyO.P. UV-Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method.Sol. Energy201411038639710.1016/j.solener.2014.09.026
    [Google Scholar]
  224. LinY.J. ChangY.H. YangW.D. TsaiB.S. Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method.J. Non-Cryst. Solids2006352878979410.1016/j.jnoncrysol.2006.02.001
    [Google Scholar]
  225. StoimenovP.K. KlingerR.L. MarchinG.L. KlabundeK.J. Metal oxide nanoparticles as bactericidal agents.Langmuir200218176679668610.1021/la0202374
    [Google Scholar]
  226. LoshkarevaN.N. SukhorukovY.P. GizhevskiiB.A. SamokhvalovA.A. ArkhipovV.E. NaishV.E. KarabashevS.G. MukovskiiY.M. Red shift of absorption edge and nonmetal-metal transition in single crystals La1—xSrxMnO3 (x = 0.1, 0.2, 0.3).Phys. Status Solidi, A Appl. Res.1997164286386710.1002/1521‑396X(199712)164:2<863:AID‑PSSA863>3.0.CO;2‑7
    [Google Scholar]
  227. GhimireS. DiChiaraA.D. SistrunkE. SzafrugaU.B. AgostiniP. DiMauroL.F. ReisD.A. Redshift in the optical absorption of ZnO single crystals in the presence of an intense midinfrared laser field.Phys. Rev. Lett.20111071616740710.1103/PhysRevLett.107.167407 22107430
    [Google Scholar]
  228. MaZ. RenF. MingX. LongY. VolinskyA.A. Cu-Doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments.Materials201912119610.3390/ma12010196 30626170
    [Google Scholar]
  229. BhuyanT. KhanujaM. SharmaR. PatelS. ReddyM.R. AnandS. VarmaA. A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action.J. Nanopart. Res.201517728810.1007/s11051‑015‑3093‑3
    [Google Scholar]
  230. ZhangX. QinJ. XueY. YuP. ZhangB. WangL. LiuR. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods.Sci. Rep.201441459610.1038/srep04596 24699790
    [Google Scholar]
  231. PremanathanM. KarthikeyanK. JeyasubramanianK. ManivannanG. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation.Nanomedicine20117218419210.1016/j.nano.2010.10.001 21034861
    [Google Scholar]
  232. RaghupathiK.R. KoodaliR.T. MannaA.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles.Langmuir20112774020402810.1021/la104825u 21401066
    [Google Scholar]
  233. GeorgeS. PokhrelS. JiZ. HendersonB.L. XiaT. LiL. ZinkJ.I. Nel, A.E.; Mädler, L. Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm.J. Am. Chem. Soc.201113329112701127810.1021/ja202836s 21678906
    [Google Scholar]
  234. CapaldiR.A. Structure and function of cytochrome c oxidase.Annu. Rev. Biochem.199059156959610.1146/annurev.bi.59.070190.003033 2165384
    [Google Scholar]
  235. MichelH. BehrJ. HarrengaA. KanntA. Cytochrome c oxidase: Structure and Spectroscopy.Annu. Rev. Biophys. Biomol. Struct.199827132935610.1146/annurev.biophys.27.1.329 9646871
    [Google Scholar]
  236. EllertonH.D. EllertonN.F. RobinsonH.A. Hemocyanin—a current perspective.Prog. Biophys. Mol. Biol.198341314324710.1016/0079‑6107(83)90028‑7 6348872
    [Google Scholar]
  237. CioffiN. TorsiL. DitarantoN. TantilloG. GhibelliL. SabbatiniL. Bleve-ZacheoT. D’AlessioM. ZamboninP.G. TraversaE. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties.Chem. Mater.200517215255526210.1021/cm0505244
    [Google Scholar]
  238. KoniecznyJ. RdzawskiZ. Antibacterial properties of copper and its alloys.Arch. Mater. Sci. Eng.20125625360
    [Google Scholar]
  239. WangL.S. WuH. DesaiS.R. LouL. Electronic structure of small copper oxide clusters: From Cu2O to Cu2O4.Phys. Rev. B Condens. Matter199653128028803110.1103/PhysRevB.53.8028 9982259
    [Google Scholar]
  240. SalvanG. RobaschikP. FronkM. MüllerS. WaechtlerT. SchulzS.E. MothesR. LangH. SchubertC. ThomasS. AlbrechtM. ZahnD.R.T. Magneto-optical Kerr effect studies of Cu2O/nickel heterostructures.Microelectron. Eng.201310713013310.1016/j.mee.2012.10.023
    [Google Scholar]
  241. YinM. WuC.K. LouY. BurdaC. KobersteinJ.T. ZhuY. O’BrienS. Copper oxide nanocrystals.J. Am. Chem. Soc.2005127269506951110.1021/ja050006u 15984877
    [Google Scholar]
  242. HeinemannM. EifertB. HeiligerC. Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3.Phys. Rev. B Condens. Matter Mater. Phys.2013871111511110.1103/PhysRevB.87.115111
    [Google Scholar]
  243. MottD. GalkowskiJ. WangL. LuoJ. ZhongC.J. Synthesis of size-controlled and shaped copper nanoparticles.Langmuir200723105740574510.1021/la0635092 17407333
    [Google Scholar]
  244. ZhuH. ZhangC. YinY. Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size.Nanotechnology200516123079308310.1088/0957‑4484/16/12/059
    [Google Scholar]
  245. SunS. MurrayC.B. WellerD. FolksL. MoserA. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices.Science200028754601989199210.1126/science.287.5460.1989 10720318
    [Google Scholar]
  246. LisieckiI. PileniM.P. Synthesis of copper metallic clusters using reverse micelles as microreactors.J. Am. Chem. Soc.1993115103887389610.1021/ja00063a006
    [Google Scholar]
  247. RajivgandhiG. MaruthupandyM. MuneeswaranT. RamachandranG. ManoharanN. QueroF. AnandM. SongJ.M. Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin resistant ESBL producing bacteria.Microb. Pathog.201912726727610.1016/j.micpath.2018.12.017 30550842
    [Google Scholar]
  248. EleftheriadouI. GiannousiK. ProtonotariouE. SkouraL. ArsenakisM. Dendrinou-SamaraC. SivropoulouA. Cocktail of CuO, ZnO, or CuZn nanoparticles and antibiotics for combating multidrug-resistant pseudomonas aeruginosa via efflux pump inhibition.ACS Appl. Nano Mater.2021499799981010.1021/acsanm.1c02208
    [Google Scholar]
  249. Morales-CerónJ.P. Salazar-PeredaV. Mendoza-EspinosaD. Alvarado-RodríguezJ.G. Cruz-BorbollaJ. Andrade-LópezN. Vásquez-PérezJ.M. Synthesis of Ir(III) complexes with Tp Me2 and acac ligands and their reactivity with electrophiles.Dalton Trans.20154431138811388910.1039/C5DT01937K 26148543
    [Google Scholar]
  250. ZhouW. FuL. ZhaoL. XuX. LiW. WenM. WuQ. Novel core-sheath Cu/Cu 2 O-ZnO-Fe 3 O 4 nanocomposites with high-efficiency chlorine-resistant bacteria sterilization and trichloroacetic acid degradation performance.ACS Appl. Mater. Interfaces2021139108781089010.1021/acsami.0c21336 33635062
    [Google Scholar]
  251. ChariN. FelixL. DavoodbashaM. Sulaiman AliA. NooruddinT. In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens.Biocatal. Agric. Biotechnol.20171033634110.1016/j.bcab.2017.04.013
    [Google Scholar]
  252. RaheemH.Q. Antibiofilm activity of copper nanoparticles against pseudomonas fluorescens isolated from wound infection.Biochem. Cell. Arch.202060876090
    [Google Scholar]
  253. YinI.X. ZhangJ. ZhaoI.S. MeiM.L. LiQ. ChuC.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry.Int. J. Nanomedicine2020152555256210.2147/IJN.S246764 32368040
    [Google Scholar]
  254. SimW. BarnardR. BlaskovichM.A.T. ZioraZ. Antimicrobial silver in medicinal and consumer applications: a patent review of the past decade (2007-2017).Antibiotics2018749310.3390/antibiotics7040093 30373130
    [Google Scholar]
  255. ClementJ.L. JarrettP.S. Antibacterial silver.Met. Based Drugs199415-646748210.1155/MBD.1994.467 18476264
    [Google Scholar]
  256. Vazquez-MuñozR. Meza-VillezcasA. FournierP.G.J. Soria-CastroE. Juarez-MorenoK. Gallego-HernándezA.L. BogdanchikovaN. Vazquez-DuhaltR. Huerta-SaqueroA. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane.PLoS One20191411e022490410.1371/journal.pone.0224904 31703098
    [Google Scholar]
  257. KoraA. J. RastogiL. Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria.Bioinorg. Chem. Appl.2013201310.1155/2013/871097
    [Google Scholar]
  258. DengH. McShanD. ZhangY. SinhaS.S. ArslanZ. RayP.C. YuH. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics.Environ. Sci. Technol.201650168840884810.1021/acs.est.6b00998 27390928
    [Google Scholar]
  259. DunbarK.L. ScharfD.H. LitomskaA. HertweckC. Enzymatic carbon-sulfur bond formation in natural product biosynthesis.Chem. Rev.201711785521557710.1021/acs.chemrev.6b00697 28418240
    [Google Scholar]
  260. SondiI. Salopek-SondiB. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria.J. Colloid Interface Sci.2004275117718210.1016/j.jcis.2004.02.012 15158396
    [Google Scholar]
  261. McShanD. ZhangY. DengH. RayP.C. YuH. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant salmonella typhimurium DT104.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.201533336938410.1080/10590501.2015.1055165 26072671
    [Google Scholar]
  262. QiaoZ. YaoY. SongS. YinM. LuoJ. Silver nanoparticles with pH induced surface charge switchable properties for antibacterial and antibiofilm applications.J. Mater. Chem. B Mater. Biol. Med.20197583084010.1039/C8TB02917B 32254858
    [Google Scholar]
  263. ChenL.Q. FangL. LingJ. DingC.Z. KangB. HuangC.Z. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity.Chem. Res. Toxicol.201528350150910.1021/tx500479m 25602487
    [Google Scholar]
  264. LiuL. YangJ. XieJ. LuoZ. JiangJ. YangY.Y. LiuS. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes.Nanoscale2013593834384010.1039/c3nr34254a 23525222
    [Google Scholar]
  265. GuptaA. HoloidovskyL. ThamaraiselvanC. ThakurA.K. SinghS.P. MeijlerM.M. ArnuschC.J. Silver-doped laser-induced graphene for potent surface antibacterial activity and anti-biofilm action.Chem. Commun.201955486890689310.1039/C9CC02415H 31134255
    [Google Scholar]
  266. GregoireS. XiaoJ. SilvaB.B. GonzalezI. AgidiP.S. KleinM.I. AmbatipudiK.S. RosalenP.L. BausermanR. WaughR.E. KooH. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces.Appl. Environ. Microbiol.201177186357636710.1128/AEM.05203‑11 21803906
    [Google Scholar]
  267. SwilamN. NematallahK.A. Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles.Sci. Rep.20201011485110.1038/s41598‑020‑71847‑5 32908245
    [Google Scholar]
  268. ThomasR. SnigdhaS. BhavithaK. B. BabuS. AjithA. RadhakrishnanE. K. Biofabricated silver nanoparticles incorporated polymethyl methacrylate as a dental adhesive material with antibacterial and antibiofilm activity against streptococcus mutans. 3 Biotech20188 110
    [Google Scholar]
  269. ShrivastavaS. BeraT. RoyA. SinghG. RamachandraraoP. DashD. Retracted: Characterization of enhanced antibacterial effects of novel silver nanoparticles.Nanotechnology2007182222510310.1088/0957‑4484/18/22/225103 37016550
    [Google Scholar]
  270. FerdousZ. NemmarA. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure.Int. J. Mol. Sci.2020217237510.3390/ijms21072375 32235542
    [Google Scholar]
  271. SkeetersS.S. RosuA.C. Divyanshi; Yang, J.; Zhang, K. Comparative determination of cytotoxicity of sub-10 nm copper nanoparticles to prokaryotic and eukaryotic systems.ACS Appl. Mater. Interfaces20201245502035021110.1021/acsami.0c11052 33124795
    [Google Scholar]
  272. MohammadpourR. DobrovolskaiaM.A. CheneyD.L. GreishK.F. GhandehariH. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications.Adv. Drug Deliv. Rev.201914411213210.1016/j.addr.2019.07.006 31295521
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137301010240507101533
Loading
/content/journals/cnano/10.2174/0115734137301010240507101533
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test