Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Argan oil is a rich source of bioactive chemicals with potential health advantages and is derived from the kernels of the tree. Since ancient times, argan oil has been used as a natural cure in traditional medicine. Traditional uses of argan oil include cooking, massaging, healing, and curing skin, nails, and hair ailments. Due to the high concentration of mono- and polyunsaturated fatty acids, antioxidants, polyphenols, and tocopherols, numerous industries are interested in using them in their top-selling products. Studies have evaluated argan oil's exceptional qualities, which include restoring the skin's water-lipid layer, increasing nutrients in skin cells, stimulating intracellular oxygen, neutralizing free radicals, regulating lipid metabolism, lowering blood pressure, and reducing inflammatory indicators. Utilizing argan oil in diet will help to fight ailments like cancer, diabetes, and cardiovascular conditions. In this article, we reviewed the published literature to delineate argan oil's chemical composition, extraction procedures, and pharmacological potential. Furthermore, we also explored the health-beneficial properties of argan oil-based nano-formulations with evidence to prove their effectiveness against various diseases. Underlying argan oil's rich composition and beneficial effects, exploring its favorable qualities and the mechanisms underlying its curative activity will require extensive research.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137279106231227044328
2024-01-26
2025-04-03
Loading full text...

Full text loading...

References

  1. BrennerD.M. Perilla: Botany, uses and genetic resources.J. Janick and JE1993667
    [Google Scholar]
  2. MortonJ.F. VossG.L. The argan tree (Argania sideroxylon, sapotaceae), a desert source of edible oil.Econ. Bot.198741222123310.1007/BF02858970
    [Google Scholar]
  3. FennaneM. TattouM.I. Statistics and comments on the current inventory of the vascular flora of Morocco.Flora20081986
    [Google Scholar]
  4. MsandaF. El AboudiA. PeltierJ-P. Biodiversity and biogeography of the Moroccan argan grove.Cah. Agric.200514351357364
    [Google Scholar]
  5. El HafianM. BenlandiniN. ElyacoubiH. ZidaneL. RochdiA. Floristic and ethnobotanical study of medicinal plants used in the prefecture of Agadir-Ida-Outanane (Maroc).J. Appl. Biosci.20148117198721310.4314/jab.v81i1.8
    [Google Scholar]
  6. TahrouchS. AndaryC. RapiorS. MondolotL. GargadennecA. FruchierA. Polyphenol investigation of Argania spinosa (Sapotaceae) endemic tree from Morocco.Acta Bot. Gallica2000147322523210.1080/12538078.2000.10515843
    [Google Scholar]
  7. CharroufZ. HilaliM. JaureguiO. SoufiaouiM. GuillaumeD. Separation and characterization of phenolic compounds in argan fruit pulp using liquid chromatography–negative electrospray ionization tandem mass spectroscopy.Food Chem.200710041398140110.1016/j.foodchem.2005.11.031
    [Google Scholar]
  8. BonviciniF. AntognoniF. MandroneM. ProttiM. MercoliniL. LianzaM. GentilomiG. PoliF. Phytochemical analysis and antibacterial activity towards methicillin-resistant Staphylococcus aureus of leaf extracts from Argania spinosa (L.) Skeels.Plant Biosyst.2017151649656
    [Google Scholar]
  9. López SáezJ.A. Alba SánchezF. Ecology, ethnobotany and ethnopharmacology of argan (Argania spinosa).ResearchGate200985323341
    [Google Scholar]
  10. Bani-AameurF. LoualiL. DupuisP. Ripening and falling of argan fruits Moroccan J Agronomic.Vet. Sci.199818151158
    [Google Scholar]
  11. M’hiritO. BenzyaneM. BenchekrouneF. The Argan tree: A fruit-forestry species with multiple uses.To Marda1998
    [Google Scholar]
  12. BenchekrounF. A typical agroforestry system in Morocco: The argan grove.1990
    [Google Scholar]
  13. El MonfaloutiH. CharroufZ. BelvisoS. GhirardelloD. ScursatoneB. GuillaumeD. DenhezC. ZeppaG. Analysis and antioxidant capacity of the phenolic compounds from argan fruit (Argania spinosa (L.) Skeels).Eur. J. Lipid Sci. Technol.2012114444645210.1002/ejlt.201100209
    [Google Scholar]
  14. DefaaC. ElantryS. Lahlimi El AlamiS. AchourA. El MousadikA. MsandaF. Effects of tree shelters on the survival and growth of Argania spinosa seedlings in mediterranean arid environment.Int. J. Ecol.2015201516
    [Google Scholar]
  15. CharroufZ. GuillaumeD. Sustainable development in Northern Africa: The argan forest case.Sustainability2009141012102210.3390/su1041012
    [Google Scholar]
  16. KhalloukiF. EddouksM. MouradA. BreuerA. OwenR. Ethnobotanic, ethnopharmacologic aspects and new phytochemical insights into moroccan argan fruits.Int. J. Mol. Sci.20171811227710.3390/ijms18112277 29084170
    [Google Scholar]
  17. BoukhobzaM. Pichon-PrunN. The argan tree is an economic and medicinal resource for Morocco.Phytotherapy1988272126
    [Google Scholar]
  18. SoheirK. SirineH. Ethnobotanical investigation into the traditional use of natural cosmetics in Algeria2019
    [Google Scholar]
  19. KaboussA.E. CharroufZ. FaidM. GarneauF.X. CollinG. Chemical composition and antimicrobial activity of the leaf essential oil of Argania spinosa L.Skeels. J. Essent. Oil Res.200214214714910.1080/10412905.2002.9699801
    [Google Scholar]
  20. CharroufZ. GuillaumeD. Ethnoeconomical, ethnomedical, and phytochemical study of argania spinosa (L.) skeels.J. Ethnopharmacol.199967171410.1016/S0378‑8741(98)00228‑1 10616955
    [Google Scholar]
  21. MoukalA. The argan tree, Argania spinosa L. (skeels), therapeutic, cosmetic and food use.Phytotherapy20042513514110.1007/s10298‑004‑0041‑2
    [Google Scholar]
  22. MonfaloutiH.E. CharroufZ. GiordanoM. GuillaumeD. KartahB. HarharH. GharbyS. DenhezC. ZeppaG. Volatile compound formation during argan kernel roasting.Nat. Prod. Commun.201381934578X1300800108
    [Google Scholar]
  23. CharroufM.h. Contribution to the chemical study of Argania spinosa (L.) oil.Sapotaceae1984
    [Google Scholar]
  24. CharroufZ. GuillaumeD. Argan oil: Occurrence, composition and impact on human health.Eur. J. Lipid Sci. Technol.2008110763263610.1002/ejlt.200700220
    [Google Scholar]
  25. El MonfaloutiH. GuillaumeD. DenhezC. CharroufZ. Therapeutic potential of argan oil: A review.J. Pharm. Pharmacol.201062121669167510.1111/j.2042‑7158.2010.01190.x 21054392
    [Google Scholar]
  26. SodeifianG. Saadati ArdestaniN. SajadianS.A. Extraction of seed oil from Diospyros lotus optimized using response surface methodology.J. For. Res.201930270971910.1007/s11676‑018‑0631‑8
    [Google Scholar]
  27. GuillaumeD. CharroufZ. Argan oil. Monograph.Altern. Med. Rev.2011163275279 21951028
    [Google Scholar]
  28. AdlouniA. Argan oil, from nutrition to health.Phytotherapy201082899710.1007/s10298‑010‑0538‑9
    [Google Scholar]
  29. MouahidA. BombardaI. Claeys-BrunoM. AmatS. MyotteE. NisteronJ.-P. CramponC. BadensE. Supercritical CO2 extraction of Moroccan argan (Argania spinosa L.) oil: Extraction kinetics and solubility determination.J. CO2 Util.202146101458
    [Google Scholar]
  30. NaushadM. LichtfouseE. Lichtfouse, sustainable agriculture reviews 34Date Palm for Food Medicine and the Environment201934
    [Google Scholar]
  31. SodeifianG. SajadianS.A. Investigation of essential oil extraction and antioxidant activity of Echinophora platyloba DC. using supercritical carbon dioxide.J. Supercrit. Fluids2017121526210.1016/j.supflu.2016.11.014
    [Google Scholar]
  32. SodeifianG. AziziJ. GhoreishiS.M. Response surface optimization of smyrnium cordifolium boiss (SCB) oil extraction via supercritical carbon dioxide.J. Supercrit. Fluids2014951710.1016/j.supflu.2014.07.023
    [Google Scholar]
  33. SodeifianG. SajadianS.A. Saadati ArdestaniN. Supercritical fluid extraction of omega-3 from Dracocephalum kotschyi seed oil: Process optimization and oil properties.J. Supercrit. Fluids201711913914910.1016/j.supflu.2016.08.019
    [Google Scholar]
  34. SodeifianG. ArdestaniN.S. SajadianS.A. MoghadamianK. Properties of Portulaca oleracea seed oil via supercritical fluid extraction: Experimental and optimization.J. Supercrit. Fluids2018135344410.1016/j.supflu.2017.12.026
    [Google Scholar]
  35. SodeifianG. RazmimaneshF. SajadianS.A. Solubility measurement of a chemotherapeutic agent (Imatinib mesylate) in supercritical carbon dioxide: Assessment of new empirical model.J. Supercrit. Fluids2019146899910.1016/j.supflu.2019.01.006
    [Google Scholar]
  36. SodeifianG. SajadianS.A. RazmimaneshF. ArdestaniN.S. A comprehensive comparison among four different approaches for predicting the solubility of pharmaceutical solid compounds in supercritical carbon dioxide.Korean J. Chem. Eng.201835102097211610.1007/s11814‑018‑0125‑6
    [Google Scholar]
  37. SodeifianG. NasriL. RazmimaneshF. Arbab NooshabadiM. Solubility of ibrutinib in supercritical carbon dioxide (Sc-CO2): Data correlation and thermodynamic analysis.J. Chem. Thermodyn.202318210705010.1016/j.jct.2023.107050
    [Google Scholar]
  38. NateghiH. SodeifianG. RazmimaneshF. Mohebbi Najm AbadJ. A machine learning approach for thermodynamic modeling of the statically measured solubility of nilotinib hydrochloride monohydrate (anti-cancer drug) in supercritical CO2.Sci. Rep.20231311290610.1038/s41598‑023‑40231‑4 37558797
    [Google Scholar]
  39. SodeifianG. Saadati ArdestaniN. SajadianS.A. GolmohammadiM.R. FazlaliA. Prediction of solubility of sodium valproate in supercritical carbon dioxide: Experimental study and thermodynamic modeling.J. Chem. Eng. Data20206541747176010.1021/acs.jced.9b01069
    [Google Scholar]
  40. SodeifianG. Arbab NooshabadiM. RazmimaneshF. TabibzadehA. Solubility of buprenorphine hydrochloride in supercritical carbon dioxide: Study on experimental measuring and thermodynamic modeling.Arab. J. Chem.2023161010519610.1016/j.arabjc.2023.105196
    [Google Scholar]
  41. SodeifianG. UsefiM.M.B. Solubility, extraction, and nanoparticles production in supercritical carbon dioxide: A mini‐review.ChemBioEng Rev.202310213316610.1002/cben.202200020
    [Google Scholar]
  42. Saadati ArdestaniN. SodeifianG. SajadianS.A. Preparation of phthalocyanine green nano pigment using supercritical CO2 gas antisolvent (GAS): Experimental and modeling.Heliyon202069e0494710.1016/j.heliyon.2020.e04947 32995627
    [Google Scholar]
  43. RazmimaneshF. SodeifianG. SajadianS.A. An investigation into Sunitinib malate nanoparticle production by US- RESOLV method: Effect of type of polymer on dissolution rate and particle size distribution.J. Supercrit. Fluids202117010516310.1016/j.supflu.2021.105163
    [Google Scholar]
  44. SodeifianG. SajadianS.A. DerakhsheshpourR. CO2 utilization as a supercritical solvent and supercritical antisolvent in production of sertraline hydrochloride nanoparticles.J. CO2 Util.202255101799
    [Google Scholar]
  45. SodeifianG. SajadianS.A. Utilization of ultrasonic-assisted RESOLV (US-RESOLV) with polymeric stabilizers for production of amiodarone hydrochloride nanoparticles: Optimization of the process parameters.Chem. Eng. Res. Des.201914226828410.1016/j.cherd.2018.12.020
    [Google Scholar]
  46. AmeriA. SodeifianG. SajadianS.A. Lansoprazole loading of polymers by supercritical carbon dioxide impregnation: Impacts of process parameters.J. Supercrit. Fluids202016410489210.1016/j.supflu.2020.104892
    [Google Scholar]
  47. FathiM. SodeifianG. SajadianS.A. Experimental study of ketoconazole impregnation into polyvinyl pyrrolidone and hydroxyl propyl methyl cellulose using supercritical carbon dioxide: Process optimization.J. Supercrit. Fluids202218810567410.1016/j.supflu.2022.105674
    [Google Scholar]
  48. SodeifianG. SajadianS.A. HonarvarB. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide.Nat. Prod. Res.201832779580310.1080/14786419.2017.1361954 28783956
    [Google Scholar]
  49. SodeifianG. SajadianS.A. Saadati ArdestaniN. Experimental optimization and mathematical modeling of the supercritical fluid extraction of essential oil from Eryngium billardieri: Application of simulated annealing (SA) algorithm.J. Supercrit. Fluids201712714615710.1016/j.supflu.2017.04.007
    [Google Scholar]
  50. DaneshyanS. SodeifianG. Synthesis of cyclic polystyrene in supercritical carbon dioxide green solvent.J. Supercrit. Fluids202218810567910.1016/j.supflu.2022.105679
    [Google Scholar]
  51. TaribakC. CasasL. MantellC. ElfadliZ. MetniR.E. Martínez de la OssaE.J. Quality of cosmetic argan oil extracted by supercritical fluid extraction from Argania spinosa L.J. Chem.20132013
    [Google Scholar]
  52. SimõesC.M.O. SchenkelE.P. de MelloJ.C.P. MentzL.A. PetrovickP.R. Pharmacognosy: from natural product to medicine.Artmed Editora2016
    [Google Scholar]
  53. BrogleH. CO2 as a solvent: Its properties and applications.Chem. Ind.1982385390
    [Google Scholar]
  54. CarvalhoR.N.Jr MouraL.S. RosaP.T.V. MeirelesM.A.A. Supercritical fluid extraction from rosemary (Rosmarinus officinalis): Kinetic data, extract’s global yield, composition, and antioxidant activity.J. Supercrit. Fluids200535319720410.1016/j.supflu.2005.01.009
    [Google Scholar]
  55. HalouiI. MeniaiA.H. Supercritical CO2 extraction of essential oil from algerian argan (Argania spinosa L.) seeds and yield optimization.Int. J. Hydrogen Energy20174217129121291910.1016/j.ijhydene.2016.12.012
    [Google Scholar]
  56. MechqoqH. El YaagoubiM. MomchilovaS. MsandaF. El AouadN. Comparative study on yields and quality parameters of argan oils extracted by conventional and green extraction techniques. GGrain Oil Sci.Technol.20214312513010.1016/j.gaost.2021.08.002
    [Google Scholar]
  57. MeirelesM.A.A. Supercritical extraction from solid: Process design data (2001–2003).Curr. Opin. Solid State Mater. Sci.200374-532133010.1016/j.cossms.2003.10.008
    [Google Scholar]
  58. HalouiR.B. ZekhniniA. HatimiA. Effects of extraction methods on chemical composition and oxidative stability of Argan oil.J. Chem. Pharm. Res.20157518524
    [Google Scholar]
  59. GharbyS. HarharH. BouzoubaâZ. ElmadaniN. CharroufZ. The effect of storage conditions and roasting kernels on extra virgin Argan oil quality.J. Mater. Environ. Sci.20156254263
    [Google Scholar]
  60. MarocaineN. Moroccan Industrial standardization service argan oil, specifications.Rabat, NM2003
    [Google Scholar]
  61. PaulyG. HenryF. DanouxL. CharroufZ. Cosmetic and/or dermopharmaceutical composition containing extracts obtained from the leaves of Argania spinosa.Pat. Appl. EP20021213025
    [Google Scholar]
  62. El AbbassiA. KhalidN. ZbakhH. AhmadA. Physicochemical characteristics, nutritional properties, and health benefits of argan oil: A review.Crit. Rev. Food Sci. Nutr.201454111401141410.1080/10408398.2011.638424 24580537
    [Google Scholar]
  63. MechqoqH. El YaagoubiM. El HamdaouiA. MomchilovaS. Guedes da Silva AlmeidaJ.R. MsandaF. El AouadN. Ethnobotany, phytochemistry and biological properties of Argan tree (Argania spinosa (L.) Skeels) (Sapotaceae) - A review.J. Ethnopharmacol.202128111452810.1016/j.jep.2021.114528 34418509
    [Google Scholar]
  64. BerradaY. SettafA. BaddouriK. CherrahA. HassarM. Experimental evidence of an antihypertensive and hypocholesterolemic effect of oil of argan, Argania sideroxylon.Therapie2000553375378 10967715
    [Google Scholar]
  65. MaurinR. Fellat-ZarrouckK. KsirM. Positional analysis and determination of triacylglycerol structure of Argania spinosa seed oil.J. Am. Oil Chem. Soc.199269214114510.1007/BF02540564
    [Google Scholar]
  66. HilaliM. CharroufZ. Aziz SoulhiA.E. HachimiL. GuillaumeD. Influence of origin and extraction method on argan oil physico-chemical characteristics and composition.J. Agric. Food Chem.20055362081208710.1021/jf040290t 15769139
    [Google Scholar]
  67. FarinesM. SoulierJ. CharroufM. CaveA. Study on the seed oil from Argania spinosa (L.); Sapotaceae. 2. Sterols, triterpen alcohols and methylsterols.FranceRevue Francaise des Corps Gras1984
    [Google Scholar]
  68. DakicheH. KhaliM. BoutoumiH. Phytochemical characterization and in vivo anti-inflammatory and wound-healing activities of argania spinosa (L.) skeels seed oil.Rec. Nat. Prod.201711171184
    [Google Scholar]
  69. RahmaniM. Composition chimique de l’huile d’argane vierge.Cah. Agric.200514461465
    [Google Scholar]
  70. CharroufZ. HamchiH.E. MalliaS. LicitraG. GuillaumeD. Influence of roasting and seed collection on argan oil odorant composition.Nat. Prod. Commun.200611934578X0600100511
    [Google Scholar]
  71. MatthäusB. GuillaumeD. GharbyS. HaddadA. HarharH. CharroufZ. Effect of processing on the quality of edible argan oil.Food Chem.2010120242643210.1016/j.foodchem.2009.10.023
    [Google Scholar]
  72. BelcadiR. Study of changes in the cellular antioxidant system as a function of age and dietary intake of polyunsaturated fatty acids in rats Influence of ingestion of particular argan oil.Agadir, Morocco1994
    [Google Scholar]
  73. CooneyR.V. FrankeA.A. HarwoodP.J. Hatch-PigottV. CusterL.J. MordanL.J. Gamma-tocopherol detoxification of nitrogen dioxide: Superiority to alpha-tocopherol.Proc. Natl. Acad. Sci. USA19939051771177510.1073/pnas.90.5.1771 8446589
    [Google Scholar]
  74. MarfilR. GiménezR. MartínezO. BouzasP.R. Rufián-HenaresJ.A. MesíasM. Cabrera-ViqueC. Determination of polyphenols, tocopherols, and antioxidant capacity in virgin argan oil (Argania spinosa, Skeels).Eur. J. Lipid Sci. Technol.2011113788689310.1002/ejlt.201000503
    [Google Scholar]
  75. BahbitiY. AmmouriH. BerkiksI. HessniA.E. OuichouA. NakacheR. ChakitM. BikjdaoueneL. MesfiouiA. Anticonvulsant effect of argan oil on pilocarpine model induced status epilepticus in wistar rats.Nutr. Neurosci.201821211612210.1080/1028415X.2016.1228492 27617842
    [Google Scholar]
  76. El KharrassiY. SamadiM. LopezT. NuryT. El KebbajR. AndreolettiP. El HajjH.I. VamecqJ. MoustaidK. LatruffeN. El KebbajM.H.S. MassonD. LizardG. NasserB. Cherkaoui-MalkiM. Biological activities of schottenol and spinasterol, two natural phytosterols present in argan oil and in cactus pear seed oil, on murine miroglial BV2 cells.Biochem. Biophys. Res. Commun.2014446379880410.1016/j.bbrc.2014.02.074 24582563
    [Google Scholar]
  77. RichardC. CoutureP. DesrochesS. CharestA. LamarcheB. Effect of the mediterranean diet with and without weight loss on cardiovascular risk factors in men with the metabolic syndrome.Nutr. Metab. Cardiovasc. Dis.201121962863510.1016/j.numecd.2010.01.012 20554173
    [Google Scholar]
  78. PerdomoM.C. SantosJ.E. BadingaL. Trans-10, cis-12 conjugated linoleic acid and the PPAR-γ agonist rosiglitazone attenuate lipopolysaccharide-induced TNF-α production by bovine immune cells.Domest. Anim. Endocrinol.201141311812510.1016/j.domaniend.2011.05.005 21798687
    [Google Scholar]
  79. SemeranoL. ClavelG. AssierE. DenysA. BoissierM.C. Blood vessels, a potential therapeutic target in rheumatoid arthritis?Joint Bone Spine201178211812310.1016/j.jbspin.2010.06.004 20851025
    [Google Scholar]
  80. DerouicheA. CherkiM. DrissiA. BamouY. El MessalM. Idrissi-OudghiriA. LecerfJ.M. AdlouniA. Nutritional intervention study with argan oil in man: Effects on lipids and apolipoproteins.Ann. Nutr. Metab.200549319620110.1159/000087072 16020940
    [Google Scholar]
  81. AlaouiK. The argan tree or the richness of a heritage.Phytotherapy20097315015610.1007/s10298‑009‑0382‑y
    [Google Scholar]
  82. BartschH. NairJ. OwenR.W. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: Emerging evidence for their role as risk modifiers.Carcinogenesis199920122209221810.1093/carcin/20.12.2209 10590211
    [Google Scholar]
  83. YaqoobP. Fatty acids and the immune system: From basic science to clinical applications.Proc. Nutr. Soc.20046318910510.1079/PNS2003328 15070442
    [Google Scholar]
  84. BerrouguiH. EttaibA. GonzalezM.D.H. SotomayorM.A. Bennani-KabchiN. HmamouchiM. Hypolipidemic and hypocholesterolemic effect of argan oil (Argania spinosa L.) in Meriones shawi rats.J. Ethnopharmacol.2003891151810.1016/S0378‑8741(03)00176‑4 14522427
    [Google Scholar]
  85. SimonJ.A. FongJ. BernertJ.T.Jr Serum fatty acids and blood pressure.Hypertension199627230330710.1161/01.HYP.27.2.303 8567056
    [Google Scholar]
  86. DrissiA. GironaJ. CherkiM. GodàsG. DerouicheA. El MessalM. SaileR. KettaniA. SolàR. MasanaL. AdlouniA. Evidence of hypolipemiant and antioxidant properties of argan oil derived from the argan tree (Argania spinosa)*1.Clin. Nutr.20042351159116610.1016/j.clnu.2004.03.003 15380909
    [Google Scholar]
  87. BnouhamM. BellahcenS. BenallaW. LegssyerA. ZiyyatA. MekhfiH. Antidiabetic activity assessment of Argania spinosa oil.J. Complement. Integr. Med.200851510.2202/1553‑3840.1180
    [Google Scholar]
  88. BellahcenS. MekhfiH. ZiyyatA. LegssyerA. HakkouA. AzizM. BnouhamM. Prevention of chemically induced diabetes mellitus in experimental animals by virgin argan oil.Phytother. Res.201226218018510.1002/ptr.3524 21584872
    [Google Scholar]
  89. KamalR. KharbachM. Vander HeydenY. DoukkaliZ. GhchimeR. BouklouzeA. CherrahY. AlaouiK. In vivo anti‐inflammatory response and bioactive compounds’ profile of polyphenolic extracts from edible Argan oil (Argania spinosa L.), obtained by two extraction methods.J. Food Biochem.20194312e1306610.1111/jfbc.13066 31573102
    [Google Scholar]
  90. BennaniH. DrissiA. GitonF. KheuangL. FietJ. AdlouniA. Antiproliferative effect of polyphenols and sterols of virgin argan oil on human prostate cancer cell lines.Cancer Detect. Prev.2007311646910.1016/j.cdp.2006.09.006 17174037
    [Google Scholar]
  91. DobrevH. Clinical and instrumental study of the efficacy of a new sebum control cream.J. Cosmet. Dermatol.20076211311810.1111/j.1473‑2165.2007.00306.x 17524128
    [Google Scholar]
  92. CherkiM. DerouicheA. DrissiA. El MessalM. BamouY. Idrissi-OuadghiriA. KhalilA. AdlouniA. Consumption of argan oil may have an antiatherogenic effect by improving paraoxonase activities and antioxidant status: Intervention study in healthy men.Nutr. Metab. Cardiovasc. Dis.200515535236010.1016/j.numecd.2004.08.005 16216721
    [Google Scholar]
  93. MekhfiH. GadiD. BnouhamM. ZiyyatA. LegssyerA. AzizM. Effect of argan oil on platelet aggregation and bleeding time: A beneficial nutritional property.J. Complement. Integr. Med.200851510.2202/1553‑3840.1164
    [Google Scholar]
  94. SamaneS. ChristonR. DombrowskiL. TurcotteS. CharroufZ. LavigneC. LevyE. BachelardH. AmarouchH. MaretteA. HaddadP.S. Fish oil and argan oil intake differently modulate insulin resistance and glucose intolerance in a rat model of dietary-induced obesity.Metabolism200958790991910.1016/j.metabol.2009.02.013 19394055
    [Google Scholar]
  95. BenzariaA. MeskiniN. DuboisM. CrosetM. NémozG. LagardeM. PrigentA.F. Effect of dietary argan oil on fatty acid composition, proliferation, and phospholipase D activity of rat thymocytes.Nutrition200622662863710.1016/j.nut.2006.03.001 16635562
    [Google Scholar]
  96. WilloughbyD.A. DiRosaM. Studies on the mode of action of non-steroid anti-inflammatory drugs.Ann. Rheum. Dis.197231654010.1136/ard.31.6.540 4634774
    [Google Scholar]
  97. BennaniH. FietJ. AdlouniA. Impact of argan oil on prostate cancer antiproliferative effect: Study of polyphenols.Rev Franco Lab20094162326
    [Google Scholar]
  98. DrissiA. BennaniH. GitonF. CharroufZ. FietJ. AdlouniA. Tocopherols and saponins derived from Argania spinosa exert, an antiproliferative effect on human prostate cancer.Cancer Invest.200624658859210.1080/07357900600894815 16982463
    [Google Scholar]
  99. SamaneS. NoëlJ. CharroufZ. AmarouchH. HaddadP.S. Insulin-sensitizing and anti-proliferative effects of Argania spinosa seed extracts.Evid. Based Complement. Alternat. Med.20063331732710.1093/ecam/nel015 16951716
    [Google Scholar]
  100. El BabiliF. BouajilaJ. FourasteI. ValentinA. MauretS. MoulisC. Chemical study, antimalarial and antioxidant activities, and cytotoxicity to human breast cancer cells (MCF7) of Argania spinosa.Phytomedicine201017215716010.1016/j.phymed.2009.05.014 19576744
    [Google Scholar]
  101. NewmarkH.L. Squalene, olive oil, and cancer risk: A review and hypothesis.Cancer Epidemiol. Biomarkers Prev.199761211011103 9419410
    [Google Scholar]
  102. GaoR. StoneW.L. HuangT. PapasA.M. QuiM. The uptake of tocopherols by RAW 264.7 macrophages.Nutr. J.200211210.1186/1475‑2891‑1‑2 12537596
    [Google Scholar]
  103. HelzlsouerK.J. HuangH-Y. AlbergA.J. HoffmanS. BurkeA. NorkusE.P. MorrisJ.S. ComstockG.W. Association between α-tocopherol, γ-tocopherol, selenium, and subsequent prostate cancer.J. Natl. Cancer Inst.200092242018202310.1093/jnci/92.24.2018 11121464
    [Google Scholar]
  104. CampbellS. StoneW. WhaleyS. KrishnanK. Development of gamma (γ)-tocopherol as a colorectal cancer chemopreventive agent.Crit. Rev. Oncol. Hematol.200347324925910.1016/S1040‑8428(03)00042‑8 12962899
    [Google Scholar]
  105. DunnL.B. DamesynM. MooreA.A. ReubenD.B. GreendaleG.A. Does estrogen prevent skin aging?: Results from the first national health and nutrition examination survey (NHANES I).Arch. Dermatol.1997133333934210.1001/archderm.1997.03890390077010 9080894
    [Google Scholar]
  106. BoucettaK.Q. CharroufZ. DerouicheA. RahaliY. BensoudaY. Skin hydration in postmenopausal women: Argan oil benefit with oral and/or topical use.Przegl. Menopauz.2014135280288
    [Google Scholar]
  107. FariaP.M. CamargoL.N. CarvalhoR.S.H. PaludettiL.A. VelascoM.V.R. da GamaR.M. Hair protective effect of Argan oil (Argania spinosa Kernel oil) and Cupuassu butter (Theobroma grandiflorum seed butter) post treatment with hair dye, Journal of Cosmetics.Dermatol. Sci. Appl.2013340
    [Google Scholar]
  108. RossetV. AhmedN. ZaanounI. StellaB. FessiH. ElaissariA. Elaboration of argan oil nanocapsules containing naproxen for cosmetic and transdermal local application.J. Colloid Sci. Biotechnol.20121221822410.1166/jcsb.2012.1023
    [Google Scholar]
  109. MüllerR.H. ShegokarR. KeckC.M. 20 years of lipid nanoparticles (SLN and NLC): Present state of development and industrial applications.Curr. Drug Discov. Technol.20118320722710.2174/157016311796799062 21291409
    [Google Scholar]
  110. TichotaD.M. SilvaA.C. Sousa Lobo. J.M. Amaral, M.H. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration.Int. J. Nanomedicine2014938553864 25143733
    [Google Scholar]
  111. DuanC. LiuC. MengX. GaoK. LuW. ZhangY. DaiL. ZhaoW. XiongC. WangW. LiuY. NiY. Facile synthesis of Ag NPs@ MIL-100(Fe)/guar gum hybrid hydrogel as a versatile photocatalyst for wastewater remediation: Photocatalytic degradation, water/oil separation and bacterial inactivation.Carbohydr. Polym.202023011564210.1016/j.carbpol.2019.115642 31887970
    [Google Scholar]
  112. KhanM.F.A. Ur RehmanA. HowariH. AlhodaibA. UllahF. MustafaZ.U. ElaissariA. AhmedN. Hydrogel containing solid lipid nanoparticles loaded with argan oil and simvastatin: Preparation, in vitro and ex vivo assessment.Gels20228527710.3390/gels8050277 35621575
    [Google Scholar]
  113. BadriW. MiladiK. EddabraR. FessiH. ElaissariA. Elaboration of nanoparticles containing indomethacin: Argan oil for transdermal local and cosmetic application.J. Nanomater.201520151910.1155/2015/935439
    [Google Scholar]
  114. GulR. AhmedN. UllahN. KhanM.I. ElaissariA. RehmanA. Biodegradable ingredient-based emulgel loaded with ketoprofen nanoparticles.AAPS PharmSciTech20181941869188110.1208/s12249‑018‑0997‑0 29651679
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137279106231227044328
Loading
/content/journals/cnano/10.2174/0115734137279106231227044328
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test