Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Layered assemblies are essential in materials nanoarchitectonics, which organize nanomaterials into well-defined structures. This overview highlights the significance, advancements, challenges, and future directions of layered assembly. The layer-by-layer (LBL) process relies on electrostatic interactions and self-assembly, which are influenced by factors such as charge, pH, and environmental conditions. Solution-based, vapor-phase, and template-guided methods offer distinct advantages and limitations for tailoring the layered structures. Polymeric, inorganic, and hybrid nanomaterials have diverse functionalities for specific applications. Surface modification, functionalization techniques, templating, and patterning methods play key roles in the customization of layered structures. Integration of stimuli-responsive assemblies enables dynamic control and advanced functionality. Characterization techniques, including spectroscopy and microscopy, provide insights into the structure, morphology, and properties of the layered assemblies. The evaluation of the mechanical and electrical properties enhances the understanding of their behavior and suitability for applications. Layered assemblies find applications in biomaterials, optoelectronics, energy storage, and conversion, promising advances in tissue engineering, optoelectronic devices, and battery technology. Challenges in scalability, stability, and material selection necessitate interdisciplinary collaboration, process standardization, innovation, optimization, and sustainability. Advanced characterization techniques and artificial intelligence (AI) integration hold promise for future advancements in layered assemblies. Layered assemblies have great potential in materials science and technology, offering precise control over the structure and functionality of breakthroughs in various applications. Continued research and collaboration will drive progress in this field and pave the way for innovative materials and technologies. Scientists are encouraged to explore the possibilities of layered assemblies, unlock novel solutions to global challenges, and shape the future of nanomaterial engineering.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137280856231219102128
2023-12-29
2025-03-30
The full text of this item is not currently available.

References

  1. KashyapB.K. SinghV.V. SolankiM.K. KumarA. RuokolainenJ. KesariK.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities.ACS Omega2023816142901432010.1021/acsomega.2c07840 37125102
    [Google Scholar]
  2. Mosleh-ShiraziS. AbbasiM. MoaddeliM. VaezA. ShafieeM. KasaeeS.R. AmaniA.M. HatamS. Nanotechnology advances in the detection and treatment of cancer: An overview.Nanotheranostics20226440042310.7150/ntno.74613 36051855
    [Google Scholar]
  3. JosephT.M. Kar MahapatraD. EsmaeiliA. PiszczykŁ. HasaninM.S. KattaliM. HaponiukJ. ThomasS. Nanoparticles: Taking a unique position in medicine.Nanomaterials 2023133574
    [Google Scholar]
  4. MiyazakiC.M. ShimizuF.M. FerreiraM. 19 - Layer-by-layer nanostructured films for electrochemical sensors fabrication.Functionalized Nanomaterial-Based Electrochemical Sensors. HussainC.M. ManjunathaJ.G. Woodhead Publishing202240744110.1016/B978‑0‑12‑823788‑5.00006‑5
    [Google Scholar]
  5. GhorbanizamaniF. MoulahoumH. Guler CelikE. ZihniogluF. BedukT. GokselT. TurhanK. TimurS. Design of polymeric surfaces as platforms for streamlined cancer diagnostics in liquid biopsies.Biosensors202313340010.3390/bios13030400
    [Google Scholar]
  6. AllanJ. BelzS. HoevelerA. HugasM. OkudaH. PatriA. RauscherH. SilvaP. SlikkerW. Sokull-KluettgenB. TongW. AnklamE. Regulatory landscape of nanotechnology and nanoplastics from a global perspective.Regul. Toxicol. Pharmacol.202112210488510.1016/j.yrtph.2021.104885 33617940
    [Google Scholar]
  7. Tovar-LopezF.J. Recent progress in micro- and nanotechnology-enabled sensors for biomedical and environmental challenges.Sensors2023235406
    [Google Scholar]
  8. MalikS. MuhammadK. WaheedY. Nanotechnology: A revolution in modern industry.Molecules202328266110.3390/molecules28020661 36677717
    [Google Scholar]
  9. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine.Molecules201925111210.3390/molecules25010112 31892180
    [Google Scholar]
  10. BassoC.R. CrulhasB.P. CastroG.R. PedrosaV.A. Recent advances in functional nanomaterials for diagnostic and sensing using self-assembled monolayers.Int. J. Mol. Sci.202324131081910.3390/ijms241310819 37445998
    [Google Scholar]
  11. SinhaA. SimnaniF.Z. SinghD. NandiA. ChoudhuryA. PatelP. JhaE. chouhan, R.S.; Kaushik, N.K.; Mishra, Y.K.; Panda, P.K.; Suar, M.; Verma, S.K. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications.Mater. Today Bio20221710046310.1016/j.mtbio.2022.100463 36310541
    [Google Scholar]
  12. SoniA. BhandariM.P. TripathiG.K. BundelaP. KhiriyaP.K. KhareP.S. KashyapM.K. DeyA. VellingiriB. SundaramurthyS. SureshA. Pérez de la LastraJ.M. Nano‐biotechnology in tumour and cancerous disease: A perspective review.J. Cell. Mol. Med.202327673776210.1111/jcmm.17677 36840363
    [Google Scholar]
  13. SalehH.M. HassanA.I. Synthesis and characterization of nanomaterials for application in cost-effective electrochemical devices.Sustainability202315141089110.3390/su151410891
    [Google Scholar]
  14. MauterM.S. ZuckerI. PerreaultF. WerberJ.R. KimJ.H. ElimelechM. The role of nanotechnology in tackling global water challenges.Nat. Sustain.20181416617510.1038/s41893‑018‑0046‑8
    [Google Scholar]
  15. SilvaG.A. A new frontier: The convergence of nanotechnology, brain machine interfaces, and artificial intelligence.Front. Neurosci.20181284310.3389/fnins.2018.00843 30505265
    [Google Scholar]
  16. ZhengY. WuZ. Intelligent Nanotechnology: Merging Nanoscience and Artificial Intelligence.Elsevier2022
    [Google Scholar]
  17. KulandaivaluS. SulaimanY. Recent advances in layer-by-layer assembled conducting polymer based composites for supercapacitors.Energies20191211210710.3390/en12112107
    [Google Scholar]
  18. YetisenA.K. CoskunA.F. EnglandG. ChoS. ButtH. HurwitzJ. KolleM. KhademhosseiniA. HartA.J. FolchA. YunS.H. Art on the nanoscale and beyond.Adv. Mater.20162891724174210.1002/adma.201502382 26671704
    [Google Scholar]
  19. Díez-PascualA.M. RahdarA. LbL nano-assemblies: A versatile tool for biomedical and healthcare applications.Nanomaterials202212694910.3390/nano12060949
    [Google Scholar]
  20. BaranD. CorzoD. BlazquezG. Flexible electronics: Status, challenges and opportunities.Front. Electron.20201594003
    [Google Scholar]
  21. GirtanM. Carbon-based materials for future photonics devices. A parallel between electronics and photonics.Opt. Mater.202212511206810.1016/j.optmat.2022.112068
    [Google Scholar]
  22. AdedojaO.S. SadikuE.R. HamamY. An overview of the emerging technologies and composite materials for supercapacitors in energy storage applications.Polymers20231510227210.3390/polym15102272
    [Google Scholar]
  23. LiuB.J. ChenQ. MoQ.L. XiaoF.X. Robust, versatile, green and emerging Layer-by-Layer Self-Assembly platform for solar energy conversion.Coord. Chem. Rev.202349321528510.1016/j.ccr.2023.215285
    [Google Scholar]
  24. ChenD-H. GliemannH. WöllC. Layer-by-layer assembly of metal-organic framework thin films: Fabrication and advanced applications.Chem. Phys. Rev.202341011305
    [Google Scholar]
  25. XiaoZ. LiuL.H. LiuT. YangD. JiaX. DuY.K. LiS.Q. YangW.J. XiY.M. ZengR.C. Degradation and biocompatibility of genipin crosslinked polyelectrolyte films on biomedical magnesium alloy via layer-by-layer assembly.Prog. Org. Coat.202317510737210.1016/j.porgcoat.2022.107372
    [Google Scholar]
  26. GhiorghitaC.A. MihaiM. Recent developments in layer-by-layer assembled systems application in water purification.Chemosphere202127012947710.1016/j.chemosphere.2020.129477 33388497
    [Google Scholar]
  27. SchoolingJ. FrawleyD.D. GeddesR. O’RourkeT.D. MairR.J. ThrelfallR. PowrieW. SogaK. The role of funding, financing and emerging technologies in delivering and managing infrastructure for the 21st century.University of Cambridge2023
    [Google Scholar]
  28. KriegerA. ZikaA. GröhnF. Functional nano-objects by electrostatic self-assembly: Structure, switching, and photocatalysis.Front Chem.2022977936010.3389/fchem.2021.779360 35359487
    [Google Scholar]
  29. LiuY. WuY. LuoZ. LiM. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy.iScience202326310627910.1016/j.isci.2023.106279 36936787
    [Google Scholar]
  30. Díez-PascualA. ShuttleworthP. Layer-by-layer assembly of biopolyelectrolytes onto thermo/ph-responsive micro/nano-gels.Materials20147117472751210.3390/ma7117472 28788259
    [Google Scholar]
  31. MayilswamyN. BoneyN. KandasubramanianB. Fabrication and molecular dynamics studies of layer-by-layer polyelectrolytic films.Eur. Polym. J.202216311094510.1016/j.eurpolymj.2021.110945
    [Google Scholar]
  32. RawtaniD. AgrawalY.K. Emerging strategies and applications of layer-by-layer self-assembly.Nanobiomedicine20141810.5772/60009 30023019
    [Google Scholar]
  33. RiveroP.J. GoicoecheaJ. ArreguiF.J. Layer-by-layer nano-assembly: A powerful tool for optical fiber sensing applications.Sensors 201919368310.3390/s19030683
    [Google Scholar]
  34. RichardsonJ.J. CuiJ. BjörnmalmM. BraungerJ.A. EjimaH. CarusoF. Innovation in layer-by-layer assembly.Chem. Rev.201611623148281486710.1021/acs.chemrev.6b00627 27960272
    [Google Scholar]
  35. YolaA.M. CampbellJ. VolodkinD. Microfluidics meets layer-by-layer assembly for the build-up of polymeric scaffolds.Appl. Surf. Sci.2021510009110.1016/j.apsadv.2021.100091
    [Google Scholar]
  36. CampbellJ. VikulinaA.S. Layer-by-layer assemblies of biopolymers: Build-up, mechanical stability and molecular dynamics.Polymers20201291949
    [Google Scholar]
  37. WuG. ZhangX. Unconventional layer-by-layer assembly for functional organic thin films.Polymer Thin Films.IntechOpen2010
    [Google Scholar]
  38. AshurbekovaK. AshurbekovaK. BottaG. YurkevichO. KnezM. Vapor phase processing: A novel approach for fabricating functional hybrid materials.Nanotechnology2020313434200110.1088/1361‑6528/ab8edb 32353844
    [Google Scholar]
  39. OzoforI.H. Numerical modeling and investigation of material mixing and utilization during organic vapor phase deposition.J. Mater. Res.20233892327233810.1557/s43578‑023‑00974‑2
    [Google Scholar]
  40. Martínez-TomásM.C. KlymovO. ShimazoeK. Muñoz-SanjoséV. Elastic and inelastic strain in submicron-thick Zno epilayers grown on R-sapphire substrates by metal-organic vapor phase deposition.SSRN439936410.2139/ssrn.4399364
    [Google Scholar]
  41. MarinE. TapeinosC. SarasuaJ.R. LarrañagaA. Exploiting the layer-by-layer nanoarchitectonics for the fabrication of polymer capsules: A toolbox to provide multifunctional properties to target complex pathologies.Adv. Colloid Interface Sci.202230410268010.1016/j.cis.2022.102680 35468354
    [Google Scholar]
  42. GhaderpourA. HoseinkhaniZ. YaraniR. MohammadianiS. AmiriF. MansouriK. Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems.Polym. Adv. Technol.20213251924195010.1002/pat.5242
    [Google Scholar]
  43. LiptonJ. WengG.M. RӧhrJ.A. WangH. TaylorA.D. Layer-by-layer assembly of two-dimensional materials: Meticulous control on the nanoscale.Matter2020251148116510.1016/j.matt.2020.03.012
    [Google Scholar]
  44. LinX. FanL. WangL. FilppulaA.M. YuY. ZhangH. Fabricating biomimetic materials with ice-templating for biomedical applications.Smart Medicine202323e20230017
    [Google Scholar]
  45. KovtyukhovaN.I. MartinB.R. MbindyoJ.K.N. MalloukT.E. CabassiM. MayerT.S. Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices.Mater. Sci. Eng. C2002191-225526210.1016/S0928‑4931(01)00395‑2
    [Google Scholar]
  46. ZhaoZ. MiY. LuY. ZhuQ. CaoX. WangN. From biochemical sensor to wearable device: The key role of the conductive polymer in the triboelectric nanogenerator.Biosensors2023136604
    [Google Scholar]
  47. ThwalaL.N. NdlovuS.C. MpofuK.T. LugongoloM.Y. Mthunzi-KufaP. Nanotechnology-based diagnostics for diseases prevalent in developing countries: Current advances in point-of-care tests.Nanomaterials2023137124710.3390/nano13071247 37049340
    [Google Scholar]
  48. DrieschnerS. WeberM. WohlketzetterJ. VietenJ. MakrygiannisE. BlaschkeB. M. MorandiV. ColomboL. BonaccorsoF. GarridoJ. A. High surface area graphene foams by chemical vapor deposition.2D Materials201634045013
    [Google Scholar]
  49. BanciuC.A. NastaseF. IstrateA.I. VecaL.M. 3D graphene foam by chemical vapor deposition: Synthesis, properties, and energy-related applications.Molecules20222711363410.3390/molecules27113634 35684569
    [Google Scholar]
  50. GülerÖ. BağcıN. A short review on mechanical properties of graphene reinforced metal matrix composites.J. Mater. Res. Technol.2020936808683310.1016/j.jmrt.2020.01.077
    [Google Scholar]
  51. MoosaA.A. AbedM.S. Graphene preparation and graphite exfoliation.Turk. J. Chem.202145349351910.3906/kim‑2101‑19 34385847
    [Google Scholar]
  52. RathinavelS. PriyadharshiniK. PandaD. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application.Mater. Sci. Eng. B202126811509510.1016/j.mseb.2021.115095
    [Google Scholar]
  53. RapheyV.R. HennaT.K. NivithaK.P. MufeedhaP. SabuC. PramodK. Advanced biomedical applications of carbon nanotube.Mater. Sci. Eng. C201910061663010.1016/j.msec.2019.03.043 30948098
    [Google Scholar]
  54. HarussaniM.M. SapuanS.M. NadeemG. RafinT. KirubaanandW. Recent applications of carbon-based composites in defence industry: A review.Defence Technology20221881281130010.1016/j.dt.2022.03.006
    [Google Scholar]
  55. DeshmukhM.A. JeonJ.Y. HaT.J. Carbon nanotubes: An effective platform for biomedical electronics.Biosens. Bioelectron.202015011191910.1016/j.bios.2019.111919 31787449
    [Google Scholar]
  56. KhanY. SadiaH. Ali ShahS.Z. KhanM.N. ShahA.A. UllahN. UllahM.F. BibiH. BafakeehO.T. KhedherN.B. EldinS.M. FadhlB.M. KhanM.I. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review.Catalysts20221211138610.3390/catal12111386
    [Google Scholar]
  57. HarishV. AnsariM.M. TewariD. GaurM. YadavA.B. García-BetancourtM-L. Abdel-HaleemF.M. BechelanyM. BarhoumA. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application.Mater. Sci. Eng. A202226811509510.3390/nano12183226
    [Google Scholar]
  58. Vargas-OrtizJ.R. GonzalezC. EsquivelK. Magnetic iron nanoparticles: Synthesis, surface enhancements, and biological challenges.Processes202210112282
    [Google Scholar]
  59. AliA. ShahT. UllahR. ZhouP. GuoM. OvaisM. TanZ. RuiY. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications.Front Chem.2021962905410.3389/fchem.2021.629054 34327190
    [Google Scholar]
  60. ParkY. YooJ. KangM.H. KwonW. JooJ. Photoluminescent and biodegradable porous silicon nanoparticles for biomedical imaging.J. Mater. Chem. B Mater. Biol. Med.20197416271629210.1039/C9TB01042D 31393507
    [Google Scholar]
  61. SaoudK.M. El-ShallM.S. Physical and chemical synthesis of Au/CeO2 nanoparticle catalysts for room temperature co oxidation: A comparative study.Catalysts20201011135110.3390/catal10111351
    [Google Scholar]
  62. Moreno-SernaV. OyarzúnC. Ulloa-FloresM.T. RivasL. SepúlvedaF.A. LoyoC. Lopez ToroE. ZapataP.A. Venus antiqua clamshell-derived calcium oxide nanoparticles for the preparation of PLA/D -Limonene/CaO nanocomposites with antimicrobial properties.ACS Sustain. Chem.& Eng.20231129107551076610.1021/acssuschemeng.3c01358
    [Google Scholar]
  63. PółrolniczakP. WalkowiakM. Titanium dioxide high aspect ratio nanoparticle hydrothermal synthesis optimization.Open Chem.201513100001015152015000610.1515/chem‑2015‑0006
    [Google Scholar]
  64. OsackýM. BinčíkT. HudcováB. VítkováM. PálkováH. HudecP. BačíkP. CzímerováA. Low-cost zeolite-based sorbents prepared from industrial perlite by-product material for Zn2+ and Ni2+ removal from aqueous solutions: Synthesis, properties and sorption efficiency.Heliyon2022812e1202910.1016/j.heliyon.2022.e12029 36506390
    [Google Scholar]
  65. MakarovaS.V. BulinaN.V. VinokurovaO.B. IshchenkoA.V. Thermal stability of iron- and silicon-substituted hydroxyapatite prepared by mechanochemical method.Powders202322372386
    [Google Scholar]
  66. PatelH.A. SomaniR.S. BajajH.C. JasraR.V. Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment.Bull. Mater. Sci.200629213314510.1007/BF02704606
    [Google Scholar]
  67. MohamedW.A.A. Abd El-GawadH. MekkeyS. GalalH. HandalH. MousaH. LabibA. Quantum dots synthetization and future prospect applications.Nanotechnol. Rev.202110110.1515/ntrev‑2021‑0118
    [Google Scholar]
  68. LiuZ. LinC.H. HyunB.R. SherC.W. LvZ. LuoB. JiangF. WuT. HoC.H. KuoH.C. HeJ.H. Micro-light-emitting diodes with quantum dots in display technology.Light Sci. Appl.2020918310.1038/s41377‑020‑0268‑1 32411368
    [Google Scholar]
  69. ArchithaN. RagupathiM. ShobanaC. SelvankumarT. KumarP. LeeY.S. Kalai SelvanR. Microwave-assisted green synthesis of fluorescent carbon quantum dots from Mexican Mint extract for Fe3+ detection and bio-imaging applications.Environ. Res.202119911126310.1016/j.envres.2021.111263 33939978
    [Google Scholar]
  70. GilH.M. PriceT.W. ChelaniK. BouillardJ.S.G. CalaminusS.D.J. StasiukG.J. NIR-quantum dots in biomedical imaging and their future.iScience202124310218910.1016/j.isci.2021.102189 33718839
    [Google Scholar]
  71. Herrera-OchoaD. Pacheco-LiñánP.J. BravoI. Garzón-RuizA. A novel quantum dot-based pH probe for long-term fluorescence lifetime imaging microscopy experiments in living cells.ACS Appl. Mater. Interfaces20221422578258610.1021/acsami.1c19926 35001616
    [Google Scholar]
  72. BeckerA.L. JohnstonA.P.R. CarusoF. Layer-by-layer-assembled capsules and films for therapeutic delivery.Small2010617smll.20100037910.1002/smll.201000379 20715072
    [Google Scholar]
  73. GutfreundP. HigyC. FragnetoG. TschoppM. FelixO. DecherG. Molecular conformation of polyelectrolytes inside Layer-by-Layer assembled films.Nat. Commun.2023141407610.1038/s41467‑023‑39801‑x 37429844
    [Google Scholar]
  74. YuanW. WengG.M. LiptonJ. LiC.M. Van TasselP.R. TaylorA.D. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications.Adv. Colloid Interface Sci.202028210220010.1016/j.cis.2020.102200 32585489
    [Google Scholar]
  75. PetrilaL.M. BucatariuF. MihaiM. TeodosiuC. Polyelectrolyte multilayers: An overview on fabrication, properties, and biomedical and environmental applications.Materials20211415415210.3390/ma14154152 34361346
    [Google Scholar]
  76. KhdaryN.H. AlmuarqabB.T. El EnanyG. Nanoparticle-embedded polymers and their applications: A review.Membranes202313553710.3390/membranes13050537 37233597
    [Google Scholar]
  77. ParkS. HanU. ChoiD. HongJ. Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: Design and applications.Biomater. Res.20182212910.1186/s40824‑018‑0139‑5 30275972
    [Google Scholar]
  78. HarishV. TewariD. GaurM. YadavA.B. SwaroopS. BechelanyM. BarhoumA. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications.Nanomaterials202212345710.3390/nano12030457 35159802
    [Google Scholar]
  79. PakerE.S. SenelM. Polyelectrolyte multilayers composed of polyethyleneimine-grafted chitosan and polyacrylic acid for controlled-drug-delivery applications.J. Funct. Biomater.202213313110.3390/jfb13030131 36135567
    [Google Scholar]
  80. LengertE.V. KoltsovS.I. LiJ. ErmakovA.V. ParakhonskiyB.V. SkorbE.V. SkirtachA.G. Nanoparticles in polyelectrolyte multilayer layer-by-layer (LbL) films and capsules—key enabling components of hybrid coatings.Coatings202010111131
    [Google Scholar]
  81. MahatoK. NagpalS. ShahM. A. SrivastavaA. MauryaP. K. RoyS. JaiswalA. SinghR. ChandraP. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics.3 Biotech20199257
    [Google Scholar]
  82. HeK. JiangY. WangT. LiuZ. WangM. PanL. ChenX. Assemblies and composites of gold nanostructures for functional devices.Aggregate202234e5710.1002/agt2.57
    [Google Scholar]
  83. BrunaT. Maldonado-BravoF. JaraP. CaroN. Silver nanoparticles and their antibacterial applications.Int. J. Mol. Sci.20212213720210.3390/ijms22137202 34281254
    [Google Scholar]
  84. LiY. LiaoQ. HouW. QinL. Silver-based surface plasmon sensors: Fabrication and applications.Int. J. Mol. Sci.20232444142
    [Google Scholar]
  85. DemishkevichE. ZyubinA. SeteikinA. SamusevI. ParkI. HwangboC.K. ChoiE.H. LeeG.J. Synthesis methods and optical sensing applications of plasmonic metal nanoparticles made from rhodium, platinum, gold, or silver.Materials20231693342
    [Google Scholar]
  86. SunL. WangJ. LiL. XuZ.P. Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration.Adv. Drug Deliv. Rev.202218011403110.1016/j.addr.2021.114031 34736985
    [Google Scholar]
  87. Sanchis-GualR. Coronado-PuchauM. MallahT. CoronadoE. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism.Coord. Chem. Rev.202348021502510.1016/j.ccr.2023.215025
    [Google Scholar]
  88. SavelevaM.S. EftekhariK. AbalymovA. DouglasT.E.L. VolodkinD. ParakhonskiyB.V. SkirtachA.G. Hierarchy of hybrid materials—the place of inorganics-in-organics in it, their composition and applications.Front Chem.2019717910.3389/fchem.2019.00179 31019908
    [Google Scholar]
  89. AnastasiadisS.H. ChrissopoulouK. StratakisE. KavatzikidouP. KaklamaniG. RanellaA. How the physicochemical properties of manufactured nanomaterials affect their performance in dispersion and their applications in biomedicine: A review.Nanomaterials202212355210.3390/nano12030552 35159897
    [Google Scholar]
  90. MendozaC. NirwanV.P. FahmiA. Nanofabrication of hybrid nanomaterials: Macroscopically aligned nanoparticles pattern via directed self‐assembly of block copolymers.J. Appl. Polym. Sci.20231405e5340910.1002/app.53409
    [Google Scholar]
  91. MartanoS. De MatteisV. CascioneM. RinaldiR. Inorganic nanomaterials versus polymer-based nanoparticles for overcoming neurodegeneration.Nanomaterials20221214233710.3390/nano12142337
    [Google Scholar]
  92. MostafaviA.H. MishraA.K. GallucciF. KimJ.H. UlbrichtM. CocliteA.M. HosseiniS.S. Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniques.J. Appl. Polym. Sci.202314015e5372010.1002/app.53720
    [Google Scholar]
  93. AhmadF. Salem-BekhitM.M. KhanF. AlshehriS. KhanA. GhoneimM.M. WuH.F. TahaE.I. ElbagoryI. Unique properties of surface-functionalized nanoparticles for bio-application: Functionalization mechanisms and importance in application.Nanomaterials2022128133310.3390/nano12081333 35458041
    [Google Scholar]
  94. GoodingJ.J. CiampiS. The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies.Chem. Soc. Rev.20114052704271810.1039/c0cs00139b 21290036
    [Google Scholar]
  95. PaterliniT.T. NogueiraL.F.B. TovaniC.B. CruzM.A.E. DerradiR. RamosA.P. The role played by modified bioinspired surfaces in interfacial properties of biomaterials.Biophys. Rev.20179568369810.1007/s12551‑017‑0306‑2 28831703
    [Google Scholar]
  96. WieszczyckaK. StaszakK. Woźniak-BudychM.J. LitowczenkoJ. MaciejewskaB.M. JurgaS. Surface functionalization – The way for advanced applications of smart materials.Coord. Chem. Rev.202143621384610.1016/j.ccr.2021.213846
    [Google Scholar]
  97. RycengaM. CamargoP.H.C. XiaY. Template-assisted self-assembly: A versatile approach to complex micro- and nanostructures.Soft Matter2009561129113610.1039/B811021B
    [Google Scholar]
  98. SrivastavaS. KotovN.A. Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires.Acc. Chem. Res.200841121831184110.1021/ar8001377 19053241
    [Google Scholar]
  99. ZengJ. MatsusakiM. Layer-by-layer assembly of nanofilms to control cell functions.Polym. Chem.201910232960297410.1039/C9PY00305C
    [Google Scholar]
  100. SharmaE. RathiR. MisharwalJ. SinhmarB. KumariS. DalalJ. KumarA. Evolution in lithography techniques: Microlithography to nanolithography.Nanomaterials202212162754
    [Google Scholar]
  101. FruncilloS. SuX. LiuH. WongL.S. Lithographic processes for the scalable fabrication of micro- and nanostructures for biochips and biosensors.ACS Sens.2021662002202410.1021/acssensors.0c02704 33829765
    [Google Scholar]
  102. HuangW.P. HuJ.Q. QianH.L. RenK.F. JiJ. Dynamic structural controlment for the functionalization of polyelectrolyte multilayer films.Supramolecular Materials2022110001610.1016/j.supmat.2022.100016
    [Google Scholar]
  103. BrilM. FredrichS. KurniawanN.A. Stimuli-responsive materials: A smart way to study dynamic cell responses.Smart Mater Med.2022325727310.1016/j.smaim.2022.01.010
    [Google Scholar]
  104. ShahR.A. FrazarE.M. HiltJ.Z. Recent developments in stimuli responsive nanomaterials and their bionanotechnology applications.Curr. Opin. Chem. Eng.20203010311110.1016/j.coche.2020.08.007 34307003
    [Google Scholar]
  105. El-HusseinyH.M. MadyE.A. HamabeL. AbugomaaA. ShimadaK. YoshidaT. TanakaT. YokoiA. ElbadawyM. TanakaR. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications.Mater. Today Bio20221310018610.1016/j.mtbio.2021.100186 34917924
    [Google Scholar]
  106. ZhangQ. ZhangY. WanY. CarvalhoW. HuL. SerpeM.J. Stimuli-responsive polymers for sensing and reacting to environmental conditions.Prog. Polym. Sci.202111610138610.1016/j.progpolymsci.2021.101386
    [Google Scholar]
  107. KelleyE.G. AlbertJ.N.L. SullivanM.O. EppsT.H.III Stimuli-responsive copolymer solution and surface assemblies for biomedical applications.Chem. Soc. Rev.201342177057707110.1039/c3cs35512h 23403471
    [Google Scholar]
  108. ChenL.J. YangH.B. Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions.Acc. Chem. Res.201851112699271010.1021/acs.accounts.8b00317 30285407
    [Google Scholar]
  109. NezammahallehH. GhanatiF. RezaeiS. BadshahM.A. ParkJ. AbbasN. AliA. Biochemical interactions through microscopic techniques: Structural and molecular characterization.Polymers20221414285310.3390/polym14142853 35890632
    [Google Scholar]
  110. JurinaT. CvetnićT.S. ŠalićA. BenkovićM. ValingerD. KljusurićJ.G. ZelićB. Jurinjak TušekA. Application of spectroscopy techniques for monitoring (Bio)catalytic processes in continuously operated microreactor systems.Catalysts2023134690
    [Google Scholar]
  111. Mišić RadićT. VukosavP. ČačkovićA. DuleboA. Insights into the morphology and surface properties of microalgae at the nanoscale by atomic force microscopy (AFM): A review.Water202315111983
    [Google Scholar]
  112. LiuQ. WangX. Cluster‐assembled materials: Ordered structures with advanced properties.InfoMat20213885486810.1002/inf2.12213
    [Google Scholar]
  113. RamezaniM. Mohd RipinZ. PasangT. JiangC.P. Surface engineering of metals: Techniques, characterizations and applications.Metals2023137129910.3390/met13071299
    [Google Scholar]
  114. ZhangX. XuY. ZhangX. WuH. ShenJ. ChenR. XiongY. LiJ. GuoS. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications.Prog. Polym. Sci.2019897610710.1016/j.progpolymsci.2018.10.002
    [Google Scholar]
  115. CaoG. GaoH. Mechanical properties characterization of two-dimensional materials via nanoindentation experiments.Prog. Mater. Sci.201910355859510.1016/j.pmatsci.2019.03.002
    [Google Scholar]
  116. RicohermosoE.I.I.I.III KlugF. SchlaakH. RiedelR. IonescuE. Electrically conductive silicon oxycarbide thin films prepared from preceramic polymers.Int. J. Appl. Ceram. Technol.202219114916410.1111/ijac.13800
    [Google Scholar]
  117. Bratek-SkickiA. Towards a new class of stimuli-responsive polymer-based materials – Recent advances and challenges.Appl. Surf. Sci.2021410006810.1016/j.apsadv.2021.100068
    [Google Scholar]
  118. VenkateshaiahA. PadilV.V.T. NagalakshmaiahM. WaclawekS. ČerníkM. VarmaR.S. Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives.Polymers202012351210.3390/polym12030512 32120773
    [Google Scholar]
  119. ZhangX. LiangT. MaQ. Layer-by-Layer assembled nano-drug delivery systems for cancer treatment.Drug Deliv.202128165566910.1080/10717544.2021.1905748 33787431
    [Google Scholar]
  120. GaoJ. YuX. WangX. HeY. DingJ. Biomaterial–related cell microenvironment in tissue engineering and regenerative medicine.Engineering202213314510.1016/j.eng.2021.11.025
    [Google Scholar]
  121. ErkmenC. SelcukO. UnalD.N. KurbanogluS. UsluB. Layer-by-layer modification strategies for electrochemical detection of biomarkers.Biosens. Bioelectron.: X.202212100270
    [Google Scholar]
  122. CichaI. PrieferR. SeverinoP. SoutoE.B. JainS. Biosensor-integrated drug delivery systems as new materials for biomedical applications.Biomolecules2022129119810.3390/biom12091198 36139035
    [Google Scholar]
  123. SociC. AdamoG. CortecchiaD. WangK. XiaoS. SongQ. Schall-GieseckeA.L. CegielskiP.J. LemmeM.C. GeraceD. SanvittoD. TianJ. TonkaevP.A. MakarovS.V. KivsharY.S. Jimenez GordilloO.A. MelloniA. PushkarevA.P. D’AmatoM. LhuillierE. BramatiA. (INVITED) Roadmap on perovskite nanophotonics.Opt. Mater.: X202317100214
    [Google Scholar]
  124. RoyP. GhoshA. BarclayF. KhareA. CuceE. Perovskite solar cells: A review of the recent advances.Coatings2022128108910.3390/coatings12081089
    [Google Scholar]
  125. ZhangL. SunC. HeT. JiangY. WeiJ. HuangY. YuanM. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices.Light Sci. Appl.20211016110.1038/s41377‑021‑00501‑0 33741895
    [Google Scholar]
  126. XiongR. LuanJ. KangS. YeC. SingamaneniS. TsukrukV.V. Biopolymeric photonic structures: Design, fabrication, and emerging applications.Chem. Soc. Rev.2020493983103110.1039/C8CS01007B 31960001
    [Google Scholar]
  127. LiuL. NajarA. WangK. DuM. LiuS.F. Perovskite quantum dots in solar cells.Adv. Sci.202297210457710.1002/advs.202104577 35032118
    [Google Scholar]
  128. AnsariM.Z. AnsariS.A. KimS.H. Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: A comprehensive review.J. Energy Storage20225310518710.1016/j.est.2022.105187
    [Google Scholar]
  129. NzereoguP.U. OmahA.D. EzemaF.I. IwuohaE.I. NwanyaA.C. Anode materials for lithium-ion batteries: A review.Appl. Surf. Sci.2022910023310.1016/j.apsadv.2022.100233
    [Google Scholar]
  130. KumarN. KimS.B. LeeS.Y. ParkS.J. Recent advanced supercapacitor: A review of storage mechanisms, electrode materials, modification, and perspectives.Nanomaterials20221220370810.3390/nano12203708 36296898
    [Google Scholar]
  131. LiR. KawanamiH. A recent review of primary hydrogen carriers, hydrogen production methods, and applications.Catalysts2023133562
    [Google Scholar]
  132. QiB. RenK. LinY. ZhangS. WeiT. FanZ. Design of layered-stacking graphene assemblies as advanced electrodes for supercapacitors.Particuology20226011310.1016/j.partic.2021.03.001
    [Google Scholar]
  133. MamidiN. Velasco DelgadilloR.M. BarreraE.V. RamakrishnaS. AnnabiN. Carbonaceous nanomaterials incorporated biomaterials: The present and future of the flourishing field.Compos., Part B Eng.202224311015010.1016/j.compositesb.2022.110150
    [Google Scholar]
  134. RamburrunP. KhanR.A. ChoonaraY.E. Design, preparation, and functionalization of nanobiomaterials for enhanced efficacy in current and future biomedical applications.Nanotechnol. Rev.20221111802182610.1515/ntrev‑2022‑0106
    [Google Scholar]
  135. PreetamS. NahakB.K. PatraS. ToncuD.C. ParkS. SyväjärviM. OriveG. TiwariA. Emergence of microfluidics for next generation biomedical devices.Biosens. Bioelectron.: X202210100106
    [Google Scholar]
  136. ChaiZ. ChildressA. BusnainaA.A. Directed assembly of nanomaterials for making nanoscale devices and structures: Mechanisms and applications.ACS Nano20221611176411768610.1021/acsnano.2c07910 36269234
    [Google Scholar]
  137. SchuldtS.J. JagodaJ.A. HoisingtonA.J. DeloritJ.D. A systematic review and analysis of the viability of 3D-printed construction in remote environments.Autom. Construct.202112510364210.1016/j.autcon.2021.103642
    [Google Scholar]
  138. BaigN. Two-dimensional nanomaterials: A critical review of recent progress, properties, applications, and future directions.Compos., Part A Appl. Sci. Manuf.202316510736210.1016/j.compositesa.2022.107362
    [Google Scholar]
  139. MuC. LvC. MengX. SunJ. TongZ. HuangK. In situ characterization techniques applied in photocatalysis: A review.Adv. Mater. Interfaces2023103220184210.1002/admi.202201842
    [Google Scholar]
  140. MaS. HouY. HaoJ. LinC. ZhaoJ. SuiX. Well-defined nanostructures by block copolymers and mass transport applications in energy conversion.Polymers20221421456810.3390/polym14214568 36365562
    [Google Scholar]
  141. MukhamedievR.I. PopovaY. KuchinY. ZaitsevaE. KalimoldayevA. SymagulovA. LevashenkoV. AbdoldinaF. GopejenkoV. YakuninK. MuhamedijevaE. YelisM. Review of artificial intelligence and machine learning technologies: Classification, restrictions, opportunities and challenges.Mathematics202210152552
    [Google Scholar]
  142. HoE. JeonM. LeeM. LuoJ. PfammatterA.F. ShettyV. SpringB. Fostering interdisciplinary collaboration: A longitudinal social network analysis of the NIH mHealth Training Institutes.J. Clin. Transl. Sci.202151e19110.1017/cts.2021.859 34849265
    [Google Scholar]
  143. BasA. BurnsN. GulottaA. JunkerJ. DraslerB. LehnerR. AicherL. ConstantS. Petri-FinkA. Rothen-RutishauserB. Understanding the development, standardization, and validation process of alternative in vitro test methods for regulatory approval from a researcher perspective.Small20211715200602710.1002/smll.202006027 33480475
    [Google Scholar]
  144. KizhepatS. RasalA.S. ChangJ-Y. WuH-F. Development of two-dimensional functional nanomaterials for biosensor applications: Opportunities, challenges, and future prospects.Nanomaterials 20231391520
    [Google Scholar]
  145. MakrisS. DietrichF. KellensK. HuS.J. Automated assembly of non-rigid objects.CIRP Ann.202372251353910.1016/j.cirp.2023.05.003
    [Google Scholar]
  146. TischnerU. HoraM. 19 - Sustainable electronic product design.Waste Electrical and Electronic Equipment (WEEE) Handbook. GoodshipV. StevelsA. Woodhead Publishing201240544110.1533/9780857096333.4.405
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137280856231219102128
Loading
/content/journals/cnano/10.2174/0115734137280856231219102128
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test