Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

The development of affordable and ecologically acceptable technologies for heavy metal detection and removal is required due to the rising levels of water and soil pollution. Carbon Dots (CDs) have emerged as a promising nanomaterial for heavy metal detection due to their unique properties. In this study, we report a simple and eco-friendly method to produce CDs using fruit extract as a precursor.

Methods

The hydrothermal method produced a well-defined size, structure, and optical properties of CDs, which were analyzed by using various characterization techniques, including Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray Spectroscopy (EDS), Elemental mapping (E-map), UV-visible spectroscopy, X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Photoluminescence (PL) spectroscopy, and Transmission Electron Microscopy (TEM). Additionally, Zeta potential and DLS analysis were used to characterize the CDs.

Results

As-synthesized CDs exhibited strong fluorescence emission, making them suitable for the selective determination of Fe3+ ions. The detection limit was found to be 3.6 µM for Fe3+ ions, which highlighted the potential application of as-prepared CDs in environmental monitoring.

Conclusion

The green synthesized CDs from fruit extract provided a sustainable approach for developing efficient nanoprobes for detecting Fe3+ ions in environmental and biological samples.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137290117240404085227
2024-04-24
2025-03-30
Loading full text...

Full text loading...

References

  1. ManikandanV. LeeN.Y. Green synthesis of carbon quantum dots and their environmental applications.Environ. Res.202221211328310.1016/j.envres.2022.113283
    [Google Scholar]
  2. MuruganP. JeevanandhamG. SundramoorthyA.K. Identification, interaction and detection of microplastics on fish scales.Curr. Anal. Chem.202218558859710.2174/1573411017999210112180054
    [Google Scholar]
  3. SinghA. SharmaA. AhmedA. SundramoorthyA.K. FurukawaH. AryaS. KhoslaA. Recent advances in electrochemical biosensors: applications, challenges, and future scope.Biosensors202111933610.3390/bios11090336 34562926
    [Google Scholar]
  4. ShivalingamC. MohanL. GanapathyD. Current overview on the role of nanoparticles in water desalination technology.Curr. Anal. Chem.202218998999810.2174/1573411018666220805112549
    [Google Scholar]
  5. KumarT.H.V. RajendranJ. AtchudanR. AryaS. GovindasamyM. HabilaM.A. SundramoorthyA.K. Cobalt ferrite/semiconducting single-walled carbon nanotubes based field-effect transistor for determination of carbamate pesticides.Environ. Res.2023238Pt 211719310.1016/j.envres.2023.117193 37758116
    [Google Scholar]
  6. MuruganN. SundramoorthyA.K. Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe3+ ions.New J. Chem.20184216132971330710.1039/C8NJ01894D
    [Google Scholar]
  7. MuruganN. PrakashM. JayakumarM. SundaramurthyA. SundramoorthyA.K. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+.Appl. Surf. Sci.201947646848010.1016/j.apsusc.2019.01.090
    [Google Scholar]
  8. MageshV. SundramoorthyA.K. GanapathyD. Recent advances on synthesis and potential applications of carbon quantum dots.Front. Mater.20229906838[Internet]10.3389/fmats.2022.906838
    [Google Scholar]
  9. MalavikaJ.P. ShobanaC. SundarrajS. GaneshbabuM. KumarP. SelvanR.K. Green synthesis of multifunctional carbon quantum dots: An approach in cancer theranostics.Biomater. Adv.202213621275610.1016/j.bioadv.2022.212756 35929302
    [Google Scholar]
  10. SundramoorthyA.K. KumarM.C. RamyaT. AtchudanR. AryaS. Biocompatible heteroatom doped carbon dots for cancer cell imaging and analysis.Oral Oncol. Rep.2023710008910008910.1016/j.oor.2023.100089
    [Google Scholar]
  11. SufianA.S. RamasamyK. AhmatN. ZakariaZ.A. YusofM.I.M. Isolation and identification of antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L.J. Ethnopharmacol.2013146119820410.1016/j.jep.2012.12.032 23276785
    [Google Scholar]
  12. MahmoodN.D. NasirN.L.M. RofieeM.S. TohidS.F.M. ChingS.M. TehL.K. SallehM.Z. ZakariaZ.A. Muntingia calabura: A review of its traditional uses, chemical properties, and pharmacological observations.Pharm. Biol.201452121598162310.3109/13880209.2014.908397 25068675
    [Google Scholar]
  13. AtchudanR. EdisonT. PerumalS. VinodhR. Morus nigra-derived hydrophilic carbon dots for the highly selective and sensitive detection of ferric ion in aqueous media and human colon cancer cell imaging.Colloids and Surfaces A: Physicochemical and Engineering AspectsElsevier202263512807310.1016/j.colsurfa.2021.128073
    [Google Scholar]
  14. RaniU.A. NgL.Y. NgC.Y. MahmoudiE. A review of carbon quantum dots and their applications in wastewater treatment.Adv. Colloid Interface Sci.202027810212410.1016/j.cis.2020.102124 32142942
    [Google Scholar]
  15. JamkhandeP.G. GhuleN.W. BamerA.H. KalaskarM.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.J. Drug Deliv. Sci. Technol.20195310117410.1016/j.jddst.2019.101174
    [Google Scholar]
  16. AshfiyaA. NurcahyatiB.I.A. Dwandaru, A Carbon nanodots as complexing agent in the formation of lead (II) sulfide thin films via direct deposition of lead (II) sulfide powder.J. Mathe. & Fund. Sci.2023551115
    [Google Scholar]
  17. DeB. KarakN. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice.RSC Advances2013322828610.1039/c3ra00088e
    [Google Scholar]
  18. RajP. LeeS. LeeT.Y. Carbon dot/naphthalimide based ratiometric fluorescence biosensor for hyaluronidase detection.Materials2021145131310.3390/ma14051313 33803381
    [Google Scholar]
  19. DeR. JoK.W. LeeB.H. SomeS. KimK.T. Microwave-assisted rapid synthesis of nitrogen-enriched amphibious carbon quantum dots for sensitive detection of ROS and multiple other applications.J. Mater. Chem. B Mater. Biol. Med.202311266024604310.1039/D3TB00614J 37272382
    [Google Scholar]
  20. AtchudanR. EdisonT.N.J.I. PerumalS. VinodhR. SundramoorthyA.K. BabuR.S. LeeY.R. Leftover kiwi fruit peel-derived carbon dots as a highly selective fluorescent sensor for detection of ferric ion.Chemosensors20219716610.3390/chemosensors9070166
    [Google Scholar]
  21. AtchudanR. GangadaranP. PerumalS. EdisonT.N.J.I. SundramoorthyA.K. RajendranR.L. Green synthesis of multicolor emissive nitrogen-doped carbon dots for bioimaging of human cancer cells.J. Cluster Sci.2022341583159410.1007/s10876‑022‑02337‑z
    [Google Scholar]
  22. HeS. TurnbullM.J. NieY. SunX. DingZ. Band structures of blue luminescent nitrogen-doped graphene quantum dots by synchrotron-based XPS.Surf. Sci.2018676515510.1016/j.susc.2018.01.013
    [Google Scholar]
  23. YangY. KongW. LiH. LiuJ. YangM. HuangH. LiuY. WangZ. WangZ. ShamT.K. ZhongJ. WangC. LiuZ. LeeS.T. KangZ. Fluorescent N-doped carbon dots as in vitro and in vivo nanothermometer.ACS Appl. Mater. Interfaces2015749273242733010.1021/acsami.5b08782 26593857
    [Google Scholar]
  24. AdsettsJ.R. ZhangR. YangL. ChuK. WongJ.M. LoveD.A. DingZ. Efficient white electrochemiluminescent emission from carbon quantum dot films.Front Chem.2020858002210.3389/fchem.2020.580022 33134278
    [Google Scholar]
  25. NandanwarR. SinghP. HaqueF. Synthesis and characterization of SiO2 nanoparticles by sol-gel process and its degradation of methylene blue.American Chem. Sci. J.20155111010.9734/ACSJ/2015/10875
    [Google Scholar]
  26. MunasirM. HidayatN. KusumawatiD.H. PutriN.P. TaufiqA. SunaryonoS. Amorphous-SiO2 nanoparticles for water treatment materials.International conference on electromagnetism, rock magnetism and magnetic materialAIP Publishing2019225110.1063/5.0015673
    [Google Scholar]
  27. HwangY. ParkY.H. KimH.S. KimD.H. AliS. SorcarS. FloresM.C. HoffmannM.R. In, S.I. C-14 powered dye-sensitized betavoltaic cells.Chem. Commun.202056527080708310.1039/D0CC02046J 32494792
    [Google Scholar]
  28. ShaikhA.F. TamboliM.S. PatilR.H. BhanA. AmbekarJ.D. KaleB.B. Bioinspired carbon quantum dots: An antibiofilm agents.J. Nanosci. Nanotechnol.20191942339234510.1166/jnn.2019.16537 30486995
    [Google Scholar]
  29. MansuriyaB.D. AltintasZ. Carbon dots: Classification, properties, synthesis, characterization, and applications in health care-an updated review (2018-2021).Nanomaterials20211110252510.3390/nano11102525 34684966
    [Google Scholar]
  30. LiuY. LiuY. LeeJ. LeeJ.H. ParkM. KimH.Y. Rational designed strategy to dispel mutual interference of mercuric and ferric ions towards robust, pH-stable fluorescent carbon nanodots.Analyst201714271149115610.1039/C6AN02601J 28317996
    [Google Scholar]
  31. LiL. WuG. YangG. PengJ. ZhaoJ. ZhuJ.J. Focusing on luminescent graphene quantum dots: current status and future perspectives.Nanoscale20135104015403910.1039/c3nr33849e 23579482
    [Google Scholar]
  32. ZhangQ. ZhangX. BaoL. WuY. JiangL. ZhengY. WangY. ChenY. The application of green-synthesis-derived carbon quantum dots to bioimaging and the analysis of mercury(II).J. Anal. Methods Chem.201920191910.1155/2019/8183134 31886024
    [Google Scholar]
  33. BoraA. MohanK. DoluiS.K. Carbon dots as cosensitizers in dye-sensitized solar cells and fluorescence chemosensors for 2,4,6-trinitrophenol detection.Ind. Eng. Chem. Res.20195851227712277810.1021/acs.iecr.9b05056
    [Google Scholar]
  34. DagerA. UchidaT. MaekawaT. TachibanaM. Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: Photoluminescence analysis using machine learning.Sci. Rep.2019911400410.1038/s41598‑019‑50397‑5 31570739
    [Google Scholar]
  35. SahuS. BeheraB. MaitiT.K. MohapatraS. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents.Chem. Commun.201248708835883710.1039/c2cc33796g 22836910
    [Google Scholar]
  36. JiaX. LiJ. WangE. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence.Nanoscale20124185572557510.1039/c2nr31319g 22786671
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137290117240404085227
Loading
/content/journals/cnano/10.2174/0115734137290117240404085227
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test