Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

The remarkable physicochemical properties of Graphene oxide (GO), a graphene derivative, have made it a material with intriguing medical administration potential. Its 2D allotropic nature is the source of its biological flexibility. The transportation of genes and small molecules are just two of the many biomedical applications of graphene and its composite. Antibacterial use in tooth and bone grafts, biofunctionalization of proteins, and treatment of cancer are among other potential uses. The biocompatibility of the freshly synthesized nanomaterials opens up a world of potential biological and medicinal uses. Furthermore, GO's versatility makes it an ideal component for usage in other drug delivery systems, such as hydrogels, nanoparticles, and micelles. This review aims to compile the existing body of knowledge regarding the use of GO in drug delivery by delving into its many potential uses, obstacles, and future developments.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137299120240312044808
2024-03-20
2025-04-25
Loading full text...

Full text loading...

References

  1. WertheimerA.I. SantellaT.M. FinestoneA.J. LevyR.A. Drug delivery systems improve Pharmaceutical profile and facilitate medication adherence.Adv. Ther.200522655957710.1007/BF02849950 16510373
    [Google Scholar]
  2. AkulaS. GurramA.K. DevireddyS.R. Self-microemulsifying drug delivery systems: An attractive strategy for enhanced therapeutic profile.Int. Sch. Res. Notices2014201496405110.1155/2014/964051
    [Google Scholar]
  3. SahuT. RatreY.K. ChauhanS. BhaskarL.V.K.S. NairM.P. VermaH.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science.J. Drug Deliv. Sci. Technol.20216310248710.1016/j.jddst.2021.102487
    [Google Scholar]
  4. MishraM. KumarP. RajawatJ.S. MalikR. SharmaG. ModgilA. Nanotechnology: Revolutionizing the science of drug delivery.Curr. Pharm. Des.201924435086510710.2174/1381612825666190206222415 30727873
    [Google Scholar]
  5. WalimbeP. ChaudhariM. State-of-the-art advancements in studies and applications of graphene: A comprehensive review.Mater. Today Sustain.2019610002610.1016/j.mtsust.2019.100026
    [Google Scholar]
  6. BanerjeeA.N. Graphene and its derivatives as biomedical materials: future prospects and challenges.Interface Focus2018832017005610.1098/rsfs.2017.0056 29696088
    [Google Scholar]
  7. KurapatiR. KostarelosK. PratoM. BiancoA. Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead.Adv. Mater.201628296052607410.1002/adma.201506306 27105929
    [Google Scholar]
  8. SoldanoC. MahmoodA. DujardinE. Production, properties and potential of graphene.Carbon20104882127215010.1016/j.carbon.2010.01.058
    [Google Scholar]
  9. MohanV.B. LauK. HuiD. BhattacharyyaD. Graphene-based materials and their composites: A review on production, applications and product limitations.Compos., Part B Eng.201814220022010.1016/j.compositesb.2018.01.013
    [Google Scholar]
  10. WangY. LiZ. WangJ. LiJ. LinY. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology.Trends Biotechnol.201129520521210.1016/j.tibtech.2011.01.008 21397350
    [Google Scholar]
  11. SharmaR.K. YadavS. DuttaS. KaleH.B. WarkadI.R. ZbořilR. VarmaR.S. GawandeM.B. Silver nanomaterials: Synthesis and (electro/photo) catalytic applications.Chem. Soc. Rev.20215020112931138010.1039/D0CS00912A 34661205
    [Google Scholar]
  12. HashmiA. NayakV. SinghK.R.B. JainB. BaidM. AlexisF. SinghA.K. Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection.Mater. Today Sustain.20221310020810.1016/j.mtadv.2022.100208 35039802
    [Google Scholar]
  13. CampbellE. HasanM.T. PhoC. CallaghanK. AkkarajuG.R. NaumovA.V. GO as a multifunctional platform for intracellular delivery, imaging, and cancer sensing.Sci. Rep.20199141610.1038/s41598‑018‑36617‑4 30674914
    [Google Scholar]
  14. FengL. WuL. QuX. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide.Adv. Mater.201325216818610.1002/adma.201203229 23161646
    [Google Scholar]
  15. SinghD.P. HerreraC.E. SinghB. SinghS. SinghR.K. KumarR. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications.Mater. Sci. Eng. C20188617319710.1016/j.msec.2018.01.004 29525091
    [Google Scholar]
  16. GhosalK. SarkarK. Biomedical applications of graphene nanomaterials and beyond.ACS Biomater. Sci. Eng.2018482653270310.1021/acsbiomaterials.8b00376 33434995
    [Google Scholar]
  17. HuangX. YinZ. WuS. QiX. HeQ. ZhangQ. YanQ. BoeyF. ZhangH. Graphene‐based materials: Synthesis, characterization, properties, and applications.Small2011718761902
    [Google Scholar]
  18. QuanQ. LinX. ZhangN. XuY.J. Graphene and its derivatives as versatile templates for materials synthesis and functional applications.Nanoscale2017972398241610.1039/C6NR09439B 28155929
    [Google Scholar]
  19. KumarN. SalehiyanR. ChaukeV. BotlhokoJ.O. SetshediK. ScribaM. MasukumeM. RayS.S. Top-down synthesis of graphene: A comprehensive review.FlatChem20212710022410.1016/j.flatc.2021.100224
    [Google Scholar]
  20. CruzG.A. HernándezR.A.R. ClementeV.J.F. GazcónL.D.G. DelgadoC.J. A review of top-down and bottom-up synthesis methods for the production of graphene, GO and reduced GO.J. Mater. Sci.202257145431457810.1007/s10853‑022‑07514‑z
    [Google Scholar]
  21. LiC. ChenX. ShenL. BaoN. Revisiting the oxidation of graphite: Reaction mechanism, chemical stability, and structure self-regulation.ACS Omega2020573397340410.1021/acsomega.9b03633 32118154
    [Google Scholar]
  22. BriseboisP.P. SiajM. Harvesting graphene oxide – years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation.J. Mater. Chem. C Mater. Opt. Electron. Devices2020851517154710.1039/C9TC03251G
    [Google Scholar]
  23. ZhuY. MuraliS. CaiW. LiX. SukJ.W. PottsJ.R. RuoffR.S. Graphene and graphene oxide: Synthesis, properties, and applications.Adv. Mater.201022353906392410.1002/adma.201001068 20706983
    [Google Scholar]
  24. RayS. Applications of graphene and graphene-oxide based nanomaterials.William Andrew2015
    [Google Scholar]
  25. FarjadianF. AbbaspourS. SadatluM.A.A. MirkianiS. GhasemiA. GhahfarokhiH.M. MozaffariN. KarimiM. HamblinM.R. Recent developments in graphene and GO: Properties, synthesis, and modifications: A review.ChemistrySelect2020533102001021910.1002/slct.202002501
    [Google Scholar]
  26. SanchezV.C. JachakA. HurtR.H. KaneA.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review.Chem. Res. Toxicol.2012251153410.1021/tx200339h 21954945
    [Google Scholar]
  27. ItooA.M. VemulaS.L. GuptaM.T. GiramM.V. KumarS.A. GhoshB. BiswasS. Multifunctional graphene oxide nanoparticles for drug delivery in cancer.J. Control. Release2022350265910.1016/j.jconrel.2022.08.011 35964787
    [Google Scholar]
  28. LiuJ. CuiL. LosicD. Graphene and graphene oxide as new nanocarriers for drug delivery applications.Acta Biomater.20139129243925710.1016/j.actbio.2013.08.016 23958782
    [Google Scholar]
  29. ParedesJ.I. RodilV.S. Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: A review of recent progress and applications.Nanoscale2016834153891541310.1039/C6NR02039A 27518874
    [Google Scholar]
  30. ShaoJ.J. LvW. YangQ.H. Self-assembly of graphene oxide at interfaces.Adv. Mater.201426325586561210.1002/adma.201400267 24852899
    [Google Scholar]
  31. YangJ. MaM. LiL. ZhangY. HuangW. DongX. Graphene nanomesh: New versatile materials.Nanoscale2014622133011331310.1039/C4NR04584J 25308060
    [Google Scholar]
  32. TejadaM.J.M. MedinaV.J. Review on graphene nanoribbon devices for logic applications.Microelectronics201648183810.1016/j.mejo.2015.11.006
    [Google Scholar]
  33. KhanF. KhanM.S. KamalS. ArshadM. AhmadS.I. NamiS.A. Recent advances in GO and reduced GO based nanocomposites for the photodegradation of dyes.J. Mater. Chem. C Mater. Opt. Electron. Devices20208159401595510.1039/D0TC03684F
    [Google Scholar]
  34. KumarH. SharmaR. YadavA. KumariR. Recent advancement made in the field of reduced graphene oxide-based nanocomposites used in the energy storage devices: A review.J. Energy Storage20213310203210.1016/j.est.2020.102032
    [Google Scholar]
  35. ChauhanS. ChalotraR. RathiA. SainiM. DeolS. LardM. GuptaS. Current approaches in healing of wounds in diabetes and diabetic foot ulcers.Curr. Bioact. Compd.202319104121
    [Google Scholar]
  36. GhoshS. HaldarS. GuptaS. ChauhanS. MagoV. RoyP. LahiriD. Single unit functionally graded bioresorbable electrospun scaffold for scar-free full-thickness skin wound healing.Biomater. Adv.202213921298010.1016/j.bioadv.2022.212980 35882136
    [Google Scholar]
  37. DeshmukhR.V. ParaskarP. MishraS. NaikJ. Development of nateglinide loaded graphene oxide-chitosan nanocomposites: Optimization by box behnken design.Micro Nanosyst.201911214215310.2174/1876402911666190328221345
    [Google Scholar]
  38. SaharanR. PaliwalS.K. TiwariA. TiwariV. SinghR. BeniwalS.K. DahiyaP. SagadevanS. Exploring graphene and its potential in delivery of drugs and biomolecules.J. Drug Deliv. Sci. Technol.20238410444610.1016/j.jddst.2023.104446
    [Google Scholar]
  39. DhankharS. ChauhanS. MehtaD.K. Nitika; Saini, K.; Saini, M.; Das, R.; Gupta, S.; Gautam, V. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  40. RohillaM. Rishabh; Bansal, S.; Garg, A.; Dhiman, S.; Dhankhar, S.; Saini, M.; Chauhan, S.; Alsubaie, N.; Batiha, G.E.S.; Albezrah, N.K.A.; Singh, T.G. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy.Biomed. Pharmacother.202316911588110.1016/j.biopha.2023.115881 37989030
    [Google Scholar]
  41. SaharanR. KaurJ. DhankharS. GargN. ChauhanS. KumarS. SharmaH. Hydrogel-based drug delivery system in diabetes management.Pharm. Nanotechnol.20231211110.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  42. GhawanmehA.A. AliG.A.M. AlgarniH. SarkarS.M. ChongK.F. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery.Nano Res.201912597399010.1007/s12274‑019‑2300‑4
    [Google Scholar]
  43. ShenJ. YanB. LiT. LongY. LiN. YeM. Study on graphene-oxide-based polyacrylamide composite hydrogels.Compos., Part A Appl. Sci. Manuf.20124391476148110.1016/j.compositesa.2012.04.006
    [Google Scholar]
  44. HeC. ShiZ.Q. MaL. ChengC. NieC.X. ZhouM. ZhaoC.S. Graphene oxide based heparin-mimicking and hemocompatible polymeric hydrogels for versatile biomedical applications.J. Mater. Chem. B Mater. Biol. Med.20153459260210.1039/C4TB01806K 32262341
    [Google Scholar]
  45. ZhouJ. ZhangS. SongX. WeiR. ZhangX. ZhaoW. ZhaoC. Three-dimensional GO skeleton guided poly (acrylic acid) composite hydrogel particles with hierarchical pore structure for hemoperfusion.ACS Biomater. Sci. Eng.2019583987400110.1021/acsbiomaterials.9b00712 33443421
    [Google Scholar]
  46. LiuJ. DongJ. ZhangT. PengQ. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy.J. Control. Release2018286647310.1016/j.jconrel.2018.07.034 30031155
    [Google Scholar]
  47. AshrafizadehM. SaebfarH. GholamiM.H. HushmandiK. ZabolianA. BikarannejadP. HashemiM. DaneshiS. MirzaeiS. SharifiE. KumarA.P. KhanH. HosseinH.S.H. VosoughM. RabieeN. ThakurK.V. MakvandiP. MishraY.K. TayF.R. WangY. ZarrabiA. OriveG. MostafaviE. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance.Expert Opin. Drug Deliv.202219435538210.1080/17425247.2022.2041598 35152815
    [Google Scholar]
  48. SekhonS.S. KaurP. KimY.-H. SekhonS.S. 2D graphene oxide– aptamer conjugate materials for cancer diagnosis. NPJ 2D Mater Appl.20215121
    [Google Scholar]
  49. TanJ. MengN. FanY. SuY. ZhangM. XiaoY. ZhouN. Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs.Mater. Sci. Eng. C20166168168710.1016/j.msec.2015.12.098 26838897
    [Google Scholar]
  50. CruzS. MarquesP. ValenteA. Supramolecular graphene-based systems for drug delivery. Handbook of Graphene. OzkanC. New York, NY, USAScrivener Publishing LLC201944348010.1002/9781119468455.ch67
    [Google Scholar]
  51. BafrooeiH.E. ShamszadehN.S. Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen.Biosens. Bioelectron.20179128429210.1016/j.bios.2016.12.048 28033557
    [Google Scholar]
  52. UenoY. FurukawaK. MatsuoK. InoueS. HayashiK. HibinoH. On-chip graphene oxide aptasensor for multiple protein detection.Anal. Chim. Acta20158661910.1016/j.aca.2014.10.047 25732687
    [Google Scholar]
  53. PanL.H. KuoS.H. LinT.Y. LinC.W. FangP.Y. YangH.W. An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles.Biosens. Bioelectron.201789Pt 159860510.1016/j.bios.2016.01.077 26868935
    [Google Scholar]
  54. FangB.Y. WangC.Y. LiC. WangH.B. ZhaoY.D. Amplified using DNase I and aptamer/graphene oxide for sensing prostate specific antigen in human serum.Sens. Actuators B Chem.201724492893310.1016/j.snb.2017.01.045
    [Google Scholar]
  55. OstrovidovS. RamalingamM. BaeH. OriveG. FujieT. HoriT. NashimotoY. ShiX. KajiH. Molecularly imprinted polymer-based sensors for the detection of skeletal- and cardiac-muscle-related analytes.Sensors20232312562510.3390/s23125625 37420790
    [Google Scholar]
  56. XingX.J. XiaoW.L. LiuX.G. ZhouY. PangD.W. TangH.W. A fluorescent aptasensor using double-stranded DNA/graphene oxide as the indicator probe.Biosens. Bioelectron.20167843143710.1016/j.bios.2015.11.076 26655184
    [Google Scholar]
  57. WeiW. LiD.F. PanX.H. LiuS.Q. Electrochemiluminescent detection of Mucin 1 protein and MCF-7 cancer cells based on the resonance energy transfer.Analyst 201213792101210610.1039/c2an35059a 22421993
    [Google Scholar]
  58. LiuW. WuQ. WangW. XuX. YangC. SongY. Enhanced molecular recognition on microfluidic affinity interfaces.Trends Analyt. Chem.202215711682710.1016/j.trac.2022.116827
    [Google Scholar]
  59. YangL. TsengY.T. SuoG. ChenL. YuJ. ChiuW.J. HuangC.C. LinC.H. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination.ACS Appl. Mater. Interfaces2015795097510610.1021/am508117e 25705789
    [Google Scholar]
  60. TanJ. LaiZ. ZhongL. ZhangZ. ZhengR. SuJ. HuangY. HuangP. SongH. YangN. A GO-based fluorescent aptasensor for the turn-on detection of CCRF-CEM.Nanoscale Res. Lett.20181318
    [Google Scholar]
  61. SassolasA. BlumL.J. BouvierL.B.D. Electrochemical aptasensors.Electroanalysis200921111237125010.1002/elan.200804554
    [Google Scholar]
  62. YangS. ZhangF. WangZ. LiangQ. A graphene oxide-based label-free electrochemical aptasensor for the detection of alpha-fetoprotein.Biosens. Bioelectron.201811218619210.1016/j.bios.2018.04.026 29705616
    [Google Scholar]
  63. CaoL. ChengL. ZhangZ. WangY. ZhangX. ChenH. LiuB. ZhangS. KongJ. Visual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip.Lab Chip201212224864486910.1039/c2lc40564d 23023186
    [Google Scholar]
  64. YangX. TuQ. ShenX. PanM. JiangC. ZhuP. LiY. LiP. HuC. Surface modification of Poly(p-phenylene terephthalamide) fibers by polydopamine-polyethyleneimine/graphene oxide multilayer films to enhance interfacial adhesion with rubber matrix.Polym. Test.20197810598510.1016/j.polymertesting.2019.105985
    [Google Scholar]
  65. GeyikC. EvranS. TimurS. TelefoncuA. The covalent bioconjugate of multiwalled carbon nanotube and amino‐modified linearized plasmid DNA for gene delivery.Biotechnol. Prog.201430122423210.1002/btpr.1836 24288272
    [Google Scholar]
  66. BaoH. PanY. PingY. SahooN.G. WuT. LiL. LiJ. GanL.H. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery.Small20117111569157810.1002/smll.201100191 21538871
    [Google Scholar]
  67. Aghazadeh AslE. PooresmaeilM. NamaziH. Chitosan coated MOF/GO nanohybrid as a co-anticancer drug delivery vehicle: Synthesis, characterization, and drug delivery application.Mater. Chem. Phys.202329312693310.1016/j.matchemphys.2022.126933
    [Google Scholar]
  68. TacarO. SriamornsakP. DassC.R. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems.J. Pharm. Pharmacol.201265215717010.1111/j.2042‑7158.2012.01567.x 23278683
    [Google Scholar]
  69. DolatkhahM. HashemzadehN. BararJ. AdibkiaK. AghanejadA. JalaliB.M. OmidiY. Graphene-based multifunctional nanosystems for simultaneous detection and treatment of breast cancer.Colloids Surf. B Biointerfaces202019311110410.1016/j.colsurfb.2020.111104 32417466
    [Google Scholar]
  70. WuS-Y. AnS.S.A. HulmeJ. Current applications of graphene oxide in nanomedicine.Int. J. Nanomedicine201510924 26345988
    [Google Scholar]
  71. ZhangL. XiaJ. ZhaoQ. LiuL. ZhangZ. Functional GO as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs.Small20106537544
    [Google Scholar]
  72. SharmaA.S. AliS. SabarinathanD. MurugaveluM. LiH. ChenQ. Recent progress on graphene quantum dots‐based fluorescence sensors for food safety and quality assessment applications.Compr. Rev. Food Sci. Food Saf.20212065765580110.1111/1541‑4337.12834 34601802
    [Google Scholar]
  73. RoyT. BoatengS.T. UddinM.B. MbeumiB.S. YadavR.K. BockC.R. FolahanJ.T. NoundouS.X. WalkerA.L. KingJ.A. BuergerC. HuangS. ChamcheuJ.C. The PI3K-Akt-mTOR and associated signaling pathways as molecular drivers of immune-mediated inflammatory skin diseases: Update on therapeutic strategy using natural and synthetic compounds.Cells20231212167110.3390/cells12121671 37371141
    [Google Scholar]
  74. ChauhanS. GuptaS. YasminS. SainiM. Antihyperglycemic and antioxidant potential of plant extract of litchi chinensis and glycine max.Int. J. Nutr. Pharmacol. Neurol. Dis.202111225233
    [Google Scholar]
  75. DhankarS. MujwarS. GargN. ChauhanS. SharmaP. SharmaK.S. KamalM.A. RaniD.N. KumarS. SainiM. Artificial intelligence in the management of neurodegenerative disorders.CNS Neurol. Disord. Drug Targets20232311010.2174/0118715273266095231009092603 37861051
    [Google Scholar]
  76. MittalP. DhankharS. ChauhanS. GargN. BhattacharyaT. AliM. ChaudharyA.A. RudayniH.A. Al-ZharaniM. AhmadW. KhanS.U.D. SinghT.G. MujwarS. A review on natural antioxidants for their role in the treatment of parkinson’s disease.Pharmaceuticals202316790810.3390/ph16070908 37513820
    [Google Scholar]
  77. NarwalS. DhandaT. SharmaP. SharmaV. DhankharS. GargN. GhoshN.S. RaniN. Current therapeutic strategies for chagas disease.Antiinfect. Agents20232111110.2174/2211352521666230823122601
    [Google Scholar]
  78. GargiuloS. AlbaneseS. ManciniM. State-of-the-art preclinical photoacoustic imaging in oncology: Recent advances in cancer theranostics.Contrast Media Mol. Imaging20192019508026710.1155/2019/5080267
    [Google Scholar]
  79. RyooS.R. KimY.K. KimM.H. MinD.H. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies.ACS Nano20104116587659810.1021/nn1018279 20979372
    [Google Scholar]
  80. ArigaK. HillJ.P. JiQ. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application.Phys. Chem. Chem. Phys.20079192319234010.1039/b700410a 17492095
    [Google Scholar]
  81. MareschiK. NovaraM. RustichelliD. FerreroI. GuidoD. CarboneE. MedicoE. MadonE. VercelliA. FagioliF. Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types.Exp. Hematol.200634111563157210.1016/j.exphem.2006.06.020 17046576
    [Google Scholar]
  82. BarhoumA. BetancourtG.M.L. RahierH. Van AsscheG. Physicochemical characterization of nanomaterials: Polymorph, composition, wettability, and thermal stability.Emerging applications of nanoparticles and architecture nanostructures.Elsevier201825527810.1016/B978‑0‑323‑51254‑1.00009‑9
    [Google Scholar]
  83. LosicD. FarivarF. YapP.L. KaramiA. Accounting carbonaceous counterfeits in graphene materials using the thermogravimetric analysis (TGA) approach.Anal. Chem.20219334118591186710.1021/acs.analchem.1c02662 34319694
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137299120240312044808
Loading
/content/journals/cnano/10.2174/0115734137299120240312044808
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biofunctionalization; cancer; drug delivery; Graphene oxide; nanoparticles; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test