Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Vitamin C (VitC), or L-ascorbic acid in topical formulations acts as an antioxidant, depigmentant, stimulator of stratum corneum renewal and collagen synthesis. VitC is a thermolabile, water-soluble compound, oxidizes when its solution is exposed to air, metals and high pH. Derivative compounds were created to circumvent the instability, poor penetration capacity in the stratum corneum. Furthermore, new drug delivery systems using nanotechnology began to be studied, providing protection against degradation and penetration through the skin.

Objective

The current paper aimed at carrying out a systematic review between 2006 and 2022, seeking innovative topical formulations containing VitC and its derivatives, where the problem of low permeation and instability was circumvented.

Methods

The search for articles was performed in the Science Direct, Springer and PubMed databases. The largest amount of information was gathered on innovative formulations for topical use for the delivery of VitC and its derivatives, physicochemical characterization data, and studies.

Results

The search in the databases resulted in a total of 3032 articles, of which 16 studies were selected for the systematic review, as they proved the possibility of carrying the active ingredient in nanosystems, allowing increased stability, better permeation properties and cutaneous release, enabling the therapeutic function of the active ingredient through the application of formulations to the skin. studies also proved the clinical efficacy of the compound in liposomes, ethosomes and niosomes.

Conclusion

The most described nanocarriers were nanoparticles and liposomes, and one study involved niosomes and ethosomes. Therefore, even though it is not a newly discovered molecule, VitC continues to be studied in topical formulations ensuring stability, permeation, and effectiveness.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137279981240104061749
2024-01-26
2025-04-02
Loading full text...

Full text loading...

References

  1. BranquinhoM. Role of Tryptophan and Interferon-Y Metabolism in Melanogenesis.PhD Thesis, University of São Paulo201910.11606/T.9.2019.tde‑18102019‑135722
    [Google Scholar]
  2. CoutoM.A.L. Canniatti-BrazacaS.G. CoutoL. Quantificação de vitamina C e capacidade antioxidante de variedades cítricas.Food Sci. Technol.201030151910.1590/S0101‑20612010000500003
    [Google Scholar]
  3. CaritáA.C. Fonseca-SantosB. ShultzJ.D. Michniak-KohnB. ChorilliM. LeonardiG.R. VitaminC. One compound, several uses. advances for delivery, efficiency and stability. nanomedicine.NBM20202411510.1016/j.nano.2019.102117
    [Google Scholar]
  4. ColvenR.M. PinnellS.R. Topical vitamin C in aging.Clin. Dermatol.199614222723410.1016/0738‑081X(95)00158‑C 8860861
    [Google Scholar]
  5. FiorucciA. SoaresM. CavalheiroE. AImportance of vitamin c through the ages.Química Nova na Escola20031737
    [Google Scholar]
  6. KrambeckK. Desenvolvimento de preparações cosméticas contendo Vitamina C.PhD Dissertation, University of Porto2009
    [Google Scholar]
  7. Manela-AzulayM. Mandarim-de-LacerdaC.A. PerezM.A. FilgueiraA.L. CuzziT. VitaminaC. VitaminaC. An. Bras. Dermatol.200378326527210.1590/S0365‑05962003000300002
    [Google Scholar]
  8. PinnellS.R. YangH. OmarM. Monteiro-RiviereN. DeBuysH.V. WalkerL.C. WangY. LevineM. Topical L-ascorbic acid: Percutaneous absorption studies.Dermatol. Surg.2001272137142 11207686
    [Google Scholar]
  9. PullarJ. CarrA. VissersM. The roles of Vitamin C in skin health.Nutrients20179886610.3390/nu9080866 28805671
    [Google Scholar]
  10. AhmadI. SherazM.A. AhmedS. ShaikhR.H. VaidF.H.M. ur Rehman Khattak, S.; Ansari, S.A. Photostability and interaction of ascorbic acid in cream formulations.AAPS PharmSciTech201112391792310.1208/s12249‑011‑9659‑1 21735345
    [Google Scholar]
  11. NogueiraF. Teores de Ácido L-Ascórbico em Frutas e sua Estabilidade em Sucos. PhD Dissertation,Universidade Estadual do Norte Fluminense2011
    [Google Scholar]
  12. SchaffazickS.R. GuterresS.S. FreitasL.L. PohlmannA.R. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos.Quim. Nova200326572673710.1590/S0100‑40422003000500017
    [Google Scholar]
  13. SegallA.I. MoyanoM.A. Stability of vitamin C derivatives in topical formulations containing lipoic acid, vitamins A and E.Int. J. Cosmet. Sci.200830645345810.1111/j.1468‑2494.2008.00473.x 19099546
    [Google Scholar]
  14. DalcinK.B. SchaffazickS.R. GuterresS.S. Vitamina C e seus derivados em produtos dermatológicos: aplicações e estabilidade.Caderno de Farmácia20031926979
    [Google Scholar]
  15. DantasI.L. Lipid nanoparticles containing tacrolimus for topical use: Development and characterization.PhD Dissertation, Federal University of Sergipe2015
    [Google Scholar]
  16. DaudtR.M. EmanuelliJ. Külkamp-GuerreiroI.C. PohlmannA.R. GuterresS.S. Nanotechnology as a strategy for the development of cosmetics.Cienc. Cult.2013653283110.21800/S0009‑67252013000300011
    [Google Scholar]
  17. MishraB. PatelB.B. TiwariS. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery.Nanomedicine20106192410.1016/j.nano.2009.04.008 19447208
    [Google Scholar]
  18. RappK.K. Development and biological application of Nanosystems containing the photosensitizer aluminum chloride phthalocyanine. PhD Dissertation, University of Brasília,2017
    [Google Scholar]
  19. TelangP. Vitamin C in dermatology.Indian Dermatol. Online J.20134214314610.4103/2229‑5178.110593 23741676
    [Google Scholar]
  20. SoaresM. SousaJ. PaisA. Cutaneous permeation: Challenges and opportunities.J. Basic Appl. Pharm. Sci.2010363337348
    [Google Scholar]
  21. BorgesR.V.A. Development of new dapsone microemulsions for the topical treatment of leprosy.PhD Dissertation, Federal University of Rio de Janeiro2011
    [Google Scholar]
  22. RegisL.H.V. SilvaA.F. GuedesJ.P.M. The use of nanotechnology in pharmaceuticals in Brazil. Research.Soc. Dev.20211015
    [Google Scholar]
  23. KandilS.M. SolimanI.I. DiabH.M. BedairN.I. MahrousM.H. AbdouE.M. Magnesium ascorbyl phosphate vesicular carriers for topical delivery; preparation, in-vitro and ex-vivo evaluation, factorial optimization and clinical assessment in melasma patients.Drug Deliv.202229153454710.1080/10717544.2022.2036872 35156490
    [Google Scholar]
  24. Maione-SilvaL. de CastroE.G. NascimentoT.L. CintraE.R. MoreiraL.C. CintraB.A.S. ValadaresM.C. LimaE.M. Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation, retention and enhances collagen synthesis by fibroblasts.Sci. Rep.20199152210.1038/s41598‑018‑36682‑9 30679479
    [Google Scholar]
  25. DimerF.A. FriedrichR.B. BeckR.C.R. GuterresS.S. PohlmannA.R. Impacts of nanotechnology on health: Production of medicines.Quim. Nova201336101520152610.1590/S0100‑40422013001000007
    [Google Scholar]
  26. SantosA.C. RodriguesD. SequeiraJ.A.D. PereiraI. SimõesA. CostaD. PeixotoD. CostaG. VeigaF. Nanotechnological breakthroughs in the development of topical phytocompounds-based formulations.Int. J. Pharm.201957211878710.1016/j.ijpharm.2019.118787 31678376
    [Google Scholar]
  27. VermaD. VermaS. BlumeG. FahrA. Particle size of liposomes influences dermal delivery of substances into skin.Int. J. Pharm.20032581-214115110.1016/S0378‑5173(03)00183‑2 12753761
    [Google Scholar]
  28. Mantecorp (website). Rejuvenescedor facial ivy c10 30g - mantecorp.2023Available from: https://www.mantecorpskincare. com.br/ivy-c-10-20934-0_pai/p(Accessed in 23 Oct. 2023).
  29. OliveiraA.M. CerizeN.N.P. HoroiwaT.A. Ácido ascórbico nanoencapsulado.2023Available from: https://busca. inpi.gov.br/pePI/servlet/PatenteServletController?Action=detail&CodPedido =1384405&SearchParameter=%C1CIDO%20ASC%D3RBICO%20%20%20%20%20%20&Resumo=&Titulo=
    [Google Scholar]
  30. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ2021372n7110.1136/bmj.n71 33782057
    [Google Scholar]
  31. DuarahS. DuraiR.D. NarayananV.B. Nanoparticle-in-gel system for delivery of vitamin C for topical application.Drug Deliv. Transl. Res.20177575076010.1007/s13346‑017‑0398‑z 28597122
    [Google Scholar]
  32. JanesirisakuleS. SinthusakeT. WanichwecharungruangS. Nanocarrier with self-antioxidative property for stabilizing and delivering ascorbyl palmitate into skin.J. Pharm. Sci.201310282770277910.1002/jps.23641 23775704
    [Google Scholar]
  33. YoksanR. JirawutthiwongchaiJ. ArpoK. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes.Colloids Surf. B Biointerfaces201076129229710.1016/j.colsurfb.2009.11.007 20004558
    [Google Scholar]
  34. WittayasupornM. RengpipatS. PalagaT. AsawanondaP. AnumansirikulN. WanichwecharungruangS.P. Chitosan derivative nanocarrier: Safety evaluation, antibacterial property and ascorbyl palmitate encapsulation.J. Microencapsul.201027321822510.3109/02652040903067836 19566395
    [Google Scholar]
  35. FushimiT. UchinoT. MiyazakiY. HattaI. AsanoM. FujinoH. SuzukiR. FujimoriS. KamiyaD. KagawaY. Development of phospholipid nanoparticles encapsulating 3-O-cetyl ascorbic acid and tocopherol acetate (TA-Cassome) for improving their skin accumulation.Int. J. Pharm.2018548119220510.1016/j.ijpharm.2018.06.030 29906563
    [Google Scholar]
  36. TeeranachaideekulV. MüllerR. JunyaprasertV. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—Effects of formulation parameters on physicochemical stability.Int. J. Pharm.20073401-219820610.1016/j.ijpharm.2007.03.022 17482778
    [Google Scholar]
  37. PadamwarM.N. PatoleM.S. PokharkarV.B. Chitosan-reduced gold nanoparticles: A novel carrier for the preparation of spray-dried liposomes for topical delivery.J. Liposome Res.201121432433210.3109/08982104.2011.575380 21623705
    [Google Scholar]
  38. DaiY.Q. QinG. GengS.Y. YangB. XuQ. WangJ.Y. Photo-responsive release of ascorbic acid and catalase in CDBA-liposome for commercial application as a sunscreen cosmetic.RSC Advances2012283340334610.1039/c2ra01171a
    [Google Scholar]
  39. SerranoG. AlmudéverP. SerranoJ.M. MilaraJ. TorrensA. ExpósitoI. CortijoJ. Phosphatidylcholine liposomes as carriers to improve topical ascorbic acid treatment of skin disorders.Clin. Cosmet. Investig. Dermatol.20158591599 26719718
    [Google Scholar]
  40. ZhouW. LiuW. ZouL. LiuW. LiuC. LiangR. ChenJ. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating.Colloids Surf. B Biointerfaces201411733033710.1016/j.colsurfb.2014.02.036 24681045
    [Google Scholar]
  41. Aboul-EinienM.H. KandilS.M. AbdouE.M. DiabH.M. ZakiM.S.E. Ascorbic acid derivative-loaded modified aspasomes: formulation, in vitro, ex vivo and clinical evaluation for melasma treatment.J. Liposome Res.2020301546710.1080/08982104.2019.1585448 30821553
    [Google Scholar]
  42. YooJ. ShanmugamS. SongC.K. KimD.D. ChoiH.G. YongC.S. WooJ.S. YooB.K. Skin penetration and retention of L-Ascorbic acid 2-phosphate using multilamellar vesicles.Arch. Pharm. Res.200831121652165810.1007/s12272‑001‑2164‑4 19099237
    [Google Scholar]
  43. LeeS. LeeJ. ChoiY.W. Skin permeation enhancement of ascorbyl palmitate by liposomal hydrogel (lipogel) formulation and electrical assistance.Biol. Pharm. Bull.200730239339610.1248/bpb.30.393 17268089
    [Google Scholar]
  44. YangS. LiuW. LiuC. LiuW. TongG. ZhengH. ZhouW. Characterization and bioavailability of vitamin c nanoliposomes prepared by film evaporation-dynamic high pressure microfluidization.J. Dispers. Sci. Technol.201233111608161410.1080/01932691.2011.629511
    [Google Scholar]
  45. ManciniG. Impacts of nanotechnology applied to topical formulations of non-steroidal anti-inflammatory drugs on health: Drug production.PhD Thesis, University of Lisbon2014
    [Google Scholar]
  46. SchmidtF.M.Q. Topical application of cream containing nanoparticles with Vitamin E to prevent radiodermatitis in women with breast cancer: randomized pilot study.PhD Thesis, University of São Paulo,2019
    [Google Scholar]
  47. DiasM.E.S. In vitro evaluation of the release kinetics and skin permeation of ss-lapachone encapsulated in liposomes incorporated into hydrogel.PhD Dissertation, Federal University of Pernambuco,2017
    [Google Scholar]
  48. AultonM.E. Design of Pharmaceutical Forms. Elsevier Editora: Rio de Janeiro2016
    [Google Scholar]
  49. SousaA.L. Modulation of skin permeation of active substances from topical products professional experience in the areas of community pharmacy and research.PhD Dissertation, University of Beira Interior, Covilhã2016
    [Google Scholar]
  50. ChorilliM. LeonardiG.R. OliveiraA.G. ScarpaM. Liposomes in dermocosmetic formulations.Infarma2004167–87478
    [Google Scholar]
  51. BatistaC.M. CarvalhoC.M.B. MagalhãesN.S.S. MagalhãesS. MagalhãesN.S.S. Liposomes and their therapeutic applications: State of the art.RBCF Rev. Bras. Cienc. Farm.200743216717910.1590/S1516‑93322007000200003
    [Google Scholar]
  52. TavanoL. MuzzalupoR. PicciN. de CindioB. Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous permeation studies for cosmeceutical applications.Colloids Surf. B Biointerfaces201411414414910.1016/j.colsurfb.2013.09.055 24176892
    [Google Scholar]
  53. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Design and characterization of astaxanthin-loaded nanostructured lipid carriers.Innov. Food Sci. Emerg. Technol.20142636637410.1016/j.ifset.2014.06.012
    [Google Scholar]
  54. GonçalvesL.A. Development of nanostructured formulations containing ethylenic acetate fraction from protium spruceanum twigs and evaluation of antimicrobial activity. Monograph.Federal University of Ouro Preto2017
    [Google Scholar]
  55. AzevedoV.V.C. ChavesS.A. BezerraD.C. FookM.V.L. CostaA.C.F.M. Quitina e Quitosana: Aplicações como Biomateriais.Revista Eletrônica de Materiais e Processos2007232734
    [Google Scholar]
  56. CarvalhoS.M. Incorporation of lipid nanoparticles containing alpha-tocopherol into polyvinyl alcohol films.PhD Thesis, Federal University of Santa Catarina2013
    [Google Scholar]
  57. SiddaiahT. OjhaP. KumarN.O.G.V.R. RamuC. Structural, optical and thermal characterizations of PVA/MAA.EA Polyblend Films. Mat. Res.2018215110
    [Google Scholar]
  58. KovalczukE.R. Technological development of natural polymers applied to the pharmaceutical industry.Dissertation, Federal University of Paraná2017
    [Google Scholar]
  59. MüllerR.H. ShegokarR. KeckC.M. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications.Curr. Drug Discov. Technol.20118320722710.2174/157016311796799062 21291409
    [Google Scholar]
  60. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.043 26504751
    [Google Scholar]
  61. GalvãoJ.G. Development of nanostructured lipid carriers for carvacrol encapsulation: a promising formulation for the treatment of leishmaniasis.PhD Thesis, Federal University of Sergipe2019
    [Google Scholar]
  62. MertinsO. Development and characterization of liposomal nanovesicles composed of phosphatidylcholine from soy lecithin and chitosan.PhD Dissertation, Federal University of Rio Grande do Sul,2004
    [Google Scholar]
  63. RahimpourY. HamishehkarH. Liposomes in cosmeceutics.Expert Opin. Drug Deliv.20129444345510.1517/17425247.2012.666968 22413847
    [Google Scholar]
  64. CostaW.C. Hemocompatibility and effect on the immune system of empty liposomes composed of dicetylphosphate or dipalmitoylphosphatidylglycerol.Dissertation, Federal University of Ouro Preto2015
    [Google Scholar]
  65. GazziR.P. Development of pectin hydrogel containing polymeric imiquimod nanocapsules for the treatment of melanoma.PhD Dissertation, Federal University of Rio Grande do Sul2021
    [Google Scholar]
  66. El-AneedA. An overview of current delivery systems in cancer gene therapy.J. Control. Release200494111410.1016/j.jconrel.2003.09.013 14684267
    [Google Scholar]
  67. HuangH. YangX. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate.Biomacromolecules2004562340234610.1021/bm0497116 15530050
    [Google Scholar]
  68. PossatoJ.C. Effects of chronic gold nanoparticle treatment on inflammatory response and oxidative stress parameters in Mdx mice.PhD Dissertation, Universidade do Extremo Sul Catarinense2017
    [Google Scholar]
  69. SantosC.M.P. Nanoencapsulation of Active Ingredients in Cosmetology.PhD Dissertation, Universidade Fernando Pessoas, Porto2012
    [Google Scholar]
  70. CândidoT.M. Preclinical and Clinical Antioxidant Safety and Efficacy of Etosomas Containing Cosmetic Use Guidance Rutin.PhD Dissertation, University of São Paulo201610.11606/D.9.2016.tde‑25102016‑123717
    [Google Scholar]
  71. RaschkeT. KoopU. DüsingH.J. FilbryA. SauermannK. JaspersS. WenckH. WitternK.P. Topical activity of ascorbic acid: From in vitro optimization to in vivo efficacy.Skin Pharmacol. Physiol.200417420020610.1159/000078824 15258452
    [Google Scholar]
  72. ShegokarR. What nanocrystals can offer to cosmetic and dermal formulations.in Nanobiomaterials in Galenic Formulations and Cosmetics: Applications of Nanobiomaterials.Elsevier Inc2016699110.1016/B978‑0‑323‑42868‑2.00004‑8
    [Google Scholar]
  73. LimaB.G. Physicochemical evaluation of the influence of sodium ascorbate on tooth structure after external bleaching with h 2o2 37.5% - in vitro study.PhD Dissertation, State University of Maringá,2018
    [Google Scholar]
  74. NunesP.A.R. Application of liposomes as a strategy to overcome bacterial resistance to antibiotics.PhD Dissertation, University of Algarves2015
    [Google Scholar]
  75. CarmoE.L. FernandesR.V.B. BorgesS.V. Microencapsulation by spray drying, new biopolymers and applications in food technology.J. Chem. Eng. Chem.201512304410.18540/2446941601022015030
    [Google Scholar]
  76. AnumansirikulN. WittayasupornM. KlinubolP. TachaprutinunA. WanichwecharungruangS.P. UV-screening chitosan nanocontainers: Increasing the photostability of encapsulated materials and controlled release.Nanotechnology2008192020510110.1088/0957‑4484/19/20/205101 21825731
    [Google Scholar]
  77. MouraR.E. Synthesis of nanoparticles based on cashew tree gum for application in drug delivery systems. PhD Dissertation2009
    [Google Scholar]
  78. FerreiraC.T.G. Polymeric nanoparticles for the inclusion of compounds of natural origin. Monograph, Federal Institute of Rio de Janeiro.Realengo2013
    [Google Scholar]
  79. AlmeidaH.V. Physical and physicochemical characteristics of alginate and chitosan particles obtained by ionic gelation. Monograph.Federal University of Ceará2019
    [Google Scholar]
  80. AranhaC.P.M. Microencapsulation by ionic gelation and electrostatic interaction of buriti dye.PhD Thesis, Universidade Estadual Paulista2015
    [Google Scholar]
  81. LimaL.A. Chitosan/sodium tripolyphosphate nanoparticles obtained via ionic gelatinization for quercetin nanoencapsulation.PhD Dissertation, University of Brasília2013
    [Google Scholar]
  82. DickP.F. Synthesis and photophysical study of fluorescent molecular markers for lipid bilayers.PhD Dissertation, Federal University of Rio Grande do Sul2012
    [Google Scholar]
  83. NigroF. Cerqueira PintoC.S. dos SantosE.P. MansurC.R.E. Niosome-based hydrogel as a potential drug delivery system for topical and transdermal applications.Int. J. Polym. Mater.202271644446110.1080/00914037.2020.1848833
    [Google Scholar]
  84. ApolinárioA.C. SalataG.C. BiancoA.F.R. FukumoriC. LopesL.B. Opening the pandora’s box of nanomedicine: there is needed plenty of room at the bottom.Quim. Nova2020432212225
    [Google Scholar]
  85. AssisO.B.G. OliveiraJ.E. MarianoM.S. Investigation of zeta potential and nanoparticle size in colloidal polymer suspensions..Anais da III Jornada Científica, Embrapa São Carlos201178
    [Google Scholar]
  86. CarvalhoK.V. Development and evaluation of nanoemulsions with crude ethanolic extract of Melaleuca leucadendron leaves and pilocarpine hydrochloride for potential use as topical radioprotectant.PhD Dissertation, Federal University of Ouro Preto2014
    [Google Scholar]
  87. AlmeidaM.M. Development, evaluation and characterization of the stability and skin penetration of ursolic acid nanoparticles incorporated into cosmetic formulations.PhD Thesis, University of São Paulo2012
    [Google Scholar]
  88. MeiraA.S. In vitro skin permeation/retention studies using porcine skin to compare the performance of semi-solid dermatological formulations. Completion work for a curricular internship in Pharmacy.Federal University of Rio Grande do Sul2010
    [Google Scholar]
  89. AndradeD.F. Lipid core nanocapsules: Skin penetration studies and proposal of strategies for evaluating in vitro release.PhD Dissertation, Federal University of Rio Grande do Sul2013
    [Google Scholar]
  90. AntônioM.E.C.O. In vitro skin permeation as an auxiliary tool for the study of semi-solid formulations of ketoconazole for topical applications.PhD Dissertation, PhD Dissertation,2007
    [Google Scholar]
  91. BemvindoC.S. Comparative study of release and skin penetration of miconazole nitrate from commercial topical emulsions.PhD Dissertation, Federal University of Rio de Janeiro2006
    [Google Scholar]
  92. MartinsR.M. Study of the aggregation of anionic surfactants in the presence of (hydroxypropyl)cellulose.. PhD Dissertation, Federal University of Rio Grande do Sul2002
    [Google Scholar]
  93. LopesM.M. CarolineA. SilvaR. RodriguesC. AraújoR. EstevesA. Determination of the in vitro antioxidant potential of fruits from the brazilian cerrado. Rev. Bras.Frutic Jaboticabal-SP20132355360
    [Google Scholar]
  94. SpagnolC.M. FerreiraG.A. Chiari-AndréoB.G. IsaacV.L.B. CorrêaM.A. SalgadoH.R.N. Ascorbic acid in cosmetic formulations: Stability, in vitro release, and permeation using a rapid, inexpensive, and simple method.J. Dispers. Sci. Technol.201738690190810.1080/01932691.2016.1214842
    [Google Scholar]
  95. SatoM.E.O. GomaraF. PontaroloR. AndreazzaI.F. ZaroniM. In vitro skin permeation of kojic acid.RBCF Rev. Bras. Cienc. Farm.200743219520310.1590/S1516‑93322007000200005
    [Google Scholar]
  96. SilveiraA.C. SayuriY. RachelK. DomahovskiC. LazzarottoM. KassuiaY.S. Adapted DPPH method: A tool to analyze the antioxidant activity of yerba mate fruit pulp quickly and reproducibly. Technical Announcement 421.ColomboEmpresa Brasileira de Pesquisa Agropecuária2018
    [Google Scholar]
  97. OliveiraM.P. In vitro analysis of cytotoxicity and cell proliferation in human skin equivalents.PhD Dissertation, Pontifical Catholic University of Rio Grande do Sul2009
    [Google Scholar]
  98. ForrestV.J. KangY.H. McClainD.E. RobinsonD.H. RamakrishnanN. Oxidative stress-induced apoptosis prevented by trolox.Free Radic. Biol. Med.199416667568410.1016/0891‑5849(94)90182‑1 8070670
    [Google Scholar]
  99. MagalhãesW.L.E. TháE.L. LemeD.M. Method for determining non-cytotoxic concentrations to evaluate the protective capacity of lignin against DNA damage. Technical Announcement no427.ColomboEmpresa Brasileira de Pesquisa Agropecuária2018
    [Google Scholar]
  100. PeresL.A.B. DelfinoV.D.A. MocelinA.J. TutidaL.A. FaveroM.E. MatsuoT. Standardization of the MTT test in a cold preservation model as an instrument for evaluating renal cell viability.J. Bras. Nefrol.20083014853
    [Google Scholar]
  101. ContriR.V. Determination of the structure and evaluation of the skin properties of chitosan hydrogels containing polymeric nanocapsules.PhD Thesis, Federal University of Rio Grande do Sul2013
    [Google Scholar]
  102. MartinsA.F. Effect of Rosiglitazone and GQ-16, Total and Partial Agonist of PPARγ, on the Viability of Pheochromocytoma Cell Lines. Monograph.University of Brasília2017
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137279981240104061749
Loading
/content/journals/cnano/10.2174/0115734137279981240104061749
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): nanocarriers; nanotechnology; penetration; stability; topical delivery; Vitamin C
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test