Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

During the past few decades, great efforts have been devoted to developing non-toxic, low-cost, green and studied photocatalysts for the degradation of toxic dyes from surface water with the aid of sustainable, plentiful, and renewable solar light irradiation. Perovskite oxides with a wide range of applications, including photocatalytic water decontamination possess unique properties that make them suitable for performing efficiently in visible spectrum and facilitate catalytic reactions. This mini-review specifically specializes in double/layered perovskites and their associated materials and summarizes the recent improvement of double/layered perovskite photocatalysts and their packages in the degradation of organic dyes.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137296172240311112922
2024-03-20
2025-01-06
Loading full text...

Full text loading...

/deliver/fulltext/cnano/21/2/CNANO-21-2-03.html?itemId=/content/journals/cnano/10.2174/0115734137296172240311112922&mimeType=html&fmt=ahah

References

  1. ObaideenK. NoomanM. AlamiA.H. RamadanM. AbdelkareemM.A. ShehataN. OlabiA.G. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum solar park.Int. J. Thermofluids20211210012310.1016/j.ijft.2021.100123
    [Google Scholar]
  2. BhattiA.R. SalamZ. AzizM.J.B.A. YeeK.P. AshiqueR.H. Electric vehicles charging using photovoltaic: Status and technological review.Renew. Sustain. Energy Rev.201654344710.1016/j.rser.2015.09.091
    [Google Scholar]
  3. GeM.Z. CaoC.Y. HuangJ.Y. LiS.H. ZhangS.N. DengS. LiQ.S. ZhangK.Q. LaiY.K. Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: A review.Nanotechnol. Rev.2016517511210.1515/ntrev‑2015‑0049
    [Google Scholar]
  4. KumarA. KumarA. KrishnanV. Perovskite oxide based materials for energy and environment-oriented photocatalysis.ACS Catal.20201017102531031510.1021/acscatal.0c02947
    [Google Scholar]
  5. XiaoK. LinR. HanQ. HouY. QinZ. NguyenH.T. WenJ. WeiM. YedduV. SaidaminovM.I. GaoY. LuoX. WangY. GaoH. ZhangC. XuJ. ZhuJ. SargentE.H. TanH. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant.Nat. Energy202051187088010.1038/s41560‑020‑00705‑5
    [Google Scholar]
  6. ParkN.G. GrätzelM. MiyasakaT. ZhuK. EmeryK. Towards stable and commercially available perovskite solar cells.Nat. Energy20161111615210.1038/nenergy.2016.152
    [Google Scholar]
  7. AharonS. EtgarL. Two dimensional organometal halide perovskite nanorods with tunable optical properties.Nano Lett.20161653230323510.1021/acs.nanolett.6b00665 27089497
    [Google Scholar]
  8. KatzE.A. Perovskite: name puzzle and german‐russian odyssey of discovery.Helv. Chim. Acta20201036e200006110.1002/hlca.202000061
    [Google Scholar]
  9. BulemoP.M. KimI.D. Recent advances in ABO3 perovskites: Their gas-sensing performance as resistive-type gas sensors.J. Korean Ceramic Soc.2020571243910.1007/s43207‑019‑00003‑1
    [Google Scholar]
  10. KhudyakovD.V. GaninD.V. LyashedkoA.D. FrolovaL.A. TroshinP.A. LobachA.S. Thin films of MAPbI3 and MA0.15FA0.75Cs0.1PbI3 perovskites under femtosecond laser irradiation: Nonlinear optical absorption and kinetics of photodegradation.Mendeleev Commun.202131445645810.1016/j.mencom.2021.07.006
    [Google Scholar]
  11. YangT.C.J. FialaP. JeangrosQ. BallifC. High-bandgap perovskite materials for multijunction solar cells.Joule2018281421143610.1016/j.joule.2018.05.008
    [Google Scholar]
  12. SarettaE. CaputoP. FrontiniF. A review study about energy renovation of building facades with BIPV in urban environment.Sustain Cities Soc.20194434335510.1016/j.scs.2018.10.002
    [Google Scholar]
  13. ZhangJ. MaoW. HouX. DuanJ. ZhouJ. HuangS. Ou-YangW. ZhangX. SunZ. ChenX. Solution-processed Sr-doped NiOx as hole transport layer for efficient and stable perovskite solar cells.Sol. Energy20181741133114110.1016/j.solener.2018.10.004
    [Google Scholar]
  14. AbeR. SayamaK. SugiharaH. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-.J. Phys. Chem. B200510933160521606110.1021/jp052848l 16853039
    [Google Scholar]
  15. PengK. FuL. YangH. OuyangJ. Perovskite LaFeO3/montmorillonite nanocomposites: Synthesis, interface characteristics and enhanced photocatalytic activity.Sci. Rep.2016611972310.1038/srep19723 26778180
    [Google Scholar]
  16. KabanovaV.A. GribkovaO.L. TameevA.R. NekrasovA.A. Hole transporting electrodeposited PEDOT–polyelectrolyte layers for perovskite solar cells.Mendeleev Commun.202131445445510.1016/j.mencom.2021.07.005
    [Google Scholar]
  17. LuL. CaiR. GursoyD. Developing and validating a service robot integration willingness scale.Int. J. Hospit. Manag.201980365110.1016/j.ijhm.2019.01.005
    [Google Scholar]
  18. OuX. LiZ. FanF. WangH. WuH. Long-range magnetic interaction and frustration in double perovskites Sr2NiIrO6 and Sr2ZnIrO6.Sci. Rep.201441754210.1038/srep07542 25519762
    [Google Scholar]
  19. SainiN. JindalR. TripathiA. Study of lattice dynamics of Ruddlesden-Popper compounds Sr2RuO4 and Sr2TcO4.Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci.202296113143314910.1007/s12648‑021‑02241‑8
    [Google Scholar]
  20. WangT. LiuX. MaC. ZhuZ. LiuY. LiuZ. WeiM. ZhaoX. DongH. HuoP. LiC. YanY. Bamboo prepared carbon quantum dots (CQDs) for enhancing Bi3Ti4O12 nanosheets photocatalytic activity.J. Alloys Compd.201875210611410.1016/j.jallcom.2018.04.085
    [Google Scholar]
  21. NiuS. ZhangR. ZhangX. XiangJ. GuoC. Morphology-dependent photocatalytic performance of Bi4Ti3O12.Ceram. Int.20204656782678610.1016/j.ceramint.2019.11.169
    [Google Scholar]
  22. HeZ. SunC. YangS. DingY. HeH. WangZ. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway.J. Hazard. Mater.20091622-31477148610.1016/j.jhazmat.2008.06.047 18674856
    [Google Scholar]
  23. LiX.Y. YaoZ.F. ZhangL.Y. ZhengG.H. DaiZ.X. ChenK.Y. Generation of oxygen vacancies on Sr2FeMoO6 to improve its photocatalytic performance through a novel preparation method involving pH adjustment and use of surfactant.Appl. Surf. Sci.201948026227510.1016/j.apsusc.2019.02.115
    [Google Scholar]
  24. LinY. MehrvarM. Photocatalytic treatment of an actual confectionery wastewater using Ag/TiO2/Fe2O3: Optimization of photocatalytic reactions using surface response methodology.Catalysts201881040910.3390/catal8100409
    [Google Scholar]
  25. KhalidN.R. MajidA. TahirM.B. NiazN.A. KhalidS. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review.Ceram. Int.20174317145521457110.1016/j.ceramint.2017.08.143
    [Google Scholar]
  26. PingmuangK. ChenJ. KangwansupamonkonW. WallaceG.G. PhanichphantS. NattestadA. Composite photocatalysts containing BiVO4 for degradation of cationic dyes.Sci. Rep.201771892910.1038/s41598‑017‑09514‑5 28827594
    [Google Scholar]
  27. PavithraK.G. JaikumarV.J. Removal of colorants from wastewater: A review on sources and treatment strategies.J. Ind. Eng. Chem.2019751910.1016/j.jiec.2019.02.011
    [Google Scholar]
  28. Al-MamunM.R. KaderS. IslamM.S. KhanM.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review.J. Environ. Chem. Eng.20197510324810.1016/j.jece.2019.103248
    [Google Scholar]
  29. AdeelM. SaeedM. KhanI. MuneerM. AkramN. Synthesis and characterization of Co-Zno and evaluation of its photocatalytic activity for photodegradation of methyl orange.ACS Omega2021621426143510.1021/acsomega.0c05092 33490802
    [Google Scholar]
  30. ZouJ.P. WuD.D. LuoJ. XingQ.J. LuoX.B. DongW.H. LuoS.L. DuH.M. SuibS.L. A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MB with photoreduction of CO2.ACS Catal.20166106861686710.1021/acscatal.6b01729
    [Google Scholar]
  31. LiuX. ChenC. ChenX. QianG. WangJ. WangC. CaoZ. LiuQ. WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite.Catal. Today201831515516110.1016/j.cattod.2018.02.037
    [Google Scholar]
  32. JungJ.J. JangJ.W. ParkJ.W. Effect of generation growth on photocatalytic activity of nano TiO2-magnetic cored dendrimers.J. Ind. Eng. Chem.201644525910.1016/j.jiec.2016.08.007
    [Google Scholar]
  33. MoslehS. RahimiM.R. GhaediM. DashtianK. Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study.Ultrason. Sonochem.20163238739710.1016/j.ultsonch.2016.04.007 27150785
    [Google Scholar]
  34. AbdiM. MahdikhahV. SheibaniS. Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder.Opt. Mater.202010210980310.1016/j.optmat.2020.109803
    [Google Scholar]
  35. TunaÖ. SimsekE.B. Anchoring LaFeO3 perovskites on the polyester filters for flowthrough photocatalytic degradation of organic pollutants.J. Photochem. Photobiol. Chem.202141811340510.1016/j.jphotochem.2021.113405
    [Google Scholar]
  36. BatiA.S.R. ZhongY.L. BurnP.L. NazeeruddinM.K. ShawP.E. BatmunkhM. Next-generation applications for integrated perovskite solar cells.Commun. Mater202341124
    [Google Scholar]
  37. VijayaraghavanT. AlthafR. BabuP. ParidaK.M. VadivelS. AshokA.M. Visible light active LaFeO3 nano perovskite-RGO-NiO composite for efficient H2 evolution by photocatalytic water splitting and textile dye degradation.J. Environ. Chem. Eng.20219110467510.1016/j.jece.2020.104675
    [Google Scholar]
  38. DomanskiK. Correa-BaenaJ.P. MineN. NazeeruddinM.K. AbateA. SalibaM. TressW. HagfeldtA. GrätzelM. Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells.ACS Nano20161066306631410.1021/acsnano.6b02613 27187798
    [Google Scholar]
  39. ChristiansJ.A. SchulzP. TinkhamJ.S. SchloemerT.H. HarveyS.P. Tremolet De VillersB.J. SellingerA. BerryJ.J. LutherJ.M. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability.Nat. Energy201831687410.1038/s41560‑017‑0067‑y
    [Google Scholar]
  40. LiC. WeiJ. SatoM. KoikeH. XieZ.Z. LiY.Q. KanaiK. KeraS. UenoN. TangJ.X. Halide-substituted electronic properties of organometal halide perovskite films: Direct and inverse photoemission studies.ACS Appl. Mater. Interfaces2016818115261153110.1021/acsami.6b02692 27101940
    [Google Scholar]
  41. JiK. YuanJ. LiF. ShiY. LingX. ZhangX. ZhangY. LuH. YuanJ. MaW. High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer.J. Mater. Chem. A Mater. Energy Sustain.20208168104811210.1039/D0TA02743J
    [Google Scholar]
  42. WangG. LeiM. LiuJ. HeQ. ZhangW. Improving the stability and optoelectronic properties of all inorganic less‐Pb perovskites by B‐site doping for high‐performance inorganic perovskite solar cells.Sol. RRL2020412200052810.1002/solr.202000528
    [Google Scholar]
  43. MaD. WuJ. GaoM. XinY. SunY. MaT. Hydrothermal synthesis of an artificial Z-scheme visible light photocatalytic system using reduced graphene oxide as the electron mediator.Chem. Eng. J.20173131567157610.1016/j.cej.2016.11.036
    [Google Scholar]
  44. TsaiH. NieW. BlanconJ.C. StoumposC.C. AsadpourR. HarutyunyanB. NeukirchA.J. VerduzcoR. CrochetJ.J. TretiakS. PedesseauL. EvenJ. AlamM.A. GuptaG. LouJ. AjayanP.M. BedzykM.J. KanatzidisM.G. MohiteA.D. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells.Nature2016536761631231610.1038/nature18306 27383783
    [Google Scholar]
  45. LiuJ. LengJ. WuK. ZhangJ. JinS. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films.J. Am. Chem. Soc.201713941432143510.1021/jacs.6b12581 28094931
    [Google Scholar]
  46. LinY. FangY. ZhaoJ. ShaoY. StuardS.J. NahidM.M. AdeH. WangQ. ShieldJ.E. ZhouN. MoranA.M. HuangJ. Unveiling the operation mechanism of layered perovskite solar cells.Nat. Commun.2019101100810.1038/s41467‑019‑08958‑9 30824699
    [Google Scholar]
  47. BlanconJ.C. TsaiH. NieW. StoumposC.C. PedesseauL. KatanC. KepenekianM. SoeC.M.M. AppavooK. SfeirM.Y. TretiakS. AjayanP.M. KanatzidisM.G. EvenJ. CrochetJ.J. MohiteA.D. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites.Science201735563311288129210.1126/science.aal4211 28280250
    [Google Scholar]
  48. NaciriY. HsiniA. AhdourA. AkhsassiB. Fritah; Ajmal, Z.; Djellabi, R.; Bouziani, A.; Taoufyq, A.; Bakiz, B.; Benlhachemi, A.; Sillanpää, M.; Li, H. Recent advances of bismuth titanate based photocatalysts engineering for enhanced organic contaminates oxidation in water: A review.Chemosphere202230013462210.1016/j.chemosphere.2022.134622 35439491
    [Google Scholar]
  49. Pirgholi-GiviG. Farjami-ShayestehS. Azizian-KalandaraghY. The influence of preparation parameters on the photocatalytic performance of mixed bismuth titanate-based nanostructures.Physica B201957531157210.1016/j.physb.2019.07.007
    [Google Scholar]
  50. NogueiraA.E. LongoE. LeiteE.R. CamargoE.R. Synthesis and photocatalytic properties of bismuth titanate with different structures via oxidant peroxo method (OPM).J. Colloid Interface Sci.2014415899410.1016/j.jcis.2013.10.010 24267334
    [Google Scholar]
  51. KallawarG.A. BaraiD.P. BhanvaseB.A. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges.J. Clean. Prod.202131812856310.1016/j.jclepro.2021.128563
    [Google Scholar]
  52. ChenJ. MeiW. LiuC. HuC. HuangQ. ChenN. ChenJ. ZhangR. HouW. Carbon-modified bismuth titanate with an enhanced photocatalytic activity under nature sunlight.Mater. Lett.201617218418710.1016/j.matlet.2016.03.002
    [Google Scholar]
  53. YaoW.F. WangH. ShangS.X. XuX.H. YangX.N. ZhangY. WangM. Photocatalytic property of Zn-modified bismuth titanate.J. Mol. Catal. Chem.20031981-234334810.1016/S1381‑1169(02)00699‑4
    [Google Scholar]
  54. SheikhT. NawaleV. PathoorN. PhadnisC. ChowdhuryA. NagA. Molecular intercalation and electronic two dimensionality in layered hybrid perovskites.Angew. Chem. Int. Ed.20205928116531165910.1002/anie.202003509 32243656
    [Google Scholar]
  55. BelousA. KobylianskaS. V’yunovO. TorchyniukP. YukhymchukV. HreshchukO. Effect of non-stoichiometry of initial reagents on morphological and structural properties of perovskites CH3NH3PbI3.Nanoscale Res. Lett.2019141410.1186/s11671‑018‑2841‑6 30612275
    [Google Scholar]
  56. SinghalN. ChakrabortyR. GhoshP. NagA. low‐bandgap Cs4 CuSb2Cl12 layered double perovskite: Synthesis, reversible thermal changes, and magnetic interaction.Chem. Asian J.201813162085209210.1002/asia.201800635 29809310
    [Google Scholar]
  57. WangX.D. MiaoN.H. LiaoJ.F. LiW.Q. XieY. ChenJ. SunZ.M. ChenH.Y. KuangD.B. The top-down synthesis of single-layered Cs4CuSb2Cl12 halide perovskite nanocrystals for photoelectrochemical application.Nanoscale201911125180518710.1039/C9NR00375D 30843576
    [Google Scholar]
  58. TangG. XiaoZ. HosonoH. KamiyaT. FangD. HongJ. Layered halide double perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for photovoltaic applications.J. Phys. Chem. Lett.201891434810.1021/acs.jpclett.7b02829 29231743
    [Google Scholar]
  59. SinghalN. ChakrabortyR. GhoshP. NagA. Low-bandgap Cs4CuSb2Cl12 layered double perovskite: Synthesis, reversible thermal changes, and magnetic interaction.Chem. - An Asian J.2018131620852092
    [Google Scholar]
  60. WangK. LiY. ZhangG. LiJ. WuX. 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: Enhanced molecular oxygen activation and mechanism insight.Appl. Catal. B: Environ.20192403949
    [Google Scholar]
  61. LebedevA. AnaribaF. LiX. SengH.L.D. WuP. Ag/Ag2O/BiNbO4 structure for simultaneous photocatalytic degradation of mixed cationic and anionic dyes.Solar Energy2019178257267
    [Google Scholar]
  62. PandeyA. NareshG. MandalT.K. Sunlight responsive new sillén-aurivillius A1X1 hybrid layered oxyhalides with enhanced photocatalytic activity.Solar Energy Mater. Solar Cells2017161197205
    [Google Scholar]
  63. MajumdarA. PalA. Optimized synthesis of Bi4NbO8Cl perovskite nanosheets for enhanced visible light assisted photocatalytic degradation of tetracycline antibiotics.J. Environ. Chem. Eng.202081103645
    [Google Scholar]
  64. OgawaK. SakamotoR. ZhongC. SuzukiH. KatoK. TomitaO. NakashimaK. YamakataA. TachikawaT. SaekiA. KageyamaH. AbeR. Manipulation of charge carrier flow in Bi4NbO8Cl nanoplate photocatalyst with metal loading.Chem. Sci.2022131131183128
    [Google Scholar]
  65. WangT. LiuX. MaC. ZhuZ. LiuY. LiuZ. WeiM. ZhaoX. DongH. HuoP. LiC. YanY. Bamboo prepared carbon quantum dots (CQDs) for enhancing Bi3Ti4O12 nanosheets photocatalytic activity.J. Alloys Compd.2018752106114
    [Google Scholar]
  66. NiuS. ZhangR. ZhangX. XiangJ. GuoC. Morphology-dependent photocatalytic performance of Bi4Ti3O12.Ceramics Int.202046567826786
    [Google Scholar]
  67. HeZ. SunC. YangS. DingY. HeH. WangZ. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway.J. Hazardous Mater.20091622–314771486
    [Google Scholar]
  68. MahmoudianM.H. MesdaghiniaA. MahviA.H. NasseriS. NabizadehR. DehghaniM.H. Photocatalytic degradation of bisphenol a from aqueous solution using bismuth ferric magnetic nanoparticle: Synthesis, characterization and response surface methodology-central composite design modeling.J. Environ. Health Sci. Eng.2022202617628
    [Google Scholar]
  69. HeY. ZhangY. HuangH. TianN. GuoY. LuoY. A novel Bi-based oxybromide Bi4NbO8Br: Synthesis, characterization and visible-light-active photocatalytic activity.Colloids Surf. A Physicochem. Eng. Aspects2014462131136
    [Google Scholar]
  70. LeeC-H. KimH.G. GuY. LimD-H. A study of photocatalytic degradation of methylene blue in aqueous solution using perovskite structured PbBi2Nb2O9.Nanosci. Nanotechnol. Lett.201810911791186
    [Google Scholar]
  71. P. PA. JoshiM. VermaD. JadhavS. ChoudhuryA. R. JanaD. P. P Layered Cs4CuSb2Cl12 nanocrystals for sunlight-driven photocatalytic degradation of pollutants.ACS Appl. Nano Mater.20214213051313
    [Google Scholar]
  72. LinX. HuangT. HuangF. WangW. ShiJ. Photocatalytic activity of a bi-based oxychloride Bi4NbO8Cl.J. Mater. Chem.200717202145
    [Google Scholar]
  73. HossainA. BandyopadhyayP. RoyS. An overview of double Perovskites A2B′B″O6 with small ions at A site: Synthesis, structure and magnetic properties.J. Alloys Compd.2018740414427
    [Google Scholar]
  74. ZhangM. JeerhG. ZouP. LanR. WangM. WangH. TaoS. Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices.Materials Today202149351377
    [Google Scholar]
  75. ChenX. XuJ. XuY. LuoF. DuY. Rare earth double perovskites: A fertile soil in the field of perovskite oxides.Inorg. Chem. Frontiers20196922262238
    [Google Scholar]
  76. NguyenV-H. DoH.H. Van NguyenT. SinghP. RaizadaP. SharmaA. SanaS.S. GraceA.N. ShokouhimehrM. AhnS.H. XiaC. KimS.Y. LeQ.V. Perovskite oxide-based photocatalysts for solar-driven hydrogen production: progress and perspectives.Solar Energy2020211584599
    [Google Scholar]
  77. GuptaA. SilotiaH. KumariA. DumenM. GoyalS. TomarR. WadehraN. AyyubP. ChakravertyS. KTaO3—the new kid on the spintronics block.Adv. Mater.2022349
    [Google Scholar]
  78. JanaR. RajaithaP. M. HajraS. KimH. J. Advancements in visible-light-driven double perovskite nanoparticles for photodegradation.Micro Nano Syst. Lett.2023111
    [Google Scholar]
  79. AngineniR. VenkataswamyP. RamaswamyK. RajS. VeldurthiN.K. VithalM. Preparation, characterization and photocatalytic activity studies of transition metal ion doped K2Ta2O6.Polyhedron2022214115620
    [Google Scholar]
  80. AngineniR. PeralaV. KadariR. PallatiS. KurraS. MugaV. Facile ion-exchange synthesis of Gd-doped K2Ta2O6 photocatalysts with enhanced visible light activity.J. Indian Chem. Soc.2022996100495
    [Google Scholar]
  81. KrukowskaA. TrykowskiG. LisowskiW. KlimczukT. WiniarskiM.J. Zaleska-MedynskaA. Monometallic nanoparticles decorated and rare earth ions doped KTaO3/K2Ta2O6 photocatalysts with enhanced pollutant decomposition and improved H2 generation.J. Catal.2018364371381
    [Google Scholar]
  82. LiX.Y. YaoZ.F. ZhangL.Y. ZhengG.H. DaiZ.X. ChenK.Y. Generation of oxygen vacancies on Sr2FeMoO6 to improve its photocatalytic performance through a novel preparation method involving ph adjustment and use of surfactant.Appl. Surface Sci.2019480262275
    [Google Scholar]
  83. KhanH. SwatiI.K. Fe3+-doped anatase TiO2 with d-d transition, oxygen vacancies and Ti3+ centers: Synthesis, characterization, UV-Vis photocatalytic and mechanistic studies.Industr Eng. Chem. Res.2016552366196633
    [Google Scholar]
  84. FarzinY.A. BabaeiA. AtaieA. Low-temperature synthesis of Sr2FeMoO6 double perovskite; structure, morphology, and magnetic properties.Ceramics Int.202046101686716878
    [Google Scholar]
  85. GhribT. Structural, dielectric, electrical, and thermal properties of the Ce-doped Ba2TiMoO6 double perovskite.J. Heat Transfer202214412
    [Google Scholar]
  86. GhribT. Al-OtaibiA. ErcanF. MandaA.A. OzcelikB. ErcanI. Structural, optical and photocatalytic properties of cerium doped Ba2TiMoO6 double perovskite.Phys. B: Condensed Matter.2023649414454
    [Google Scholar]
  87. MajumdarA. GhoshU. PalA. 2D-Bi4NbO8Cl nanosheet for efficient photocatalytic degradation of tetracycline in synthetic and real wastewater under visible-light: influencing factors, mechanism and degradation pathway.J. Alloys Compd.2022900163400
    [Google Scholar]
  88. AngineniR. VenkataswamyP. VeldurthiN.K. RamaswamyK. SudheeraM. VithalM. Photocatalytic degradation studies of carbon and sulfur-doped K2Ta2O6.J. Mater. Sci. Mater. Electr.2023347
    [Google Scholar]
  89. ZhaiY-Q. QiaoJ. QiuM-D. Research on degradation of dye acid red B by Sr2FeMoO6 synthesized by microwave sintering method.E-J. Chem.201292818824
    [Google Scholar]
  90. SharmaA. BhardwajU. KushwahaH.S. Ba2TiMnO6 two-dimensional nanosheets for rhodamine B organic contaminant degradation using ultrasonic vibrations.Mater. Adv.20212826492657
    [Google Scholar]
  91. LiK. LiS. ZhangW. ShiZ. WuD. ChenX. LinP. TianY. LiX. Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation.J. Colloid Interface Sci.2021596376383
    [Google Scholar]
  92. ZhaiY-Q. QiaoJ. QiuM-D. Research on degradation of dye acid red B by Sr2FeMoO6 synthesized by microwave sintering method.E-Journal of Chemistry201292818824
    [Google Scholar]
  93. ShiraziP. RahbarM. BehpourM. AshrafiM. La2MnTiO6 double perovskite nanostructures as highly efficient visible light photocatalysts.New J. Chem.2020441231238
    [Google Scholar]
  94. TalapatraA. UberuagaB.P. StanekC.R. PilaniaG. (2023, June 10). Band gap predictions of double perovskite oxides using machine learning.Commun. Mater.202341
    [Google Scholar]
  95. ZhouC. TarasovA.B. GoodilinE.A. ChenP. WangH. ChenQ. Recent strategies to improve moisture stability in metal halide perovskites materials and devices.J. Energy Chem.202265219235
    [Google Scholar]
  96. BatiA. S. R. ZhongY. L. BurnP. L. NazeeruddinM. K. ShawP. E. BatmunkhM. (2023, January 5). Next-generation applications for integrated perovskite solar cells.Commun. Materi.202341
    [Google Scholar]
  97. MuscarellaL.A. HutterE.M. (2022, May 31). Halide double-perovskite semiconductors beyond photovoltaics.ACS Energy Lett.20227621282135
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137296172240311112922
Loading
/content/journals/cnano/10.2174/0115734137296172240311112922
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test