Skip to content
2000
image of A Brief Review on Solar Light Assisted Photocatalytic Degradation of Dyes using Double/Layered Perovskites

Abstract

During the past few decades, great efforts have been devoted to developing non-toxic, low-cost, green and studied photocatalysts for the degradation of toxic dyes from surface water with the aid of sustainable, plentiful, and renewable solar light irradiation. Perovskite oxides with a wide range of applications, including photocatalytic water decontamination possess unique properties that make them suitable for performing efficiently in visible spectrum and facilitate catalytic reactions. This mini-review specifically specializes in double/layered perovskites and their associated materials and summarizes the recent improvement of double/layered perovskite photocatalysts and their packages in the degradation of organic dyes.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137296172240311112922
2024-03-20
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/cnano/10.2174/0115734137296172240311112922/BMS-CNANO-2023-259.html?itemId=/content/journals/cnano/10.2174/0115734137296172240311112922&mimeType=html&fmt=ahah

References

  1. Obaideen K. Nooman AlMallahi M. Alami A.H. Ramadan M. Abdelkareem M.A. Shehata N. Olabi A.G. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum solar park. Int. J. Thermofluids 2021 12 100123 10.1016/j.ijft.2021.100123
    [Google Scholar]
  2. Bhatti A.R. Salam Z. Aziz M.J.B.A. Yee K.P. Ashique R.H. Electric vehicles charging using photovoltaic: Status and technological review. Renew. Sustain. Energy Rev. 2016 54 34 47 10.1016/j.rser.2015.09.091
    [Google Scholar]
  3. Ge M.Z. Cao C.Y. Huang J.Y. Li S.H. Zhang S.N. Deng S. Li Q.S. Zhang K.Q. Lai Y.K. Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: A review. Nanotechnol. Rev. 2016 5 1 10.1515/ntrev‑2015‑0049
    [Google Scholar]
  4. Kumar A. Kumar A. Krishnan V. Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal. 2020 10 17 10253 10315 10.1021/acscatal.0c02947
    [Google Scholar]
  5. Xiao K. Lin R. Han Q. Hou Y. Qin Z. Nguyen H.T. Wen J. Wei M. Yeddu V. Saidaminov M.I. Gao Y. Luo X. Wang Y. Gao H. Zhang C. Xu J. Zhu J. Sargent E.H. Tan H. Allperovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 2020 5 11 870 880 10.1038/s41560‑020‑00705‑5
    [Google Scholar]
  6. Park N.G. Grätzel M. Miyasaka T. Zhu K. Emery K. Towards stable and commercially available perovskite solar cells. Nat. Energy 2016 1 11 16152 10.1038/nenergy.2016.152
    [Google Scholar]
  7. Aharon S. Etgar L. Two dimensional organometal halide perovskite nanorods with tunable optical properties. Nano Lett. 2016 16 5 3230 3235 10.1021/acs.nanolett.6b00665 27089497
    [Google Scholar]
  8. Katz E.A. Perovskite: name puzzle and german‐russian odyssey of discovery. Helv. Chim. Acta 2020 103 6 e2000061 10.1002/hlca.202000061
    [Google Scholar]
  9. Bulemo P.M. Kim I.D. Recent advances in ABO3 perovskites: Their gas-sensing performance as resistive-type gas sensors. J. Korean Ceramic Soc. 2020 57 1 24 39 10.1007/s43207‑019‑00003‑1
    [Google Scholar]
  10. Khudyakov D.V. Ganin D.V. Lyashedko A.D. Frolova L.A. Troshin P.A. Lobach A.S. Thin films of MAPbI3 and MA0.15FA0.75Cs0.1PbI3 perovskites under femtosecond laser irradiation: Nonlinear optical absorption and kinetics of photodegradation. Mendeleev Commun. 2021 31 4 456 458 10.1016/j.mencom.2021.07.006
    [Google Scholar]
  11. Yang T.C.J. Fiala P. Jeangros Q. Ballif C. High-bandgap perovskite materials for multijunction solar cells. Joule 2018 2 8 1421 1436 10.1016/j.joule.2018.05.008
    [Google Scholar]
  12. Saretta E. Caputo P. Frontini F. A review study about energy renovation of building facades with BIPV in urban environment. Sustain Cities Soc. 2019 44 343 355 10.1016/j.scs.2018.10.002
    [Google Scholar]
  13. Zhang J. Mao W. Hou X. Duan J. Zhou J. Huang S. Ou-Yang W. Zhang X. Sun Z. Chen X. Solution-processed Sr-doped NiOx as hole transport layer for efficient and stable perovskite solar cells. Sol. Energy 2018 174 1133 1141 10.1016/j.solener.2018.10.004
    [Google Scholar]
  14. Abe R. Sayama K. Sugihara H. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-. J. Phys. Chem. B 2005 109 33 16052 16061 10.1021/jp052848l 16853039
    [Google Scholar]
  15. Peng K. Fu L. Yang H. Ouyang J. Perovskite La-FeO3/montmorillonite nanocomposites: Synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep. 2016 6 1 19723 10.1038/srep19723 26778180
    [Google Scholar]
  16. Kabanova V.A. Gribkova O.L. Tameev A.R. Nekrasov A.A. Hole transporting electrodeposited PEDOT–polyelectrolyte layers for perovskite solar cells. Mendeleev Commun. 2021 31 4 454 455 10.1016/j.mencom.2021.07.005
    [Google Scholar]
  17. Lu L. Cai R. Gursoy D. Developing and validating a service robot integration willingness scale. Int. J. Hospit. Manag. 2019 80 36 51 10.1016/j.ijhm.2019.01.005
    [Google Scholar]
  18. Ou X. Li Z. Fan F. Wang H. Wu H. Long-range magnetic interaction and frustration in double perovskites Sr2NiIrO6 and Sr2ZnIrO6. Sci. Rep. 2014 4 1 7542 10.1038/srep07542 25519762
    [Google Scholar]
  19. Saini N. Jindal R. Tripathi A. Study of lattice dynamics of Ruddlesden-Popper compounds Sr2RuO4 and Sr2TcO4. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. 2022 96 11 3143 3149 10.1007/s12648‑021‑02241‑8
    [Google Scholar]
  20. Wang T. Liu X. Ma C. Zhu Z. Liu Y. Liu Z. Wei M. Zhao X. Dong H. Huo P. Li C. Yan Y. Bamboo prepared carbon quantum dots (CQDs) for enhancing Bi3Ti4O12 nanosheets photocatalytic activity. J. Alloys Compd. 2018 752 106 114 10.1016/j.jallcom.2018.04.085
    [Google Scholar]
  21. Niu S. Zhang R. Zhang X. Xiang J. Guo C. Morphology-dependent photocatalytic performance of Bi4Ti3O12. Ceram. Int. 2020 46 5 6782 6786 10.1016/j.ceramint.2019.11.169
    [Google Scholar]
  22. He Z. Sun C. Yang S. Ding Y. He H. Wang Z. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway. J. Hazard. Mater. 2009 162 2-3 1477 1486 10.1016/j.jhazmat.2008.06.047 18674856
    [Google Scholar]
  23. Li X.Y. Yao Z.F. Zhang L.Y. Zheng G.H. Dai Z.X. Chen K.Y. Generation of oxygen vacancies on Sr2FeMoO6 to improve its photocatalytic performance through a novel preparation method involving pH adjustment and use of surfactant. Appl. Surf. Sci. 2019 480 262 275 10.1016/j.apsusc.2019.02.115
    [Google Scholar]
  24. Lin Y. Mehrvar M. Photocatalytic treatment of an actual confectionery wastewater using Ag/TiO2/Fe2O3: Optimization of photocatalytic reactions using surface response methodology. Catalysts 2018 8 10 409 10.3390/catal8100409
    [Google Scholar]
  25. Khalid N.R. Majid A. Tahir M.B. Niaz N.A. Khalid S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int. 2017 43 17 14552 14571 10.1016/j.ceramint.2017.08.143
    [Google Scholar]
  26. Pingmuang K. Chen J. Kangwansupamonkon W. Wallace G.G. Phanichphant S. Nattestad A. Composite photocatalysts containing BiVO4 for degradation of cationic dyes. Sci. Rep. 2017 7 1 8929 10.1038/s41598‑017‑09514‑5 28827594
    [Google Scholar]
  27. Pavithra K.G. P, S.K.; v, J.; P, S.R. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 2019 75 1 19 10.1016/j.jiec.2019.02.011
    [Google Scholar]
  28. Al-Mamun M.R. Kader S. Islam M.S. Khan M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019 7 5 103248 10.1016/j.jece.2019.103248
    [Google Scholar]
  29. Adeel M. Saeed M. Khan I. Muneer M. Akram N. Synthesis and characterization of co–zno and evaluation of its photocatalytic activity for photodegradation of methyl orange. ACS Omega 2021 6 2 1426 1435 10.1021/acsomega.0c05092 33490802
    [Google Scholar]
  30. Zou J.P. Wu D.D. Luo J. Xing Q.J. Luo X.B. Dong W.H. Luo S.L. Du H.M. Suib S.L. A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MB with photoreduction of CO2. ACS Catal. 2016 6 10 6861 6867 10.1021/acscatal.6b01729
    [Google Scholar]
  31. Liu X. Chen C. Chen X. Qian G. Wang J. Wang C. Cao Z. Liu Q. WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite. Catal. Today 2018 315 155 161 10.1016/j.cattod.2018.02.037
    [Google Scholar]
  32. Jung J.J. Jang J.W. Park J.W. Effect of generation growth on photocatalytic activity of nano TiO2-magnetic cored dendrimers. J. Ind. Eng. Chem. 2016 44 52 59 10.1016/j.jiec.2016.08.007
    [Google Scholar]
  33. Mosleh S. Rahimi M.R. Ghaedi M. Dashtian K. Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study. Ultrason. Sonochem. 2016 32 387 397 10.1016/j.ultsonch.2016.04.007 27150785
    [Google Scholar]
  34. Abdi M. Mahdikhah V. Sheibani S. Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder. Opt. Mater. 2020 102 109803 10.1016/j.optmat.2020.109803
    [Google Scholar]
  35. Tuna Ö. Simsek E.B. Anchoring LaFeO3 perovskites on the polyester filters for flowthrough photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. Chem. 2021 418 113405 10.1016/j.jphotochem.2021.113405
    [Google Scholar]
  36. Bati A. S. R. Zhong Y. L. Burn P. L. Nazeeruddin M. K. Shaw P. E. Batmunkh M. Next-generation applications for integrated perovskite solar cells. Commun. Mater 2023 4 1 1 24
    [Google Scholar]
  37. Vijayaraghavan T. Althaf R. Babu P. Parida K.M. Vadivel S. Ashok A.M. Visible light active LaFeO3 nano perovskite-RGO-NiO composite for efficient H2 evolution by photocatalytic water splitting and textile dye degradation. J. Environ. Chem. Eng. 2021 9 1 104675 10.1016/j.jece.2020.104675
    [Google Scholar]
  38. Domanski K. Correa-Baena J.P. Mine N. Nazeeruddin M.K. Abate A. Saliba M. Tress W. Hagfeldt A. Grätzel M. Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells. ACS Nano 2016 10 6 6306 6314 10.1021/acsnano.6b02613 27187798
    [Google Scholar]
  39. Christians J.A. Schulz P. Tinkham J.S. Schloemer T.H. Harvey S.P. Tremolet de Villers B.J. Sellinger A. Berry J.J. Luther J.M. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat. Energy 2018 3 1 68 74 10.1038/s41560‑017‑0067‑y
    [Google Scholar]
  40. Li C. Wei J. Sato M. Koike H. Xie Z.Z. Li Y.Q. Kanai K. Kera S. Ueno N. Tang J.X. Halide-substituted electronic properties of organometal halide perovskite films: Direct and inverse photoemission studies. ACS Appl. Mater. Interfaces 2016 8 18 11526 11531 10.1021/acsami.6b02692 27101940
    [Google Scholar]
  41. Ji K. Yuan J. Li F. Shi Y. Ling X. Zhang X. Zhang Y. Lu H. Yuan J. Ma W. High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A Mater. Energy Sustain. 2020 8 16 8104 8112 10.1039/D0TA02743J
    [Google Scholar]
  42. Wang G. Lei M. Liu J. He Q. Zhang W. Improving the stability and optoelectronic properties of all inorganic less‐Pb perovskites by Bsite doping for high‐performance inorganic perovskite solar cells. Sol. RRL 2020 4 12 2000528 10.1002/solr.202000528
    [Google Scholar]
  43. Ma D. Wu J. Gao M. Xin Y. Sun Y. Ma T. Hydrothermal synthesis of an artificial Z-scheme visible light photocatalytic system using reduced graphene oxide as the electron mediator. Chem. Eng. J. 2017 313 1567 1576 10.1016/j.cej.2016.11.036
    [Google Scholar]
  44. Tsai H. Nie W. Blancon J.C. Stoumpos C.C. Asadpour R. Harutyunyan B. Neukirch A.J. Verduzco R. Crochet J.J. Tretiak S. Pedesseau L. Even J. Alam M.A. Gupta G. Lou J. Ajayan P.M. Bedzyk M.J. Kanatzidis M.G. Mohite A.D. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016 536 7616 312 316 10.1038/nature18306 27383783
    [Google Scholar]
  45. Liu J. Leng J. Wu K. Zhang J. Jin S. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 2017 139 4 1432 1435 10.1021/jacs.6b12581 28094931
    [Google Scholar]
  46. Lin Y. Fang Y. Zhao J. Shao Y. Stuard S.J. Nahid M.M. Ade H. Wang Q. Shield J.E. Zhou N. Moran A.M. Huang J. Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 2019 10 1 1008 10.1038/s41467‑019‑08958‑9 30824699
    [Google Scholar]
  47. Blancon J.C. Tsai H. Nie W. Stoumpos C.C. Pedesseau L. Katan C. Kepenekian M. Soe C.M.M. Appavoo K. Sfeir M.Y. Tretiak S. Ajayan P.M. Kanatzidis M.G. Even J. Crochet J.J. Mohite A.D. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017 355 6331 1288 1292 10.1126/science.aal4211 28280250
    [Google Scholar]
  48. Naciri Y. Hsini A. Ahdour A. Akhsassi B.; Fritah,; Ajmal, Z.; Djellabi, R.; Bouziani, A.; Taoufyq, A.; Bakiz, B.; Benlhachemi, A.; Sillanpää, M.; Li, H. Recent advances of bismuth titanate based photocatalysts engineering for enhanced organic contaminates oxidation in water: A review. Chemosphere 2022 300 134622 10.1016/j.chemosphere.2022.134622 35439491
    [Google Scholar]
  49. Pirgholi-Givi G. Farjami-Shayesteh S. Azizian-Kalandaragh Y. The influence of preparation parameters on the photocatalytic performance of mixed bismuth titanate-based nanostructures. Physica B 2019 575 311572 10.1016/j.physb.2019.07.007
    [Google Scholar]
  50. Nogueira A.E. Longo E. Leite E.R. Camargo E.R. Synthesis and photocatalytic properties of bismuth titanate with different structures via oxidant peroxo method (OPM). J. Colloid Interface Sci. 2014 415 89 94 10.1016/j.jcis.2013.10.010 24267334
    [Google Scholar]
  51. Kallawar G.A. Barai D.P. Bhanvase B.A. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges. J. Clean. Prod. 2021 318 128563 10.1016/j.jclepro.2021.128563
    [Google Scholar]
  52. Chen J. Mei W. Liu C. Hu C. Huang Q. Chen N. Chen J. Zhang R. Hou W. Carbon-modified bismuth titanate with an enhanced photocatalytic activity under nature sunlight. Mater. Lett. 2016 172 184 187 10.1016/j.matlet.2016.03.002
    [Google Scholar]
  53. Yao W.F. Wang H. Shang S.X. Xu X.H. Yang X.N. Zhang Y. Wang M. Photocatalytic property of Zn-modified bismuth titanate. J. Mol. Catal. Chem. 2003 198 1-2 343 348 10.1016/S1381‑1169(02)00699‑4
    [Google Scholar]
  54. Sheikh T. Nawale V. Pathoor N. Phadnis C. Chowdhury A. Nag A. Molecular intercalation and electronic two dimensionality in layered hybrid perovskites. Angew. Chem. Int. Ed. 2020 59 28 11653 11659 10.1002/anie.202003509 32243656
    [Google Scholar]
  55. Belous A. Kobylianska S. V’yunov O. Torchyniuk P. Yukhymchuk V. Hreshchuk O. Effect of non-stoichiometry of initial reagents on morphological and structural properties of perovskites CH3NH3PbI3. Nanoscale Res. Lett. 2019 14 1 4 10.1186/s11671‑018‑2841‑6 30612275
    [Google Scholar]
  56. [59] Singhal, N.; Chakraborty, R.; Ghosh, P.; Nag, A. low‐bandgap Cs4 CuSb2Cl12 layered double perovskite: Synthesis, reversible thermal changes, and magnetic interaction. Chem. Asian J. 2018 13 16 2085 2092 10.1002/asia.201800635 29809310
    [Google Scholar]
  57. Wang X.D. Miao N.H. Liao J.F. Li W.Q. Xie Y. Chen J. Sun Z.M. Chen H.Y. Kuang D.B. The top-down synthesis of single-layered Cs4CuSb2Cl12 halide perovskite nanocrystals for photoelectrochemical application. Nanoscale 2019 11 12 5180 5187 10.1039/C9NR00375D 30843576
    [Google Scholar]
  58. Tang G. Xiao Z. Hosono H. Kamiya T. Fang D. Hong J. Layered halide double perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for photovoltaic applications. J. Phys. Chem. Lett. 2018 9 1 43 48 10.1021/acs.jpclett.7b02829 29231743
    [Google Scholar]
  59. Singhal N. Chakraborty R. Ghosh P. Nag A. Low􀀀Bandgap Cs4CuSb2Cl12 Layered Double Perovskite: Synthesis, Reversible Thermal Changes, and Magnetic Interaction. Chemistry – An Asian Journal 2018 13 16 2085 2092
    [Google Scholar]
  60. Wang K. Li Y. Zhang G. Li J. Wu X. 0D Bi Nanodots/2D Bi3NbO7 Nanosheets Heterojunctions for Efficient Visible Light Photocatalytic Degradation of Antibiotics: Enhanced Molecular Oxygen Activation and Mechanism Insight. Applied Catalysis B: Environmental 2019 240 39 49
    [Google Scholar]
  61. Lebedev A. Anariba F. Li X. Seng Hwee Leng D. Wu P. Ag/Ag2O/BiNbO4 Structure for Simultaneous Photocatalytic Degradation of Mixed Cationic and Anionic Dyes. Solar Energy 2019 178 257 267
    [Google Scholar]
  62. Pandey A. Naresh G. Mandal T. K. Sunlight Responsive New Sillén-Aurivillius A1X1 Hybrid Layered Oxyhalides with Enhanced Photocatalytic Activity. Solar Energy Materials and Solar Cells 2017 161 197 205
    [Google Scholar]
  63. Majumdar A. Pal A. Optimized Synthesis of Bi4NbO8Cl Perovskite Nanosheets for Enhanced Visible Light Assisted Photocatalytic Degradation of Tetracycline Antibiotics. Journal of Environmental Chemical Engineering 2020 8 1 103645
    [Google Scholar]
  64. Ogawa K. Sakamoto R. Zhong C. Suzuki H. Kato K. Tomita O. Nakashima K. Yamakata A. Tachikawa T. Saeki A. Kageyama H. Abe R. Manipulation of Charge Carrier Flow in Bi4NbO8Cl Nanoplate Photocatalyst with Metal Loading. Chemical Science 2022 13 11 3118 3128
    [Google Scholar]
  65. Wang T. Liu X. Ma C. Zhu Z. Liu Y. Liu Z. Wei M. Zhao X. Dong H. Huo P. Li C. Yan Y. Bamboo Prepared Carbon Quantum Dots (CQDs) for Enhancing Bi3Ti4O12 Nanosheets Photocatalytic Activity. Journal of Alloys and Compounds 2018 752 106 114
    [Google Scholar]
  66. Niu S. Zhang R. Zhang X. Xiang J. Guo C. Morphology-Dependent Photocatalytic Performance of Bi4Ti3O12. Ceramics International 2020 46 5 6782 6786
    [Google Scholar]
  67. He Z. Sun C. Yang S. Ding Y. He H. Wang Z. Photocatalytic Degradation of Rhodamine B by Bi2WO6 with Electron Accepting Agent under Microwave Irradiation: Mechanism and Pathway. Journal of Hazardous Materials 2009 162 2–3 1477 1486
    [Google Scholar]
  68. Mahmoudian M. H. Mesdaghinia A. Mahvi A. H. Nasseri S. Nabizadeh R. Dehghani M. H. Photocatalytic Degradation of Bisphenol a from Aqueous Solution Using Bismuth Ferric Magnetic Nanoparticle: Synthesis, Characterization and Response Surface Methodology-Central Composite Design Modeling. Journal of Environmental Health Science and Engineering 2022 20 2 617 628
    [Google Scholar]
  69. He Y. Zhang Y. Huang H. Tian N. Guo Y. Luo Y. A Novel Bi-Based Oxybromide Bi4NbO8Br: Synthesis, Characterization and Visible-Light-Active Photocatalytic Activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014 462 131 136
    [Google Scholar]
  70. Lee C.-H. Kim H. G. Gu Y. Lim D.-H. A Study of Photocatalytic Degradation of Methylene Blue in Aqueous Solution Using Perovskite Structured PbBi2Nb2O9. Nanoscience and Nanotechnology Letters 2018 10 9 1179 1186
    [Google Scholar]
  71. P. P, A.; Joshi, M.; Verma, D.; Jadhav, S.; Choudhury, A. R.; Jana, D. Layered Cs4CuSb2Cl12 Nanocrystals for Sunlight-Driven Photocatalytic Degradation of Pollutants. ACS Applied Nano Materials 2021 4 2 1305 1313
    [Google Scholar]
  72. Lin X. Huang T. Huang F. Wang W. Shi J. Photocatalytic Activity of a Bi-Based Oxychloride Bi4NbO8Cl. Journal of Materials Chemistry 2007 17 20 2145
    [Google Scholar]
  73. Hossain A. Bandyopadhyay P. Roy S. An Overview of Double Perovskites A2B′B″O6 with Small Ions at A Site: Synthesis, Structure and Magnetic Properties. Journal of Alloys and Compounds 2018 740 414 427
    [Google Scholar]
  74. Zhang M. Jeerh G. Zou P. Lan R. Wang M. Wang H. Tao S. Recent Development of Perovskite Oxide-Based Electrocatalysts and Their Applications in Low to Intermediate Temperature Electrochemical Devices. Materials Today 2021 49 351 377
    [Google Scholar]
  75. Chen X. Xu J. Xu Y. Luo F. Du Y. Rare Earth Double Perovskites: A Fertile Soil in the Field of Perovskite Oxides. Inorganic Chemistry Frontiers 2019 6 9 2226 2238
    [Google Scholar]
  76. Nguyen V.-H. Do H. H. Van Nguyen T. Singh P. Raizada P. Sharma A. Sana S.S. Grace A. N. Shokouhimehr M. Ahn S. H. Xia C. Kim S. Y. Le Q. V. Perovskite Oxide-Based Photocatalysts for Solar-Driven Hydrogen Production: Progress and Perspectives. Solar Energy 2020 211 584 599
    [Google Scholar]
  77. Gupta A. Silotia H. Kumari A. Dumen M. Goyal S. Tomar R. Wadehra N. Ayyub P. Chakraverty S. KTaO3—The New Kid on the Spintronics Block. Advanced Materials 2022 34 9
    [Google Scholar]
  78. Jana R. Rajaitha P. M. Hajra S. Kim H. J. Advancements in Visible-Light-Driven Double Perovskite Nanoparticles for Photodegradation. Micro and Nano Systems Letters 2023 11 1
    [Google Scholar]
  79. Angineni R. Venkataswamy P. Ramaswamy K. Raj S. Veldurthi N. K. Vithal M. Preparation, Characterization and Photocatalytic Activity Studies of Transition Metal Ion Doped K2Ta2O6. Polyhedron 2022 214 115620
    [Google Scholar]
  80. Angineni R. Perala V. Kadari R. Pallati S. Kurra S. Muga V. Facile Ion-Exchange Synthesis of Gd-Doped K2Ta2O6 Photocatalysts with Enhanced Visible Light Activity. Journal of the Indian Chemical Society 2022 99 6 100495
    [Google Scholar]
  81. Krukowska A. Trykowski G. Lisowski W. Klimczuk T. Winiarski M. J. Zaleska-Medynska A. Monometallic Nanoparticles Decorated and Rare Earth Ions Doped KTaO3/K2Ta2O6 Photocatalysts with Enhanced Pollutant Decomposition and Improved H2 Generation. Journal of Catalysis 2018 364 371 381
    [Google Scholar]
  82. Li X. Y. Yao Z. F. Zhang L. Y. Zheng G. H. Dai Z. X. Chen K.Y. Generation of Oxygen Vacancies on Sr2FeMoO6 to Improve Its Photocatalytic Performance through a Novel Preparation Method Involving pH Adjustment and Use of Surfactant. Applied Surface Science 2019 480 262 275
    [Google Scholar]
  83. Khan H. Swati I. K. Fe3+-Doped Anatase TiO2 with d–d Transition, Oxygen Vacancies and Ti3+ Centers: Synthesis, Characterization, UV–Vis Photocatalytic and Mechanistic Studies. Industrial & Engineering Chemistry Research 2016 55 23 6619 6633
    [Google Scholar]
  84. Farzin Y.A. Babaei A. Ataie A. Low-Temperature Synthesis of Sr2FeMoO6 Double Perovskite; Structure, Morphology, and Magnetic Properties. Ceramics International 2020 46 10 16867 16878
    [Google Scholar]
  85. Ghrib T. Structural, Dielectric, Electrical, and Thermal Properties of the Ce-Doped Ba2TiMoO6 Double Perovskite. Journal of Heat Transfer 2022 144 12
    [Google Scholar]
  86. Ghrib T. Al-Otaibi A. Ercan F. Manda A.A. Ozcelik B. Ercan I. Structural, Optical and Photocatalytic Properties of Cerium Doped Ba2TiMoO6 Double Perovskite. Physica B: Condensed Matter 2023 649 414454
    [Google Scholar]
  87. Majumdar A. Ghosh U. Pal A. 2D-Bi4NbO8Cl Nanosheet for Efficient Photocatalytic Degradation of Tetracycline in Synthetic and Real Wastewater under Visible-Light: Influencing Factors, Mechanism and Degradation Pathway. Journal of Alloys and Compounds 2022 900 163400
    [Google Scholar]
  88. Angineni R. Venkataswamy P. Veldurthi N. K. Ramaswamy K. Sudheera M. Vithal M. Photocatalytic Degradation Studies of Carbon and Sulfur-Doped K2Ta2O6. Journal of Materials Science: Materials in Electronics 2023 34 7
    [Google Scholar]
  89. Zhai Y.-Q. Qiao J. Qiu M.-D. Research on Degradation of Dye Acid Red B by Sr2FeMoO6Synthesized by Microwave Sintering Method. E-Journal of Chemistry 2012 9 2 818 824
    [Google Scholar]
  90. Sharma A. Bhardwaj U. Kushwaha H. S. Ba2TiMnO6 Two-Dimensional Nanosheets for Rhodamine B Organic Contaminant Degradation Using Ultrasonic Vibrations. Materials Advances 2021 2 8 2649 2657
    [Google Scholar]
  91. Li K. Li S. Zhang W. Shi Z. Wu D. Chen X. Lin P. Tian Y. Li X. Highly-Efficient and Stable Photocatalytic Activity of Lead-Free Cs2AgInCl6 Double Perovskite for Organic Pollutant Degradation. Journal of Colloid and Interface Science 2021 596 376 383
    [Google Scholar]
  92. Zhai Y.-Q. Qiao J. Qiu M.-D. Research on Degradation of Dye Acid Red B by Sr2FeMoO6Synthesized by Microwave Sintering Method. E-Journal of Chemistry 2012 9 2 818 824
    [Google Scholar]
  93. Shirazi P. Rahbar M. Behpour M. Ashrafi M. La2MnTiO6 Double Perovskite Nanostructures as Highly Efficient Visible Light Photocatalysts. New Journal of Chemistry 2020 44 1 231 238
    [Google Scholar]
  94. Talapatra A., Uberuaga B. P. Stanek C. R.,& Pilania G. (2023,June 10). Band gap predictions of double perovskite oxides using machine learning. Communications Materials 2023 4 1
    [Google Scholar]
  95. Zhou C. Tarasov A. B. Goodilin E. A. Chen P. Wang, H., &Chen, Q. Recent strategies to improve moisture stability in metal halide perovskites materials and devices. Journal of Energy Chemistry 2022 65 219 235
    [Google Scholar]
  96. Bati A. S. R. Zhong Y. L. Burn P. L. Nazeeruddin M. K. Shaw P. E. & Batmunkh M. (2023, January 5). Next-generation applications for integrated perovskite solar cells. Communications Materials 2023 4 1
    [Google Scholar]
  97. Muscarella L. A., & Hutter E. M. (2022, May 31). Halide Double-Perovskite Semiconductors beyond Photovoltaics. ACS Energy Letters 2022 7 6 2128 2135
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137296172240311112922
Loading
/content/journals/cnano/10.2174/0115734137296172240311112922
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test