Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Colloidal carriers are a promising type of carriers which play a crucial role in transdermal drug delivery and other topical applications. These carriers are usually present in the microscopic size, which offers different methods to enclose and deliver a diverse range of dynamic substances such as medicines, genes, and lipids. They offer distinct advantages by mimicking the natural structure of the skin's lipid bilayers using lipids and allowing the incorporation of different active compounds through the use of polymers. Recently, more advanced technology like artificial intelligence (AI) and machine learning (ML) has been adopted in the pharmaceutical field. The incorporation of artificial intelligence and machine learning techniques in colloidal carriers holds immense promise in revolutionizing the domain of drug delivery and nanomedicine. Machine learning algorithms can undergo training with the use of extensive datasets containing information on drug behavior within the human body, which can predict drug response within the body. Additionally, AI can be employed to anticipate various processes, thereby resulting in an enhanced delivery of medication using carriers. Many studies have shown the use of machine learning (ML) and artificial intelligence (AI) for optimizing the drug-carrying capacity colloidal carriers. The present review concentrates on various categories of innovative colloidal vehicles in transdermal administration, alongside their penetration technique, benefit, and mechanism in the integumentary system. Outcomes from the different researches are critically assessed and showcase the potential of colloidal carriers to augment the penetration of drugs through the stratum corneum while minimizing adverse effects on the entire system with improved therapeutic effectiveness in various diseases.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137287023240103063237
2024-01-26
2025-01-08
Loading full text...

Full text loading...

References

  1. HeuschkelS. GoebelA. NeubertR.H.H. Microemulsions-modern colloidal carrier for dermal and transdermal drug delivery.J. Pharm. Sci.200897260363110.1002/jps.20995 17696162
    [Google Scholar]
  2. MorrowD.I.J. McCarronP.A. WoolfsonA.D. DonnellyR.F. Innovative strategies for enhancing topical and transdermal drug delivery.Open Drug Deliv. J.200711365910.2174/1874126600701010036
    [Google Scholar]
  3. SalaM. DiabR. ElaissariA. FessiH. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications.Int. J. Pharm.20185351-211710.1016/j.ijpharm.2017.10.046 29111097
    [Google Scholar]
  4. CoscoD. CeliaC. CilurzoF. TrapassoE. PaolinoD. Colloidal carriers for the enhanced delivery through the skin.Expert Opin. Drug Deliv.20085773775510.1517/17425247.5.7.737 18590459
    [Google Scholar]
  5. RomeroE.L. MorillaM.J. Ultradeformable phospholipid vesicles as a drug delivery system: A review.Res. Report. Transd. Drug Deliv.2015555510.2147/RRTD.S50370
    [Google Scholar]
  6. FlynnG.L. Transdermal drug delivery: Development issues and research initiatives.J. Control. Release199116336510.1016/0168‑3659(91)90014‑5
    [Google Scholar]
  7. GuptaM. AgrawalU. VyasS.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases.Expert Opin. Drug Deliv.20129778380410.1517/17425247.2012.686490 22559240
    [Google Scholar]
  8. AlexanderA. DwivediS. Ajazuddin; Giri, T.K.; Saraf, S.; Saraf, S.; Tripathi, D.K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery.J. Control. Release20121641264010.1016/j.jconrel.2012.09.017 23064010
    [Google Scholar]
  9. ErdoganS. Liposomal nanocarriers for tumor imaging.J. Biomed. Nanotechnol.20095214115010.1166/jbn.2009.1016 20055092
    [Google Scholar]
  10. BissettD.L. Anatomy and biochemistry of the skin. KydonieusF. BernerB. Transdermal Delivery of DrugsCRC Press, Inc.: Boca Raton198712942
    [Google Scholar]
  11. Frušić-ZlotkinM. SorokaY. TivonyR. LarushL. VerkhovskyL. BrégégèreF.M. NeumanR. MagdassiS. MilnerY. Penetration and biological effects of topically applied cyclosporin A nanoparticles in a human skin organ culture inflammatory model.Exp. Dermatol.2012211293894310.1111/exd.12051 23171455
    [Google Scholar]
  12. AbouelmagdS.A. HyunH. YeoY. Extracellularly activatable nanocarriers for drug delivery to tumors.Expert Opin. Drug Deliv.201411101601161810.1517/17425247.2014.930434 24950343
    [Google Scholar]
  13. SalimN. AhmadN. MusaS.H. HashimR. TadrosT.F. BasriM. Nanoemulsion as a topical delivery system of antipsoriatic drugs.RSC Advances2016686234625010.1039/C5RA14946K
    [Google Scholar]
  14. TorchilinV.P. Structure and design of polymeric surfactant-based drug delivery systems.J. Control. Release2001732-313717210.1016/S0168‑3659(01)00299‑1 11516494
    [Google Scholar]
  15. BarrattG. Colloidal drug carriers: Achievements and perspectives.Cell. Mol. Life Sci.2003601213710.1007/s000180300002 12613656
    [Google Scholar]
  16. JhawatV.C. SainiV. KambojS. MaggonN. Transdermal drug delivery systems: Approaches and advancements in drug absorption through skin.Int. J. Pharm. Sci. Rev. Res.20132014756
    [Google Scholar]
  17. MatharooN. MohdH. Michniak-KohnB. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023e191810.1002/wnan.1918 37527953
    [Google Scholar]
  18. RastogiV. YadavP. Transdermal drug delivery system: An overview.Asian J. Pharm.20126316110.4103/0973‑8398.104828
    [Google Scholar]
  19. SharmaJ. KalraS. SharmaA. RaniS. Colloidal drug carriers.Int. J. Family Prac.20099216
    [Google Scholar]
  20. PradhanM. SinghD. SinghM.R. Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery approaches.J. Control. Release2013170338039510.1016/j.jconrel.2013.05.020 23770117
    [Google Scholar]
  21. RawatM. SinghD. SarafS. SarafS. Nanocarriers: Promising vehicle for bioactive drugs.Biol. Pharm. Bull.20062991790179810.1248/bpb.29.1790 16946487
    [Google Scholar]
  22. YoshidaP.A. YokotaD. FoglioM.A. RodriguesR.A.F. PinhoS.C. Liposomes incorporating essential oil of Brazilian cherry (Eugenia uniflora L.): Characterization of aqueous dispersions and lyophilized formulations.J. Microencapsul.201027541642510.3109/02652040903367327 20690790
    [Google Scholar]
  23. SherryM. CharcossetC. FessiH. Greige-GergesH. Essential oils encapsulated in liposomes: A review.J. Liposome Res.201323426827510.3109/08982104.2013.819888 23879218
    [Google Scholar]
  24. VanniasingheA.S. BenderV. ManoliosN. The potential of liposomal drug delivery for the treatment of inflammatory arthritis.Semin. Arthritis Rheum.200939318219610.1016/j.semarthrit.2008.08.004 18926560
    [Google Scholar]
  25. SharmaA. SinghA.P. HarikumarS.L. Development and optimization of nanoemulsion based gel for enhanced transdermal delivery of nitrendipine using box-behnken statistical design.Drug Dev. Ind. Pharm.202046232934210.1080/03639045.2020.1721527 31976777
    [Google Scholar]
  26. SinicoC. ManconiM. PeppiM. LaiF. ValentiD. FaddaA.M. Liposomes as carriers for dermal delivery of tretinoin: In vitro evaluation of drug permeation and vesicle-skin interaction.J. Control. Release2005103112313610.1016/j.jconrel.2004.11.020 15710506
    [Google Scholar]
  27. GregoriadisG. LeathwoodP.D. RymanB.E. Enzyme entrapment in liposomes.FEBS Lett.1971142959910.1016/0014‑5793(71)80109‑6 11945728
    [Google Scholar]
  28. SubongkotT. WonglertnirantN. SongprakhonP. RojanarataT. OpanasopitP. NgawhirunpatT. Visualization of ultradeformable liposomes penetration pathways and their skin interaction by confocal laser scanning microscopy.Int. J. Pharm.20134411-215116110.1016/j.ijpharm.2012.12.003 23247017
    [Google Scholar]
  29. WilczewskaA.Z. NiemirowiczK. MarkiewiczK.H. CarH. Nanoparticles as drug delivery systems.Pharmacol. Rep.20126451020103710.1016/S1734‑1140(12)70901‑5 23238461
    [Google Scholar]
  30. GregoriadisG. Liposome Technology.CRC Press201910.1201/9781351074100
    [Google Scholar]
  31. SwaminathanJ. EhrhardtC. Liposomal delivery of proteins and peptides.Expert Opin. Drug Deliv.20129121489150310.1517/17425247.2012.735658 23092138
    [Google Scholar]
  32. TouitouE. JungingerH.E. WeinerN.D. NagaiT. MezeiM. Liposomes as carriers for topical and transdermal delivery.J. Pharm. Sci.19948391189120310.1002/jps.2600830902 7830230
    [Google Scholar]
  33. DarwisY. Ali KhanA. MudassirJ. MohtarN. Advanced drug delivery to the lymphatic system: Lipid-based nanoformulations.Int. J. Nanomedicine20132733273310.2147/IJN.S41521
    [Google Scholar]
  34. ChenM.H. SodaY. IzawaK. KobayashiS. TaniK. MaruyamaK. TojoA. AsanoS. A versatile drug delivery system using streptavidin-tagged pegylated liposomes and biotinylated biomaterials.Int. J. Pharm.2013454147848510.1016/j.ijpharm.2013.06.031 23806815
    [Google Scholar]
  35. Al-JamalW.T. KostarelosK. Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine.Acc. Chem. Res.201144101094110410.1021/ar200105p 21812415
    [Google Scholar]
  36. PatilY.P. JadhavS. Novel methods for liposome preparation.Chem. Phys. Lipids201417781810.1016/j.chemphyslip.2013.10.011 24220497
    [Google Scholar]
  37. GhanbarzadehS. AramiS. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes.BioMed Res. Int.201320131710.1155/2013/616810 23936825
    [Google Scholar]
  38. ZhaoY.Z. LuC.T. ZhangY. XiaoJ. ZhaoY.P. TianJ.L. XuY.Y. FengZ.G. XuC.Y. Selection of high efficient transdermal lipid vesicle for curcumin skin delivery.Int. J. Pharm.2013454130230910.1016/j.ijpharm.2013.06.052 23830940
    [Google Scholar]
  39. RaiS. PandeyV. RaiG. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art.Nano Rev. Exp.201781132570810.1080/20022727.2017.1325708 30410704
    [Google Scholar]
  40. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. TransferSomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012985510.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  41. CevcG. SchätzleinA. RichardsenH. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements.Biochim. Biophys. Acta Biomembr.200215641213010.1016/S0005‑2736(02)00401‑7 12100992
    [Google Scholar]
  42. RajanR. VasudevanD.T. Biju MukundV.P. JoseS. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.J. Adv. Pharm. Technol. Res.20112313814310.4103/2231‑4040.85524 22171309
    [Google Scholar]
  43. CevcG. Lipid vesicles and other colloids as drug carriers on the skin.Adv. Drug Deliv. Rev.200456567571110.1016/j.addr.2003.10.028 15019752
    [Google Scholar]
  44. ChaurasiyaP. GanjuE. UpmanyuN. RayS.K. JainP. Transfersomes: A novel technique for transdermal drug delivery.J. Drug Deliv. Ther.20199127928510.22270/jddt.v9i1.2198
    [Google Scholar]
  45. GhaiI. ChaudharyH. GhaiS. KohliK. KrV. A review of transdermal drug delivery using nano-vesicular carriers.Transfersomes. Recent Pat. Nanomed.20122216417110.2174/1877912311202020164
    [Google Scholar]
  46. ModiC.D. BharadiaP.D. Transfersomes: New dominants for transdermal drug delivery.Am J Pharm Tech Res2012237191
    [Google Scholar]
  47. El ZaafaranyG.M. AwadG.A.S. HolayelS.M. MortadaN.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery.Int. J. Pharm.20103971-216417210.1016/j.ijpharm.2010.06.034 20599487
    [Google Scholar]
  48. JafariA. DaneshamouzS. GhasemiyehP. Mohammadi-SamaniS. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization.J. Liposome Res.202211910.1080/08982104.2022.2085742 35695714
    [Google Scholar]
  49. SharmaA. Babu SharmaR. VermaA. ThakurR. Insight on nanoparticles, green synthesis and applications in drug delivery system-a comprehensive review.Int. J. Life Sci. Pharma Res.2022125688410.22376/ijpbs/lpr.2022.12.5.P68‑84
    [Google Scholar]
  50. DubeyV. MishraD. DuttaT. NaharM. SarafD.K. JainN.K. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes.J. Control. Release2007123214815410.1016/j.jconrel.2007.08.005 17884226
    [Google Scholar]
  51. RamtekeS. BarupalA.K. GuptaV. Preparation and characterization of ethosomes for topical delivery of aceclofenac.Indian J. Pharm. Sci.201072558258610.4103/0250‑474X.78524 21694989
    [Google Scholar]
  52. SinicoC. FaddaA.M. Vesicular carriers for dermal drug delivery.Expert Opin. Drug Deliv.20096881382510.1517/17425240903071029 19569979
    [Google Scholar]
  53. AinbinderD. PaolinoD. FrestaM. TouitouE. Drug delivery applications with ethosomes.J. Biomed. Nanotechnol.20106555856810.1166/jbn.2010.1152 21329048
    [Google Scholar]
  54. ManconiM. SinicoC. CaddeoC. VilaA.O. ValentiD. FaddaA.M. Penetration enhancer containing vesicles as carriers for dermal delivery of tretinoin.Int. J. Pharm.20114121-2374610.1016/j.ijpharm.2011.03.068 21530626
    [Google Scholar]
  55. SharmaA. SharmaR. Singh BoraK. HarikumarS.L. Pharmacokinetic investigation of nitrendipine encapsulated niosomal gel in rat plasma by RP-HPLC method.Mater. Today Proc.20226865365710.1016/j.matpr.2022.05.301
    [Google Scholar]
  56. RajeraR. NagpalK. SinghS.K. MishraD.N. Niosomes: A controlled and novel drug delivery system.Biol. Pharm. Bull.201134794595310.1248/bpb.34.945 21719996
    [Google Scholar]
  57. MadhavN.V.S. SainiA. Niosomes: A novel drug delivery system.Int. J. Res. Pharm. Chem.201113498511
    [Google Scholar]
  58. KuotsuK. KarimK.M. MandalA.S. BiswasN. GuhaA. ChatterjeeS. BeheraM. Niosome: A future of targeted drug delivery systems.J. Adv. Pharm. Technol. Res.20101437438010.4103/0110‑5558.76435 22247876
    [Google Scholar]
  59. LawrenceM.J. ReesG.D. Microemulsion-based media as novel drug delivery systems.Adv. Drug Deliv. Rev.20004518912110.1016/S0169‑409X(00)00103‑4 11104900
    [Google Scholar]
  60. ThakurR. SharmaA. An overview of mucoadhesive thermoreversible nasal gel.Asian J. Pharmaceut. Res. Develop.202194156168
    [Google Scholar]
  61. GuptaS. MoulikS.P. Biocompatible microemulsions and their prospective uses in drug delivery.J. Pharm. Sci.2008971224510.1002/jps.21177 17887122
    [Google Scholar]
  62. GargT. RathG. GoyalA.K. Colloidal drug delivery systems: Current status and future directions.Crit. Rev. Ther. Drug Carrier Syst.20153228914710.1615/CritRevTherDrugCarrierSyst.2015010159 25955882
    [Google Scholar]
  63. ShajiJ. ReddyM.S. Microemulsions as drug delivery systems.Pharm. Times20043671724
    [Google Scholar]
  64. Yaqoob KhanA. TalegaonkarS. IqbalZ. Jalees AhmedF. Krishan KharR. Multiple emulsions: An overview.Curr. Drug Deliv.20063442944310.2174/156720106778559056 17076645
    [Google Scholar]
  65. HimriI. GuaâdaouiA. Cell and organ drug targeting.Nanostructures for the Engineering of Cells.Tissues and Organs201810.1016/B978‑0‑12‑813665‑2.00001‑6
    [Google Scholar]
  66. PardeikeJ. HommossA. MüllerR.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.Int. J. Pharm.20093661-217018410.1016/j.ijpharm.2008.10.003 18992314
    [Google Scholar]
  67. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  68. EzzatiN.D.J. ValizadehH. HamishehkarH. Solid lipid nanoparticles as efficient drug and gene delivery systems: Recent breakthroughs.Adv. Pharm. Bull.20155215115910.15171/apb.2015.022 26236652
    [Google Scholar]
  69. AbdullahR. HowC.W. AbbasalipourkabirR. Characterization and stability of nanostructured lipid carriers as drug delivery system.Afr. J. Biotechnol.20111016841689
    [Google Scholar]
  70. XiaQ. SaupeA. MüllerR.H. SoutoE.B. Nanostructured lipid carriers as novel carrier for sunscreen formulations.Int. J. Cosmet. Sci.200729647348210.1111/j.1468‑2494.2007.00410.x 18489386
    [Google Scholar]
  71. YalavarthiP.R. DudalaT.B. MudumalaN.L. PasupatiV.K. ThanniruJ. VadlamudiH.C. YagaG. A perspective overview on lipospheres as lipid carrier systems.Int. J. Pharm. Investig.20144414915510.4103/2230‑973X.143112 25426435
    [Google Scholar]
  72. NasrM. MansourS. MortadaN.D. El ShamyA.A. Lipospheres as carriers for topical delivery of aceclofenac: Preparation, characterization and in vivo evaluation.AAPS PharmSciTech20089115416210.1208/s12249‑007‑9028‑2 18446476
    [Google Scholar]
  73. MehannaM.M. MneimnehA.T. Formulation and applications of lipid-based nanovehicles: Spotlight on self-emulsifying systems.Adv. Pharm. Bull.2020111566710.34172/apb.2021.006 33747852
    [Google Scholar]
  74. Abu-HuwaijR. AlkarawiA. SalmanD. AlkarawiF. Exploring the use of niosomes in cosmetics for efficient dermal drug delivery.Pharm. Dev. Technol.202328770871810.1080/10837450.2023.2233613 37448342
    [Google Scholar]
  75. De Melo BarbosaR. SeverinoP. FinklerC.L.L. De PaulaE. Lipid-based colloidal carriers for transdermal administration of bioactives.Materials for Biomedical Engineering.Elsevier201910.1016/B978‑0‑12‑818433‑2.00011‑X
    [Google Scholar]
  76. LiechtyW.B. KryscioD.R. SlaughterB.V. PeppasN.A. Polymers for drug delivery systems.Annu. Rev. Chem. Biomol. Eng.20101114917310.1146/annurev‑chembioeng‑073009‑100847 22432577
    [Google Scholar]
  77. VilarG. Tulla-PucheJ. AlbericioF. Polymers and drug delivery systems.Curr. Drug Deliv.20129436739410.2174/156720112801323053 22640038
    [Google Scholar]
  78. PaliwalH. PariharA. PrajapatiB.G. Current State-of-the-Art and new trends in Self-Assembled Nanocarriers as drug delivery systems.Front. Nanotechnol.2022483667410.3389/fnano.2022.836674
    [Google Scholar]
  79. SharmaA. ThakurR. SharmaR. Development and optimization of candesartan cilexetil nasal gel for accentuated intranasal delivery using central composite design.Mater. Today Proc.202210.1016/j.matpr.2022.11.221
    [Google Scholar]
  80. PimpleP. DudhatS. SinghP. Insights of lipid vesicular and particulate carriers mediated approach for acne management.Curr. Drug Deliv.2023201577410.2174/1567201819666220524154448 35611775
    [Google Scholar]
  81. SavićR. LuoL. EisenbergA. MaysingerD. Micellar nanocontainers distribute to defined cytoplasmic organelles.Science2003300561961561810.1126/science.1078192 12714738
    [Google Scholar]
  82. PerumalS. AtchudanR. LeeW. A review of polymeric micelles and their applications.Polymers20221412251010.3390/polym14122510 35746086
    [Google Scholar]
  83. TomaliaD.A. BakerH. DewaldJ. HallM. KallosG. MartinS. RoeckJ. RyderJ. SmithP. A new class of polymers: Starburst-dendritic macromolecules.Polym. J.198517111713210.1295/polymj.17.117
    [Google Scholar]
  84. WangZ. ItohY. HosakaY. KobayashiI. NakanoY. MaedaI. UmedaF. YamakawaJ. NishimineM. SuenobuT. FukuzumiS. KawaseM. YagiK. Mechanism of enhancement effect of dendrimer on transdermal drug permeation through polyhydroxyalkanoate matrix.J. Biosci. Bioeng.200396653754010.1016/S1389‑1723(04)70146‑2 16233570
    [Google Scholar]
  85. CastonguayA. WilsonE. Al-HajajN. PetitjeanL. PaolettiJ. MaysingerD. KakkarA. Thermosensitive dendrimer formulation for drug delivery at physiologically relevant temperatures.Chem. Commun.20114744121461214810.1039/c1cc15354d 21993413
    [Google Scholar]
  86. GajbhiyeV. PalanirajanV.K. TekadeR.K. JainN.K. Dendrimers as therapeutic agents: A systematic review.J. Pharm. Pharmacol.2010618989100310.1211/jpp.61.08.0002 19703342
    [Google Scholar]
  87. GuptaS. TyagiR. ParmarV.S. SharmaS.K. HaagR. Polyether based amphiphiles for delivery of active components.Polymer201253153053307810.1016/j.polymer.2012.04.047
    [Google Scholar]
  88. FuchsS. KappT. OttoH. SchönebergT. FrankeP. GustR. SchlüterA.D. A surface-modified dendrimer set for potential application as drug delivery vehicles: Synthesis, in vitro toxicity, and intracellular localization.Chemistry20041051167119210.1002/chem.200305386 15007808
    [Google Scholar]
  89. AhmedE.M. Hydrogel: Preparation, characterization, and applications: A review.J. Adv. Res.20156210512110.1016/j.jare.2013.07.006 25750745
    [Google Scholar]
  90. SinghD. SinghM.R. Development of antibiotic and debriding enzyme-loaded PLGA microspheres entrapped in PVA-gelatin hydrogel for complete wound management.Artif. Cells Blood Substit. Immobil. Biotechnol.201240534535310.3109/10731199.2012.675337 22540900
    [Google Scholar]
  91. AminS. RajabnezhadS. KohliK. Hydrogels as potential drug delivery systems.Sci. Res. Essays2009311751183
    [Google Scholar]
  92. JoseJiya Hydrogels An overview of the history, classification, principles, applications, and kinetics.Sustainable Hydrogels.Elsevier202310.1016/B978‑0‑323‑91753‑7.00005‑3
    [Google Scholar]
  93. PeppasN. BuresP. LeobandungW. IchikawaH. Hydrogels in pharmaceutical formulations.Eur. J. Pharm. Biopharm.2000501274610.1016/S0939‑6411(00)00090‑4 10840191
    [Google Scholar]
  94. NawrotekK. ZarzyckiR. ModrzejewskaZ. Drug release from hydrogel matrices.Ecol. Chem. Eng201017117135
    [Google Scholar]
  95. SureshC. AbhishekS. pH sensitive in situ ocular gel: A review.J. Pharma. Sci. Biosci. Res.201665684694
    [Google Scholar]
  96. Farasati FarB. Naimi-JamalM.R. SedaghatM. HoseiniA. MohammadiN. BodaghiM. Combinational System of Lipid-Based nanocarriers and biodegradable polymers for wound healing: An updated review.J. Funct. Biomater.202314211510.3390/jfb14020115 36826914
    [Google Scholar]
  97. SharmaK. PoratZ. GedankenA. Designing natural polymer-based capsules and spheres for biomedical applications-A review.Polymers20211324430710.3390/polym13244307 34960858
    [Google Scholar]
  98. MusyanovychA. LandfesterK. Polymer micro- and nanocapsules as biological carriers with multifunctional properties.Macromol. Biosci.201414445847710.1002/mabi.201300551 24616298
    [Google Scholar]
  99. WeiM. PanX. RongL. DongA. HeY. SongX. LiJ. Polymer carriers for controlled fragrance release.Mater. Res. Express20207808200110.1088/2053‑1591/aba90d
    [Google Scholar]
  100. LetchfordK. BurtH. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes.Eur. J. Pharm. Biopharm.200765325926910.1016/j.ejpb.2006.11.009 17196803
    [Google Scholar]
  101. LimaA.L. GratieriT. Cunha-FilhoM. GelfusoG.M. Polymeric nanocapsules: A review on design and production methods for pharmaceutical purpose.Methods2022199546610.1016/j.ymeth.2021.07.009 34333117
    [Google Scholar]
  102. RadhikaP.R. SivakumarT. Nanocapsules: A new approach in drug delivery.Int. J. Pharm. Sci. Res.2011261426
    [Google Scholar]
  103. Rochín-WongS. RivasI.V. Lipid and polymeric nanocapsules.Intechopen202210.5772/intechopen.103906
    [Google Scholar]
  104. Mora-HuertasC.E. FessiH. ElaissariA. Polymer-based nanocapsules for drug delivery.Int. J. Pharm.20103851-211314210.1016/j.ijpharm.2009.10.018 19825408
    [Google Scholar]
  105. GanS.N. ShahabudinN. Applications of microcapsules in Self-Healing polymeric materials.Microencapsulation - Processes, Technologies and Industrial ApplicationsIntechopen201910.5772/intechopen.83475
    [Google Scholar]
  106. BédardM.F. De GeestB.G. SkirtachA.G. MöhwaldH. SukhorukovG.B. Polymeric microcapsules with light responsive properties for encapsulation and release.Adv. Colloid Interface Sci.20101581-221410.1016/j.cis.2009.07.007 19720369
    [Google Scholar]
  107. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731 32824172
    [Google Scholar]
  108. SharmaG. SharmaA. Recent insight on drug delivery system in hypertension: From bench to market.Curr. Hypertens. Rev.20231929310510.2174/1573402119666230707120846 37550916
    [Google Scholar]
  109. SinghA. GargG. SharmaP. Nanospheres: A novel approach for targeted drug delivery system.Int. J. Pharmaceut. Sci. Rev. Res.20105315
    [Google Scholar]
  110. PathakC. VaidyaF.U. PandeyS.M. Chapter 3 - Mechanism for development of nanobased drug delivery system.Applications of Targeted Nano Drugs and Delivery Systems.Elevier201910.1016/B978‑0‑12‑814029‑1.00003‑X
    [Google Scholar]
  111. GurunathS. HanmantS.M. IndrayaniD.R. ManojM.N. MangeshA.B. A review on microspheres: Types, method of preparation, characterization and application.Asian J. Pharma. Technol202114915510.52711/2231‑5713.2021.00025
    [Google Scholar]
  112. AgarwalS. ThakurA. SharmaA. Development and evaluation of ketoprofen loaded floating microspheres for sustained delivery.Mater. Today Proc.20226864765210.1016/j.matpr.2022.05.299
    [Google Scholar]
  113. KhanS. TiwariT. RaoN. JoshiA. DubeyB.K. Microspheres: A review.World J. Pharm. Pharm. Sci.201211125145
    [Google Scholar]
  114. BadıllıU. ŞenT. TarımcıN. Microparticulate based topical delivery system of clobetasol propionate.AAPS PharmSciTech201112394995710.1208/s12249‑011‑9661‑7 21748539
    [Google Scholar]
  115. KenryK. LimC.T. Nanofiber technology: Current status and emerging developments.Prog. Polym. Sci.20177011710.1016/j.progpolymsci.2017.03.002
    [Google Scholar]
  116. HuangZ.M. ZhangY.Z. KotakiM. RamakrishnaS. A review on polymer nanofibers by electrospinning and their applications in nanocomposites.Compos. Sci. Technol.200363152223225310.1016/S0266‑3538(03)00178‑7
    [Google Scholar]
  117. ReddyV.S. TianY. ZhangC. YeZ. RoyK. ChinnappanA. RamakrishnaS. LiuW. GhoshR. A review on Electrospun nanofibers based advanced applications: From health care to energy devices.Polymer20211321374610.3390/polym13213746 34771302
    [Google Scholar]
  118. GhasemiyehP. Mohammadi-SamaniS. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages.Drug Des. Devel. Ther.2020143271328910.2147/DDDT.S264648 32848366
    [Google Scholar]
  119. ElmowafyM. Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation.Colloids Surf. B Biointerfaces202120311174810.1016/j.colsurfb.2021.111748 33853001
    [Google Scholar]
  120. MoghimipourE. SalamiA. MonjeziM. Formulation and evaluation of liposomes for transdermal delivery of celecoxib.Jundishapur J. Nat. Pharm. Prod.2015101e1765310.17795/jjnpp‑17653 27747190
    [Google Scholar]
  121. LiuY. ChengM. ZhaoJ. ZhangX. HuangZ. ZangY. DingY. ZhangJ. DingZ. Transdermal delivery of lidocaine-loaded elastic nano-liposomes with microneedle array pretreatment.Biomedicines20219659210.3390/biomedicines9060592 34071133
    [Google Scholar]
  122. KuznetsovaD.A. VasilievaE.A. KuznetsovD.M. LeninaO.A. FilippovS.K. PetrovK.A. ZakharovaL.Y. SinyashinO.G. Enhancement of the transdermal delivery of nonsteroidal anti-inflammatory drugs using liposomes containing cationic surfactants.ACS Omega2022729257412575010.1021/acsomega.2c03039 35910111
    [Google Scholar]
  123. HirutaY. HattoriY. KawanoK. ObataY. MaitaniY. Novel ultra-deformable vesicles entrapped with bleomycin and enhanced to penetrate rat skin.J. Control. Release2006113214615410.1016/j.jconrel.2006.04.016 16793162
    [Google Scholar]
  124. MaheshwariR.G.S. TekadeR.K. SharmaP.A. DarwhekarG. TyagiA. PatelR.P. JainD.K. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment.Saudi Pharm. J.201220216117010.1016/j.jsps.2011.10.001 23960788
    [Google Scholar]
  125. SrisukP. ThongnopnuaP. RaktanonchaiU. KanokpanontS. Physico-chemical characteristics of methotrexate-entrapped oleic acid-containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment.Int. J. Pharm.2012427242643410.1016/j.ijpharm.2012.01.045 22310459
    [Google Scholar]
  126. PatelV.B. MisraA.N. MarfatiaY.S. Preparation and comparative clinical evaluation of liposomal gel of benzoyl peroxide for acne.Drug Dev. Ind. Pharm.200127886387010.1081/DDC‑100107251 11699839
    [Google Scholar]
  127. PaliwalS. TilakA. SharmaJ. DaveV. SharmaS. YadavR. PatelS. VermaK. TakK. Flurbiprofen loaded ethosomes - transdermal delivery of anti-inflammatory effect in rat model.Lipids Health Dis.201918113310.1186/s12944‑019‑1064‑x 31170970
    [Google Scholar]
  128. AmmarH.O. TadrosM. SalamN. GhoneimA. Ethosome-derived invasomes as a potential transdermal delivery system for vardenafil hydrochloride: Development, optimization and application of physiologically based pharmacokinetic modeling in adults and geriatrics.Int. J. Nanomedicine2020155671568510.2147/IJN.S261764 32821096
    [Google Scholar]
  129. MaH. GuoD. FanY. WangJ. ChengJ. ZhangX. Paeonol-Loaded ethosomes as transdermal delivery carriers: Design, preparation and evaluation.Molecules2018237175610.3390/molecules23071756 30018278
    [Google Scholar]
  130. MoideenM.M.J. KhanB.A. RajendranV. El-SherbinyM. OthmanG. BashirA.H.A. Hamed, Al-Serwi, R. Polymeric ethosomal gel loaded with nimodipine: Optimisation, pharmacokinetic and histopathological analysis.Saudi Pharm. J.202230111603161110.1016/j.jsps.2022.09.003 36465850
    [Google Scholar]
  131. SharmaA. HarikumarS. L. Quality by design approach for development and optimization of Nitrendipine loaded niosomal gel for accentuated transdermal delivery.Int. J. Appl. Pharmaceut.202018118910.22159/ijap.2020v12i5.38639
    [Google Scholar]
  132. MadniA. RahimM.A. MahmoodM.A. JabarA. RehmanM. ShahH. KhanA. TahirN. ShahA. Enhancement of dissolution and skin permeability of pentazocine by proniosomes and niosomal gel.AAPS PharmSciTech20181941544155310.1208/s12249‑018‑0967‑6 29470828
    [Google Scholar]
  133. MarianecciC. RinaldiF. EspositoS. MarzioL. CarafaM. Niosomes encapsulating Ibuprofen-cyclodextrin complexes: Preparation and characterization.Curr. Drug Targets20131491070107810.2174/1389450111314090015 23531114
    [Google Scholar]
  134. DuangjitS. OpanasopitP. RojanarataT. NgawhirunpatT. Evaluation of meloxicam-loaded cationic transfersomes as transdermal drug delivery carriers.AAPS PharmSciTech201314113314010.1208/s12249‑012‑9904‑2 23242556
    [Google Scholar]
  135. WuP.S. LiY.S. KuoY.C. TsaiS.J. LinC.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol.Molecules201924360010.3390/molecules24030600 30743989
    [Google Scholar]
  136. MeiZ. ChenH. WengT. YangY. YangX. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide.Eur. J. Pharm. Biopharm.200356218919610.1016/S0939‑6411(03)00067‑5 12957632
    [Google Scholar]
  137. ShindeU. PokharkarS. ModaniS. Design and evaluation of microemulsion gel system of nadifloxacin.Indian J. Pharm. Sci.201274323724710.4103/0250‑474X.106066 23439454
    [Google Scholar]
  138. BadawiA.A. NourS.A. SakranW.S. El-MancyS.M.S. Preparation and evaluation of microemulsion systems containing salicylic acid.AAPS PharmSciTech20091041081108410.1208/s12249‑009‑9301‑7 19757081
    [Google Scholar]
  139. NasrM. Abdel-HamidS. Optimizing the dermal accumulation of a tazarotene microemulsion using skin deposition modeling.Drug Dev. Ind. Pharm.201642463664310.3109/03639045.2015.1062512 26133080
    [Google Scholar]
  140. TangS.Y. SivakumarM. NgA.M.H. ShridharanP. Anti-inflammatory and analgesic activity of novel oral aspirin-loaded nanoemulsion and nano multiple emulsion formulations generated using ultrasound cavitation.Int. J. Pharm.20124301-229930610.1016/j.ijpharm.2012.03.055 22503988
    [Google Scholar]
  141. HemaS.K. KarmakarA. DasR.K. SrivastavaP. Simple formulation and characterization of double emulsion variant designed to carry three bioactive agents.Heliyon202289e1039710.1016/j.heliyon.2022.e10397 36097481
    [Google Scholar]
  142. MancusoA. CristianoM.C. PandolfoR. GrecoM. FrestaM. PaolinoD. Improvement of ferulic acid antioxidant activity by multiple emulsions: In vitro and in vivo evaluation.Nanomaterials202111242510.3390/nano11020425 33567523
    [Google Scholar]
  143. LiuJ. HuW. ChenH. NiQ. XuH. YangX. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery.Int. J. Pharm.2007328219119510.1016/j.ijpharm.2006.08.007 16978810
    [Google Scholar]
  144. ShehataM.K. IsmailA.A. KamelM.A. Combined donepezil with astaxanthin via nanostructured lipid carriers effective delivery to brain for alzheimer’s disease in rat model.Int. J. Nanomedicine2023184193422710.2147/IJN.S417928 37534058
    [Google Scholar]
  145. LewiesA. WentzelJ.F. JordaanA. BezuidenhoutC. Du PlessisL.H. Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity.Int. J. Pharm.20175261-224425310.1016/j.ijpharm.2017.04.071 28461263
    [Google Scholar]
  146. PanditS.S. PatilA.T. Formulation and in vitro evaluation of buoyant controlled release lercanidipine lipospheres.J. Microencapsul.200926763564110.3109/02652040802593908 19839799
    [Google Scholar]
  147. LaptevaM. SanterV. MondonK. PatmanidisI. ChirianoG. ScapozzaL. GurnyR. MöllerM. KaliaY.N. Targeted cutaneous delivery of ciclosporin A using micellar nanocarriers and the possible role of inter-cluster regions as molecular transport pathways.J. Control. Release201419691810.1016/j.jconrel.2014.09.021 25278258
    [Google Scholar]
  148. LalatsaA. EmeriewenK. ProtopsaltiV. SkeltonG. SalehG.M. Developing transcutaneous nanoenabled anaesthetics for eyelid surgery.Br. J. Ophthalmol.2016100687187610.1136/bjophthalmol‑2015‑308250 26994111
    [Google Scholar]
  149. ChauhanA.S. SrideviS. ChalasaniK.B. JainA.K. JainS.K. JainN.K. DiwanP.V. Dendrimer-mediated transdermal delivery: Enhanced bioavailability of indomethacin.J. Control. Release200390333534310.1016/S0168‑3659(03)00200‑1 12880700
    [Google Scholar]
  150. DevarakondaB. LiN. De VilliersM.M. Effect of polyamidoamine (PAMAM) dendrimers on the in vitro release of water-insoluble nifedipine from aqueous gels.AAPS PharmSciTech200563E504E51210.1208/pt060363 16354011
    [Google Scholar]
  151. CardosoA.M. De OliveiraE.G. CoradiniK. BruinsmannF.A. AguirreT. LorenzoniR. BarcelosR.C.S. RoversiK. RossatoD.R. PohlmannA.R. GuterresS.S. BurgerM.E. BeckR.C.R. Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing.Mater. Sci. Eng. C20199620521710.1016/j.msec.2018.11.013 30606527
    [Google Scholar]
  152. KoopH.S. De FreitasR.A. de SouzaM.M. Savi-, R., Jr; Silveira, J.L.M. Topical curcumin-loaded hydrogels obtained using galactomannan from Schizolobium parahybae and xanthan.Carbohydr. Polym.201511622923610.1016/j.carbpol.2014.07.043 25458294
    [Google Scholar]
  153. DengW. YanY. ZhuangP. LiuX. TianK. HuangW. LiC. Synthesis of nanocapsules blended polymeric hydrogel loaded with bupivacaine drug delivery system for local anesthetics and pain management.Drug Deliv.202229139941210.1080/10717544.2021.2023702 35098821
    [Google Scholar]
  154. MishraM.K. RayD. BarikB.B. Microcapsules and transdermal patch: A comparative approach for improved delivery of antidiabetic drug.AAPS PharmSciTech200910392893410.1208/s12249‑009‑9289‑z 19629706
    [Google Scholar]
  155. SheihetL. ChandraP. BathejaP. DevoreD. KohnJ. MichniakB. Tyrosine-derived nanospheres for enhanced topical skin penetration.Int. J. Pharm.20083501-231231910.1016/j.ijpharm.2007.08.022 17897801
    [Google Scholar]
  156. OgunjimiA.T. FiegelJ. BrogdenN.K. Design and characterization of spray-dried chitosan-naltrexone microspheres for microneedle-assisted transdermal delivery.Pharmaceutics202012649610.3390/pharmaceutics12060496 32485999
    [Google Scholar]
  157. ShekhM.I. AmirianJ. StadlerF.J. DuB. ZhuY. Oxidized chitosan modified electrospun scaffolds for controllable release of acyclovir.Int. J. Biol. Macromol.202015178779610.1016/j.ijbiomac.2020.02.230 32092427
    [Google Scholar]
  158. LiY. AbbaspourM.R. GrootendorstP.V. RauthA.M. WuX.Y. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.Eur. J. Pharm. Biopharm.20159417017910.1016/j.ejpb.2015.04.028 25986587
    [Google Scholar]
  159. RekerD. RybakovaY. KirtaneA.R. CaoR. YangJ.W. NavamajitiN. GardnerA. ZhangR.M. EsfandiaryT. L’HeureuxJ. von ErlachT. SmekalovaE.M. LeboeufD. HessK. LopesA. RognerJ. CollinsJ. TamangS.M. IshidaK. ChamberlainP. YunD. Lytton-JeanA. SouleC.K. CheahJ.H. HaywardA.M. LangerR. TraversoG. Computationally guided high-throughput design of self-assembling drug nanoparticles.Nat. Nanotechnol.202116672573310.1038/s41565‑021‑00870‑y 33767382
    [Google Scholar]
  160. AdekoyaO.C. YiboweiM.E. AdekoyaG.J. SadikuE.R. HamamY. RayS.S. A mini-review on the application of machine learning in polymer nanogels for drug delivery.Mater. Today Proc.202262S141S14410.1016/j.matpr.2022.02.101
    [Google Scholar]
  161. TangM.B.Y. GoonA.T.J. GohC.L. Study on the efficacy of ELA‐Max (4% liposomal lidocaine) compared with EMLA cream (eutectic mixture of local anesthetics) using thermosensory threshold analysis in adult volunteers.J. Dermatolog. Treat.2004152848710.1080/09546630310018491 15204157
    [Google Scholar]
  162. Abu LilaA.S. IshidaT. Liposomal delivery systems: Design optimization and current applications.Biol. Pharm. Bull.201740111010.1248/bpb.b16‑00624 28049940
    [Google Scholar]
  163. PrajapatiS.T. PatelC.G. PatelC.N. Transfersomes: A vesicular carriers system for transdermal drug delivery.Asian J. Biochem. Pharmaceut. Res.201121507524
    [Google Scholar]
  164. WahidA.A. RavouruN. SawantR.L. Ethosomes: a tool for transdermal drug delivery.Curr. Trends Biotechnol. Pharm.20115972981
    [Google Scholar]
  165. DhembreG.N. MoonR.S. KshirsagarR.V. A review on polymeric micellar nanocarriers.Int. J. Pharm. Bio. Sci.20112109116
    [Google Scholar]
  166. ChanduV.P. ArunachalamA. JeganathS. YaminiK. TharanginiK. ChaitanyaG. Niosomes: A novel drug delivery system.Int. J. Novel Trends Pharm. Sci.201222531
    [Google Scholar]
  167. SoutoE.B. MüllerR.H. Cosmetic features and applications of lipid nanoparticles (SLN ®, NLC ®).Int. J. Cosmet. Sci.200830315716510.1111/j.1468‑2494.2008.00433.x 18452432
    [Google Scholar]
  168. KlajnertB. BryszewskaM. Dendrimers: Properties and applications.Acta Biochim. Pol.200148119920810.18388/abp.2001_5127 11440170
    [Google Scholar]
  169. Sholapur, Hasanpasha A review on hydrogels and its use in in situ ocular drug delivery.Indian J. Nov. Drug Deliv.200911117
    [Google Scholar]
  170. WeissigV. PettingerT. MurdockN. Nanopharmaceuticals (part 1): products on the market.Int. J. Nanomedicine201494357437310.2147/IJN.S46900 25258527
    [Google Scholar]
  171. MidhaK. NagpalM. AroraS. Microspheres: A recent update.Int. J. Recent Sci. Res.20156858595867
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137287023240103063237
Loading
/content/journals/cnano/10.2174/0115734137287023240103063237
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test