Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

The coding method of spatial light modulator is the core key of spatial light field modulation technology, and the needs of the modulation algorithm are different under the specified mode and application requirements. This paper first reviews the progress made in recent years in light field control algorithms for digital micromirror devices (DMDs) and liquid crystal spatial light modulators (LC-SLM). Based on existing algorithms, the impact of optimization methods is analyzed. Then, the application areas of the different algorithms are summarized, and the characteristics of the control algorithms are analyzed. In addition, this review highlights innovative breakthroughs achieved by using various coding schemes and spatial light modulators (SLM) to manipulate the light field. Finally, critical future challenges facing emerging control algorithm technologies are outlined, while prospects for developing SLM control algorithms are proposed.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137276125231201113602
2023-12-12
2025-01-05
Loading full text...

Full text loading...

References

  1. YangY. MaY. LiW. MaL. LiZ. JiaB. XuZ. YuZ. LiangP. Anti-corrosion superhydrophobic surface of LPBF- NiTi alloy fabricated by nanosecond laser machining.Opt. Laser Technol.202315810885810.1016/j.optlastec.2022.108858
    [Google Scholar]
  2. LiaoK. WangW. MeiX. ZhaoW. YuanH. WangM. WangB. Stable and drag-reducing superhydrophobic silica glass microchannel prepared by femtosecond laser processing: Design, fabrication, and properties.Mater. Des.202322511150110.1016/j.matdes.2022.111501
    [Google Scholar]
  3. ZhangC. ChenJ. GaoJ. TanG. BaiS. WengK. ChenH.M. DingX. ChengH. YangY. WangJ. Laser processing of crumpled porous graphene/mxene nanocomposites for a standalone gas sensing system.Nano Lett.20232383435344310.1021/acs.nanolett.3c00454 37014054
    [Google Scholar]
  4. ZhangB. YangH. PanC. ZhaoP. Joint process of laser shock polishing and imprinting for metallic nanostructure fabrication.Mater. Des.202322711174310.1016/j.matdes.2023.111743
    [Google Scholar]
  5. WangH. WangQ. HuoL. LiuJ. BaiZ. High-efficient laser-based bionic surface structuring for enhanced surface functionalization and self-cleaning effect.Surf. Interfaces20233710269110.1016/j.surfin.2023.102691
    [Google Scholar]
  6. KovalevM. PodlesnykhI. NastulyavichusA. StsepuroN. MushkarinaI. PlatonovP. TerukovE. AbolmasovS. DunaevA. AkhmatkhanovA. ShurV. KudryashovS. Efficient broadband light-trapping structures on thin-film silicon fabricated by laser, chemical and hybrid chemical/laser treatment.Materials2023166235010.3390/ma16062350 36984230
    [Google Scholar]
  7. NyabadzaA. VazquezM. BrabazonD. A review of bimetallic and monometallic nanoparticle synthesis via laser ablation in liquid.Crystals202313225310.3390/cryst13020253
    [Google Scholar]
  8. LinY. GuoH. CheD. WangJ. Switchable plasmonic chirality for light modulation: from near-field to far-field coupling.J. Phys. Chem. Lett.20231461403141010.1021/acs.jpclett.2c03659 36730696
    [Google Scholar]
  9. ZhouF. QiaoW. ChenL. Fabrication technology for light field reconstruction in glasses-free 3D display.J. Inf. Disp.2023241132910.1080/15980316.2022.2118182
    [Google Scholar]
  10. Benea-ChelmusI.C. MeretskaM.L. ElderD.L. TamagnoneM. DaltonL.R. CapassoF. Electro-optic spatial light modulator from an engineered organic layer.Nat. Commun.2021121592810.1038/s41467‑021‑26035‑y 34635655
    [Google Scholar]
  11. LiH. SangX. ChenD. ChenZ. ZhaoX. PengC. WangK. YuX. WangP. YanB. Optimized dual spatial light modulators holographic display based on wavefront frequency decomposition.Opt. Laser Technol.202214910786610.1016/j.optlastec.2022.107866
    [Google Scholar]
  12. KooY. LeeH. IvanovaT. SavelevR.S. PetrovM.I. KravtsovV. ParkK.D. Nanocavity-integrated van der waals heterobilayers for nano-excitonic transistor.ACS Nano20231754854486110.1021/acsnano.2c11509 36857198
    [Google Scholar]
  13. WangZ. ZhangB. WangZ. ZhangJ. KazanskyP.G. TanD. QiuJ. 3D imprinting of voxel‐level structural colors in lithium niobate crystal.Adv. Mater.20233547e230325610.1002/adma.202303256 37391205
    [Google Scholar]
  14. ZhangH. HasegawaS. ToyodaH. HayasakiY. Three-dimensional holographic parallel focusing with feedback control for femtosecond laser processing.Opt. Lasers Eng.202215110688410.1016/j.optlaseng.2021.106884
    [Google Scholar]
  15. Manisha; Tiwari, V.; Bisht, N.S.; Singh, R.K. A compact and lens less digital holography setup for polarimetric analysis of spatial light modulator.Opt. Laser Technol.202316710974810.1016/j.optlastec.2023.109748
    [Google Scholar]
  16. YangW. WangZ. WangX. YuT. XieS. GeZ. 3D printing of bioinspired hydrogel microstructures with programmable and complex shape deformations based on a digital micro-mirror device.Opt. Laser Technol.202315710875910.1016/j.optlastec.2022.108759
    [Google Scholar]
  17. KunwarP. AndradaB.L. PoudelA. XiongZ. AryalU. GeffertZ.J. PoudelS. FougnierD. GitsovI. SomanP. Printing double-network tough hydrogels using temperature-controlled projection stereolithography (TOPS).ACS Appl. Mater. Interfaces20231525307803079210.1021/acsami.3c04661 37319377
    [Google Scholar]
  18. YangZ. LinJ. LiuL. ZhuZ. ZhangR. WenS. YinY. LanC. LiC. LiuY. Genetic algorithm-based optical proximity correction for DMD maskless lithography.Opt. Express20233114235982360710.1364/OE.493665 37475440
    [Google Scholar]
  19. RenM. LuW. ShaoQ. HanF. OuyangW. ZhangT. WangC.C.L. ChenS-C. Aberration-free large-area stitch-free 3D nano-printing based on binary holography.Opt. Express20212926442504426310.1364/OE.446503
    [Google Scholar]
  20. LeeS. ChoiS. MeleppatR.K. High-speed adaptive optics multi-detection mode ophthalmoscope using a digital micromirror device.Invest. Ophthalmol. Vis. Sci.202364810311031
    [Google Scholar]
  21. AminiA. GuijtR.M. ThemelisT. Recent developments in digital light processing 3D-printing techniques for microfluidic analytical device.J. Chromatogr. A2023463842
    [Google Scholar]
  22. CheremkhinP.A. EvtikhievN.N. KrasnovV.V. StarikovR.S. ZlokazovE.Y. Iterative synthesis of binary inline Fresnel holograms for high-quality reconstruction in divergent beams with DMD.Opt. Lasers Eng.202215010685910.1016/j.optlaseng.2021.106859
    [Google Scholar]
  23. BuchnevO. PodoliakN. KalteneckerK. WaltherM. FedotovV.A. Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications.ACS Photonics20207113199320610.1021/acsphotonics.0c01263
    [Google Scholar]
  24. ShieldsJ. GalarretaDe. PenkethC.R. A route to ultra-fast amplitude-only spatial light.Adv. Opt. Mater.2023230076510.1002/adom.202300765
    [Google Scholar]
  25. BrouckaertN. BankovaD. HeiserT. D’AlessandroG. KaczmarekM. Optical and electrical properties characterisation of photovoltaic spatial-light modulators.Opt. Mater. Express20231361808181910.1364/OME.491603
    [Google Scholar]
  26. ManshaS. MoitraP. XuX. MassT.W.W. VeetilR.M. LiangX. LiS.Q. Paniagua-DomínguezR. KuznetsovA.I. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities.Light Sci. Appl.202211114110.1038/s41377‑022‑00832‑6 35581195
    [Google Scholar]
  27. ZhuZ. WenY. LiJ. ChenY. PengZ. LiJ. ZhuL. WuY. ZhouL. LiuL. ZongL. YuS. Metasurface-enabled polarization-independent LCoS spatial light modulator for 4K resolution and beyond.Light Sci. Appl.202312115110.1038/s41377‑023‑01202‑6 37331984
    [Google Scholar]
  28. KwonH. ZhengT. FaraonA. Nano-electromechanical spatial light modulator enabled by asymmetric resonant dielectric metasurfaces.Nat. Commun.2022131581110.1038/s41467‑022‑33449‑9 36192401
    [Google Scholar]
  29. LuoT. YuanJ. ChangJ. DaiY. GongH. LuoQ. YangX. Resolution and uniformity improvement of parallel confocal microscopy based on microlens arrays and a spatial light modulator.Opt. Express20233134537455210.1364/OE.478820 36785419
    [Google Scholar]
  30. LiuJ. ZaouterC. LiuX. PattenS.A. LiangJ. Coded-aperture broadband light field imaging using digital micromirror devices.Optica20218213914210.1364/OPTICA.413938
    [Google Scholar]
  31. JiaoS. ZhangD. ZhangC. GaoY. LeiT. YuanX. Data hiding in complex-amplitude modulation using a digital micromirror device.Opt. Lasers Eng.202113810645510.1016/j.optlaseng.2020.106455
    [Google Scholar]
  32. YuS.T. LuoA. JiangL. LiuY.F. GongL. YuanZ.S. Direct binary search method for high-resolution holographic image projection.Opt. Express20223015268562686410.1364/OE.462954 36236869
    [Google Scholar]
  33. YanH. SunY. LinY. ChuF. WanW. Multi-color complex spatial light modulation with a single digital micromirror device.Opt. Express20233114226492265910.1364/OE.494238 37475370
    [Google Scholar]
  34. YangZ. FangL. ZhangX. ZuoH. Controlling a scattered field output of light passing through turbid medium using an improved ant colony optimization algorithm.Opt. Lasers Eng.202114410664610.1016/j.optlaseng.2021.106646
    [Google Scholar]
  35. FengB.Y. GuoH. XieM. BoominathanV. SharmaM.K. VeeraraghavanA. MetzlerC.A. NeuW.S. Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media.Sci. Adv.2023926eadg467110.1126/sciadv.adg4671 37379386
    [Google Scholar]
  36. LvX. XuX. FengQ. ZhangB. DingY. LiuQ. High-contrast imaging based on wavefront shaping to improve low signal-to-noise ratio photoacoustic signals using superpixel method.Chin. Phys. B202029303430110.1088/1674‑1056/ab6842
    [Google Scholar]
  37. LiJ. YanJ. JiangL. YuJ. GuoH. QuL. Nanoscale multi-beam lithography of photonic crystals with ultrafast laser.Light Sci. Appl.202312116410.1038/s41377‑023‑01178‑3 37400434
    [Google Scholar]
  38. ZouG. ShaoR. LiuL. HeQ. DingC. ChenC. YangJ. QuY. Random-access multi-focus manipulation through superpixel-encoding wavefront engineering.Appl. Phys. Express2022151111200410.35848/1882‑0786/ac99b7
    [Google Scholar]
  39. DurdevicL. RobertH.M.L. WattellierB. MonneretS. BaffouG. Microscale temperature shaping using spatial light modulation on gold nanoparticles.Sci. Rep.201991464410.1038/s41598‑019‑40382‑3 30874570
    [Google Scholar]
  40. ChengZ. LiC. KhadriaA. ZhangY. WangL.V. High-gain and high-speed wavefront shaping through scattering media.Nat. Photonics202317429930510.1038/s41566‑022‑01142‑4 37333511
    [Google Scholar]
  41. LiZ. ZhengY. DiaoX. LiR. SunN. XuY. LiX. DuanS. GongW. SiK. Robust and adjustable dynamic scattering compensation for high-precision deep tissue optogenetics.Commun. Biol.20236112810.1038/s42003‑023‑04487‑w 36721006
    [Google Scholar]
  42. GuoE. ZhouC. ZhuS. BaiL. HanJ. Dynamic imaging through random perturbed fibers via physics-informed learning.Opt. Laser Technol.202315810892310.1016/j.optlastec.2022.108923
    [Google Scholar]
  43. ZhangC. YaoZ. QinZ. GuG. ChenQ. XieZ. LiuG. SuiX. Optical refocusing through perturbed multimode fiber using Cake-Cutting Hadamard encoding algorithm to improve robustness.Opt. Lasers Eng.202316410748710.1016/j.optlaseng.2023.107487
    [Google Scholar]
  44. PellegriniP.E.S. BiazoliC.R. PanepucciR.R. GabrielliL.H. Focusing optimization in multimodal graded index fiber coupling by wavefront shaping.Opt. Laser Technol.202316110923810.1016/j.optlastec.2023.109238
    [Google Scholar]
  45. YangJ. HeQ. LiuL. QuY. ShaoR. SongB. ZhaoY. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device.Light Sci. Appl.202110114910.1038/s41377‑021‑00591‑w 34285183
    [Google Scholar]
  46. LiX. HanY. WangH. LiuT. ChenS-C. HuH. Polarimetric imaging through scattering media: A review.Front. Phys.20221081529610.3389/fphy.2022.815296
    [Google Scholar]
  47. WooC.M. ZhaoQ. ZhongT. LiH. YuZ. LaiP. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping.APL Photonics20227404610910.1063/5.0085943
    [Google Scholar]
  48. DuanM. YangZ. ZhaoY. FangL. ZuoH. LiZ. WangD. Wavefront shaping using improved sparrow search algorithm to control the scattering light field.Opt. Laser Technol.202215610852910.1016/j.optlastec.2022.108529
    [Google Scholar]
  49. GeorgievaA. BelashovA.V. PetrovN.V. Optimization of DMD-based independent amplitude and phase modulation by analysis of target complex wavefront.Sci. Rep.2022121775410.1038/s41598‑022‑11443‑x 35546600
    [Google Scholar]
  50. SquiresM. TaoX. ElangovanS. GururajanR. ZhouX. AcharyaU.R. A novel genetic algorithm based system for the scheduling of medical treatments.Expert Syst. Appl.202219511646410.1016/j.eswa.2021.116464
    [Google Scholar]
  51. ZhouJ. HuaZ. A correlation guided genetic algorithm and its application to feature selection.Appl. Soft Comput.202212310896410.1016/j.asoc.2022.108964
    [Google Scholar]
  52. DengW. ZhangX. ZhouY. LiuY. ZhouX. ChenH. ZhaoH. An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems.Inf. Sci.202258544145310.1016/j.ins.2021.11.052
    [Google Scholar]
  53. EstranR. SouchaudA. AbitbolD. Using a genetic algorithm to optimize an expert credit rating model.Expert Syst. Appl.202220311750610.1016/j.eswa.2022.117506
    [Google Scholar]
  54. GuoS. SternR. ZhangH. PangL. Speedy light focusing through scattering media by a cooperatively FPGA-parameterized genetic algorithm.Opt. Express20223020364143642810.1364/OE.469238 36258570
    [Google Scholar]
  55. ZhaoT. PhamT.T. BakerC. MaM.T. OurselinS. VercauterenT. ZhangE. BeardP.C. XiaW. Ultrathin, high-speed, all-optical photoacoustic endomicroscopy probe for guiding minimally invasive surgery.Biomed. Opt. Express20221384414442810.1364/BOE.463057 36032566
    [Google Scholar]
  56. ZhaoT. OurselinS. VercauterenT. XiaW. Focusing light through multimode fibres using a digital micromirror device: A comparison study of non-holographic approaches.Opt. Express20212910142691428110.1364/OE.420718 33985150
    [Google Scholar]
  57. DongC. CaiY. DaiS. WuJ. TongG. WangW. WuZ. ZhangH. XiaJ. An optimized optical diffractive deep neural network with OReLU function based on genetic algorithm.Opt. Laser Technol.202316010910410.1016/j.optlastec.2022.109104
    [Google Scholar]
  58. ChenR. TaraV. SinghA.W. SaxenaA. FröchJ.E. ReynoldsM.S. MajumdarA. A hybrid solution for spatial light modulators with a large space-bandwidth product: opinion.Opt. Mater. Express20231382416242110.1364/OME.500078
    [Google Scholar]
  59. DuT. HuangD. ChengH. FanW. XingZ. LiX. ZhuJ. Compensation method for performance degradation of optically addressed spatial light modulator induced by CW laser.High Power Laser Sci. Eng.202210e710.1017/hpl.2021.63
    [Google Scholar]
  60. GuanS. ChengJ. ChangS. Recent progress of terahertz spatial light modulators: Materials, principles and applications.Micromachines20221310163710.3390/mi13101637 36295991
    [Google Scholar]
  61. TaoJ. YouQ. LiZ. LuoM. LiuZ. QiuY. YangY. ZengY. HeZ. XiaoX. ZhengG. YuS. Mass‐manufactured beam‐steering metasurfaces for high‐speed full‐duplex optical wireless‐broadcasting communications.Adv. Mater.2022346210608010.1002/adma.202106080 34825747
    [Google Scholar]
  62. SakhareP.A. DontabhaktuniJ. Ultra fast switching of DFLC based dynamic metasurfaces.Front. Phys.20221084947010.3389/fphy.2022.849470
    [Google Scholar]
  63. KumarP. RaoA.S. OmatsuT. Generation of V-point polarization singularity using single phase encoding with a spatial light modulator.Sci. Rep.202313131510.1038/s41598‑022‑27337‑x 36609434
    [Google Scholar]
  64. SuP. WangJ. CaiC. MaJ. TanQ. Large field-of-view lensless holographic dynamic projection system with uniform illumination and U-net acceleration.Opt. Lasers Eng.202215610710610.1016/j.optlaseng.2022.107106
    [Google Scholar]
  65. LiuK. HeZ. CaoL. Double amplitude freedom Gerchberg–Saxton algorithm for generation of phase-only hologram with speckle suppression.Appl. Phys. Lett.2022120606110310.1063/5.0080797
    [Google Scholar]
  66. HaoY. XiaoY. ChenW. High-fidelity ghost diffraction through complex scattering media using a modified Gerchberg-Saxton algorithm.Opt. Express2023319143891440210.1364/OE.486123 37157304
    [Google Scholar]
  67. HuaM. ChenY. ZhangT. ZhouM. ZouW. WuJ. A speckle noise suppression method in phase-only holographic display based on an improved Gerchberg–Saxton algorithm.Optik202225116840710.1016/j.ijleo.2021.168407
    [Google Scholar]
  68. AckermannL. RoiderC. GehringM. CvecekK. SchmidtM. High-speed speckle averaging for phase-only beam shaping in laser materials processing.Opt. Lasers Eng.202316510753710.1016/j.optlaseng.2023.107537
    [Google Scholar]
  69. YuL. LiuQ. DaiY. DingY. Research on photoacoustic microscopy imaging based on photoacoustic transmission matrix with a digital micromirror device.Optik (Stuttg.)202226416939710.1016/j.ijleo.2022.169397
    [Google Scholar]
  70. YoonS. KimM. JangM. ChoiY. ChoiW. KangS. ChoiW. Deep optical imaging within complex scattering media.Nature Reviews Physics20202314115810.1038/s42254‑019‑0143‑2
    [Google Scholar]
  71. ConkeyD.B. Caravaca-AguirreA.M. PiestunR. High-speed scattering medium characterization with application to focusing light through turbid media.Opt. Express20122021733174010.1364/OE.20.001733 22274516
    [Google Scholar]
  72. AncoraD. DominiciL. GianfrateA. CazzatoP. De GiorgiM. BallariniD. SanvittoD. LeuzziL. Speckle spatial correlations aiding optical transmission matrix retrieval: The smoothed gerchberg–saxton single-iteration algorithm.Photon. Res.202210102349235810.1364/PRJ.462578
    [Google Scholar]
  73. SunP. ChangS. LiuS. TaoX. WangC. ZhengZ. Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm.Opt. Express2018268101401015110.1364/OE.26.010140 29715954
    [Google Scholar]
  74. JiangM. SunS. WangJ. ZhangF. WangX. ShaoJ. WangP. Axial multi-focus stealth cutting method based on the fractional Fourier transform for quartz glass.Ceram. Int.20234911182961830410.1016/j.ceramint.2023.02.201
    [Google Scholar]
  75. WangJ. ZhangF. WangX. WangY. ShaoJ. WangP. SunS. Zooming optimization for fractional Fourier holographic parallel laser microprocessing.Opt. Laser Technol.202315910899510.1016/j.optlastec.2022.108995
    [Google Scholar]
  76. HongJ. LiJ. ChuD. Modulation approach of arbitrary linear polarization states of optical fields using single-beam coding for next-generation optical storage in glass.Opt. Laser Technol.202316410953910.1016/j.optlastec.2023.109539
    [Google Scholar]
  77. ShenC. QiY. SunJ. LvS. WeiS. Optimized iterative method for generating phase-only Fourier hologram based on quadratic phase.Opt. Commun.202150012731310.1016/j.optcom.2021.127313
    [Google Scholar]
  78. Garmendía-MartínezA. Muñoz-PérezF.M. FurlanW.D. GiménezF. Castro-PalacioJ.C. MonsoriuJ.A. FerrandoV. Comparative study of numerical methods for solving the fresnel integral in aperiodic diffractive lenses.Mathematics202311494610.3390/math11040946
    [Google Scholar]
  79. MalsariaA. VyasP. KaurM. Design and implementation of optical image communication encoding grounded on optical Fourier transform.J. Opt. Commun.202310.1515/joc‑2023‑0092
    [Google Scholar]
  80. WangJ. SunS. ZhangH. HasegawaS. WangP. HayasakiY. Holographic femtosecond laser parallel processing method based on the fractional fourier transform.Opt. Lasers Eng.202114610670410.1016/j.optlaseng.2021.106704
    [Google Scholar]
  81. WangJ. HayasakiY. ZhangF. WangX. HasegawaS. ZhangH. WangP. WangY. SunS. Three-dimensional holographic femtosecond laser parallel processing method with the fractional Fourier transform for glass substrates.Ceram. Int.20224811163641637310.1016/j.ceramint.2022.02.187
    [Google Scholar]
  82. DongK. JiangW. ChengM. ShiC. CaoY. GuoL. Attenuation of Bessel vortex beam transmission in the rain environment.J. Quant. Spectrosc. Radiat. Transf.202330410862010.1016/j.jqsrt.2023.108620
    [Google Scholar]
  83. ShiH. WangL. LiG. YiJ. LiuH. ZhangA. XuZ. Guided-wave inspired metasurfaces for multifunctional vortex beam generation and manipulation.J. Lightwave Technol.20234172094210610.1109/JLT.2022.3213850
    [Google Scholar]
  84. Pereiro-GarcíaJ. García-de-BlasM. GedayM.A. QuintanaX. Caño-GarcíaM. Flat variable liquid crystal diffractive spiral axicon enabling perfect vortex beams generation.Sci. Rep.2023131238510.1038/s41598‑023‑29164‑0 36765189
    [Google Scholar]
  85. XuC. ChenX. CaiY. WangY. High-quality tunable optical vortex arrays with multiple states of orbital angular momentum.Opt. Laser Technol.202416911002910.1016/j.optlastec.2023.110029
    [Google Scholar]
  86. GuoM. LeW. WangC. RuiG. ZhuZ. HeJ. GuB. Generation, topological charge, and orbital angular momentum of off-axis double vortex beams.Photonics202310436810.3390/photonics10040368
    [Google Scholar]
  87. PanD. LiuS. LiJ. NiJ. XinC. JiS. LaoZ. ZhangC. XuB. LiR. FanS. LiP. HuY. WuD. ChuJ. Rapid Fabrication of 3D chiral microstructures by single exposure of interfered femtosecond vortex beams and capillary‐force‐assisted self‐assembly.Adv. Funct. Mater.2022324210691710.1002/adfm.202106917
    [Google Scholar]
  88. LiuS.F. HouZ.W. LinL. LiZ. SunH-B. 3D Laser nanoprinting of functional materials.Adv. Funct. Mater.20233339221128010.1002/adfm.202211280
    [Google Scholar]
  89. SoS. BadloeT. NohJ. Bravo-AbadJ. RhoJ. Deep learning enabled inverse design in nanophotonics.Nanophotonics2020951041105710.1515/nanoph‑2019‑0474
    [Google Scholar]
  90. PiccinottiD. MacDonaldK.F. A. GregoryS. YoungsI. ZheludevN.I. Artificial intelligence for photonics and photonic materials.Rep. Prog. Phys.202184101240110.1088/1361‑6633/abb4c7 33355315
    [Google Scholar]
  91. ParkH.S. NguyenD.S. Le-HongT. Van TranX. Machine learning-based optimization of process parameters in selective laser melting for biomedical applications.J. Intell. Manuf.202233618431858[J].10.1007/s10845‑021‑01773‑4
    [Google Scholar]
  92. ChangC. WangD. ZhuD. LiJ. XiaJ. ZhangX. Deep-learning-based computer-generated hologram from a stereo image pair.Opt. Lett.20224761482148510.1364/OL.453580 35290344
    [Google Scholar]
  93. HegdeR.S. Deep learning: A new tool for photonic nanostructure design.Nanoscale Adv.2020231007102310.1039/C9NA00656G 36133043
    [Google Scholar]
  94. WiechaP.R. ArbouetA. GirardC. MuskensO.L. Deep learning in nano-photonics: Inverse design and beyond.Photon. Res.202195B182B20010.1364/PRJ.415960
    [Google Scholar]
  95. ChangX. ZhaoR. JiangS. ShenC. ZhengG. YangC. BianL. Complex-domain-enhancing neural network for large-scale coherent imaging.Adv. Photonics Nexus20232404600604600610.1117/1.APN.2.4.046006
    [Google Scholar]
  96. ZhouT. LinX. WuJ. ChenY. XieH. LiY. FanJ. WuH. FangL. DaiQ. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit.Nat. Photonics202115536737310.1038/s41566‑021‑00796‑w
    [Google Scholar]
  97. HasegawaS. HayasakiY. Femtosecond laser processing with adaptive optics based on convolutional neural network.Opt. Lasers Eng.202114110656310.1016/j.optlaseng.2021.106563
    [Google Scholar]
  98. LinD. LiD. CuiY. ZhangT. MengF. ZhaoX. DingJ. LiangS. Machine learning-based error compensation for high precision laser arbitrary beam splitting.Opt. Lasers Eng.202316010724510.1016/j.optlaseng.2022.107245
    [Google Scholar]
  99. SunJ. WuJ. KoukourakisN. CaoL. KuschmierzR. CzarskeJ. Real-time complex light field generation through a multi-core fiber with deep learning.Sci. Rep.2022121773210.1038/s41598‑022‑11803‑7 35546604
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137276125231201113602
Loading
/content/journals/cnano/10.2174/0115734137276125231201113602
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test