Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Ultrasonic irradiation has the remarkable potential to amplify reactivity by a factor of approximately one million. The effects of ultrasound on chemical processes can be categorized as either homogeneous sonochemistry, which takes place in liquids, or heterogeneous sonochemistry, which occurs in liquid-liquid or liquid-solid systems.

Objectives

Pyrimidines are a vital group of compounds known for their anticancer activities. This study delves into investigating the application of ultrasonic irradiation for the synthesis of pyridopyrimidine derivatives.

Methods

In our study, we utilized pyrimidine derivatives , , and as reducing agents during the creation of selenium nanoparticles (Het-SeNPs). The characterization of these nanoparticles was executed through a range of analytical approaches, including ultraviolet-visible spectrometry, dynamic light scattering (DLS, Zeta), and transmission electron microscopy (TEM). Additionally, FTIR and NMR spectroscopic examinations provided proof of the formation of these nanoparticles within the synthesized molecules , , and .

Results

The impact of the produced heterocyclic derivatives and Het-SeNPs was assessed on various cancer cell lines, including breast cancer (MCF-7), liver cancer (HepG2), and prostate cancer (PC-3) cell lines. All tested substances demonstrated a reasonable level of safety in the HFB4 cell line, which represents normal human skin melanocytes. Noteworthy is the substantial cytotoxicity exhibited by compound against MCF-7 cell lines.

Conclusion

Moreover, compound -SeNPs demonstrated even higher cytotoxicity against the MCF-7 cell line compared to compound , where 5-fluorouracil was used as a reference standard. Detailed cell division analysis disclosed significant antiproliferative properties in compounds and -SeNPs, leading to the arrest of the cell cycle at the pre-G1 and G2/M phases..

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137276989231205102152
2023-12-29
2025-03-30
Loading full text...

Full text loading...

References

  1. MiaoJ.H. JunX.W. SciB.J. ZiC Ting; Yang, L.; Hua Jiang, Z; Miao Hu, J.; Jun Wang, X; Sheng, J Triazole rings as novel potential antitumor agents citation.201910.26717/BJSTR.2019.16.002915
    [Google Scholar]
  2. El-SaidiM.M.T. El-SayedA.A. PedersenE.B. TantawyM.A. MohamedN.R. GadW.A. Synthesis, characterization and docking study of novel pyrimidine derivatives as anticancer agents.Indones. J. Chem.2020205116311710.22146/ijc.50582
    [Google Scholar]
  3. El-SayedA.A. Abu-BakrS.M. SwelamS.A. KhaireldinN.Y. ShoueirK.R. KhalilA.M. Applying nanotechnology in the synthesis of benzimidazole derivatives: A pharmacological approach.Biointerface Res. Appl. Chem.2021121992100510.33263/BRIAC121.9921005
    [Google Scholar]
  4. HuangY. HeL. LiuW. FanC. ZhengW. WongY.S. ChenT. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles.Biomaterials201334297106711610.1016/j.biomaterials.2013.04.067 23800743
    [Google Scholar]
  5. BukowskiK. KciukM. KontekR. Mechanisms of multidrug resistance in cancer chemotherapy.Int. J. Mol. Sci.2020219323310.3390/ijms21093233 32370233
    [Google Scholar]
  6. KhazirJ. MirB.A. PanditaM. PilcherL. RileyD. ChashooG. Design and synthesis of sulphonyl acetamide analogues of quinazoline as anticancer agents.Med. Chem. Res.202029591692510.1007/s00044‑020‑02533‑4
    [Google Scholar]
  7. BrahmachariG. BanerjeeB. Catalyst-free organic synthesis at room temperature in aqueous and non-aqueous media: An emerging field of green chemistry practice and sustainability.Curr. Green Chem.20152327430510.2174/2213346102666150218195142
    [Google Scholar]
  8. SankarM. DimitratosN. MiedziakP.J. WellsP.P. KielyC.J. HutchingsG.J. Designing bimetallic catalysts for a green and sustainable future.Chem. Soc. Rev.201241248099813910.1039/c2cs35296f 23093051
    [Google Scholar]
  9. HimajaM. PoppyD. AsifK. Green technique-solvent free synthesis and its advantages.Int. J. Res. Ayurveda Pharm.201121079
    [Google Scholar]
  10. GuY. JérômeF. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry.Chem. Soc. Rev.201342249550957010.1039/c3cs60241a 24056753
    [Google Scholar]
  11. BishtN. PhalswalP. KhannaP.K. Selenium nanoparticles: A review on synthesis and biomedical applications.Mater. Adv.2022331415143110.1039/D1MA00639H
    [Google Scholar]
  12. SunL. ChenY. ZhouY. GuoD. FanY. GuoF. ZhengY. ChenW. Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo.Asian J. Pharm. Sci.201712541842310.1016/j.ajps.2017.04.002 32104354
    [Google Scholar]
  13. YazdiM. MahdaviM. KheradmandE. ShahverdiA. The preventive oral supplementation of a selenium nanoparticle-enriched probiotic increases the immune response and lifespan of 4T1 breast cancer bearing mice.Arzneimittelforschung2012621152553110.1055/s‑0032‑1323700 22945771
    [Google Scholar]
  14. GaoF. YuanQ. GaoL. CaiP. ZhuH. LiuR. WangY. WeiY. HuangG. LiangJ. GaoX. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles.Biomaterials201435318854886610.1016/j.biomaterials.2014.07.004 25064805
    [Google Scholar]
  15. SkalickovaS. MilosavljevicV. CihalovaK. HorkyP. RichteraL. AdamV. Selenium nanoparticles as a nutritional supplement.Nutrition201733839010.1016/j.nut.2016.05.001 27356860
    [Google Scholar]
  16. ChaudharyS. UmarA. MehtaS.K. Surface functionalized selenium nanoparticles for biomedical applications.J. Biomed. Nanotechnol.201410103004304210.1166/jbn.2014.1985 25992427
    [Google Scholar]
  17. KhattabR. swelm, ; Khalil, A.; Elsayed Abdelhamid, A.; Soliman, A.; El-Sayed, A. Novel sono-synthesized triazole derivatives conjugated with selenium nanoparticles for cancer treatment.Egypt. J. Chem.202110.21608/ejchem.2021.81154.4018
    [Google Scholar]
  18. AbdelhamidA.E. El-SayedA.A. SwelamS.A. SolimanA.M. KhalilA.M. Encapsulation of triazolederivatives conjugated with selenium nanoparticles onto nano-chitosan for overcoming drug resistant cancer cells.Egypt. J. Chem.20226510.21608/ejchem.2022.147872.6401
    [Google Scholar]
  19. KaurP.J. KaushikG. SiddiquiR.A. GoyalP.K. Biomedical applications of some green synthesized metal nanomaterials Green Nanomater.Ind. Appl2021719110.1016/B978‑0‑12‑823296‑5.00008‑3
    [Google Scholar]
  20. DumoreN.S. MukhopadhyayM. Sensitivity enhanced SeNPs-FTO electrochemical sensor for hydrogen peroxide detection.J. Electroanal. Chem.202087811454410.1016/j.jelechem.2020.114544
    [Google Scholar]
  21. VarlamovaE.G. GoltyaevM.V. Mal’tsevaV.N. TurovskyE.A. SarimovR.M. SimakinA.V. GudkovS.V. Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines.Int. J. Mol. Sci.20212215779810.3390/ijms22157798 34360564
    [Google Scholar]
  22. KrapfM.K. GallusJ. VahdatiS. WieseM. New inhibitors of breast cancer resistance protein (ABCG2) containing a 2,4-disubstituted pyridopyrimidine scaffold.J. Med. Chem.20186183389340810.1021/acs.jmedchem.7b01012 29547272
    [Google Scholar]
  23. WadhwaniS.A. ShedbalkarU.U. SinghR. ChopadeB.A. Biogenic selenium nanoparticles: Current status and future prospects.Appl. Microbiol. Biotechnol.201610062555256610.1007/s00253‑016‑7300‑7 26801915
    [Google Scholar]
  24. ZengH. ChengW.H. JohnsonL.K. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice.J. Nutr. Biochem.201324577678010.1016/j.jnutbio.2012.04.008 22841391
    [Google Scholar]
  25. El-KalyoubiS. El-SebaeyS.A. El-SayedA.A. AbdelhamidM.S. AgiliF. ElfekyS.M. Novel containing nanoparticles as dual inhibitors of CDK1 and tubulin polymerase: Design, synthesis, anti-proliferative evaluation,and pyrimidine Schiff bases and their selenium molecular modeling.J. Enzyme Inhib. Med. Chem.202331223212510.1080/14756366.2023.2232125 37403517
    [Google Scholar]
  26. Abu-ZeidE.H. Abdel FattahD.M. ArishaA.H. IsmailT.A. AlsadekD.M. MetwallyM.M.M. El-SayedA.A. KhalilA.T. Protective prospects of eco-friendly synthesized selenium nanoparticles using Moringa oleifera or Moringa oleifera leaf extract against melamine induced nephrotoxicity in male rats.Ecotoxicol. Environ. Saf.202122111242410.1016/j.ecoenv.2021.112424 34174736
    [Google Scholar]
  27. RamamurthyC. SampathK.S. ArunkumarP. KumarM.S. SujathaV. PremkumarK. ThirunavukkarasuC. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells.Bioprocess Biosyst. Eng.20133681131113910.1007/s00449‑012‑0867‑1 23446776
    [Google Scholar]
  28. FernandesA.P. GandinV. Selenium compounds as therapeutic agents in cancer.Biochim. Biophys. Acta, Gen. Subj.2015185081642166010.1016/j.bbagen.2014.10.008 25459512
    [Google Scholar]
  29. MittalA.K. KumarS. BanerjeeU.C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential.J. Colloid Interface Sci.201443119419910.1016/j.jcis.2014.06.030 25000181
    [Google Scholar]
  30. ShaheenA. TajA. LiberzeitP.A. MujahidA. HameedS. YuH. MahmoodA. WebsterT.J. RashidM.H. KhanW.S. BajwaS.Z. Design of heterostructured hybrids comprising ultrathin 2D bismuth tungstate nanosheets reinforced by chloramphenicol imprinted polymers used as biomimetic interfaces for mass-sensitive detection.Colloids Surf. B Biointerfaces202018811077510.1016/j.colsurfb.2020.110775 31958619
    [Google Scholar]
  31. KongL. YuanQ. ZhuH. LiY. GuoQ. WangQ. BiX. GaoX. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis.Biomaterials201132276515652210.1016/j.biomaterials.2011.05.032 21640377
    [Google Scholar]
  32. HullL.C. FarrellD. GrodzinskiP. Highlights of recent developments and trends in cancer nanotechnology research—View from NCI Alliance for Nanotechnology in Cancer.Biotechnol. Adv.201432466667810.1016/j.biotechadv.2013.08.003 23948249
    [Google Scholar]
  33. SpyratouE. MakropoulouM. MourelatouE.A. DemetzosC. Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy.Cancer Lett.20123271-211112210.1016/j.canlet.2011.12.039 22265863
    [Google Scholar]
  34. WhangerP.D. Selenium and its relationship to cancer: An update.Br. J. Nutr.2004911112810.1079/BJN20031015 14748935
    [Google Scholar]
  35. YuB. LiuT. DuY. LuoZ. ZhengW. ChenT. X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy.Colloids Surf. B Biointerfaces201613918018910.1016/j.colsurfb.2015.11.063 26709976
    [Google Scholar]
  36. El-BayoumyK. SinhaR. Mechanisms of mammary cancer chemoprevention by organoselenium compounds.Mutat. Res.20045511-218119710.1016/j.mrfmmm.2004.02.023 15225592
    [Google Scholar]
  37. Molanouri ShamsiM. ChekachakS. SoudiS. QuinnL.S. RanjbarK. ChenariJ. YazdiM.H. MahdaviM. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia.Cytokine20179010010810.1016/j.cyto.2016.11.005 27863332
    [Google Scholar]
  38. CepoiL. ZinicovscaiaI. ChiriacT. RudiL. YushinN. GrozdovD. TascaI. KravchenkoE. TarasovK. Modification of some structural and functional parameters of living culture of arthrospira platensis as the result of selenium nanoparticle biosynthesis.Materials202316285210.3390/ma16020852 36676589
    [Google Scholar]
  39. AvonG. BucoloM. BuscarinoA. FortunaL. Sensing frequency drifts: A lookup table approach.IEEE Access202210962499625910.1109/ACCESS.2022.3203187
    [Google Scholar]
  40. El-KalyoubiSamar KhalifaMohamed M. Abo-ElfadlMahmoud T. El-SayedAhmed A. ElkamhawyAhmed LeeKyeong Al-KarmalawyAhmed A. Design and synthesis of new spirooxindole candidates and their selenium nanoparticles as potential dual Topo I/II inhibitors, DNA intercalators, and apoptotic inducers.J. Enzyme Inhib. Med. Chem.2023381224271410.1080/14756366.2023.2242714
    [Google Scholar]
  41. Abdel-MonemR.A. El-SayedA.A. AbdelhamidA.E. RabieS.T. Adenine functionalized antibacterial PVC with both photo and thermal stability.J. Vinyl Additive Technol.202127355556610.1002/vnl.21827
    [Google Scholar]
  42. ZhangN. YinY. XuS.J. ChenW.S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies.Molecules20081381551156910.3390/molecules13081551 18794772
    [Google Scholar]
  43. MohamedN.R. KhaireldinN.Y. FahmyA.F. El-SayedA.A. Facile synthesis of fused nitrogen containing heterocycles as anticancer agents.Der Pharma Chem.20102400417
    [Google Scholar]
  44. de GraaffC. RuijterE. OrruR.V.A. Recent developments in asymmetric multicomponent reactions.Chem. Soc. Rev.201241103969400910.1039/c2cs15361k 22546840
    [Google Scholar]
  45. GanemB. Strategies for innovation in multicomponent reaction design.Acc. Chem. Res.200942346347210.1021/ar800214s 19175315
    [Google Scholar]
  46. Zarganes-TzitzikasT. ChandgudeA.L. DömlingA. Multicomponent reactions, union of MCRS and beyond.Chem. Rec.201515598199610.1002/tcr.201500201 26455350
    [Google Scholar]
  47. RabieS.T. Abdel-MonemR.A. MohamedN.R. HashemA.I. NadaA.A. Utility of 6-Amino-2-thiouracils as a core of biologically potent polynitrogen-sulfur fused heterocycles.J. Heterocycl. Chem.201451S1E189E19610.1002/jhet.1936
    [Google Scholar]
  48. Barghi-LishA. FarzanehS. MamaghaniM. One-pot, three-component, catalyst-free synthesis of novel derivatives of pyrido-[2,3- d]pyrimidines under ultrasonic irradiations.Synth. Commun.201646141209121410.1080/00397911.2016.1193756
    [Google Scholar]
  49. MohamedN.R. KhaireldinN.Y. FahmyA.F. El-SayedA.A. The utility of carbon disulphide and lawesson’s reagent for synthesis of different fused heterocycles for antimicrobial evaluation.J. Heterocycl. Chem.20135061264127110.1002/jhet.884
    [Google Scholar]
  50. MohamedN.R. El-SaidiM.M.T. AliY.M. ElnagdiM.H. Utility of 6-amino-2-thiouracil as a precursor for the synthesis of bioactive pyrimidine derivatives.Bioorg. Med. Chem.200715186227623510.1016/j.bmc.2007.06.023 17600721
    [Google Scholar]
  51. LidströmP. TierneyJ. WatheyB. WestmanJ. Microwave assisted organic synthesis—a review.Tetrahedron200157459225928310.1016/S0040‑4020(01)00906‑1
    [Google Scholar]
  52. NofalZ.M. AminK.M. MohamedH.S. El-KerdawyA.M. AlyM.S. HabibB.S. SarhanA.E. Design, synthesis, biological evaluation, and molecular docking of novel quinazolinone EGFR inhibitors as targeted anticancer agents.Synth. Commun.202252181805182410.1080/00397911.2022.2114373
    [Google Scholar]
  53. KostakisI.K. ElomriA. SeguinE. IannelliM. BessonT. Rapid synthesis of 2,3-disubstituted-quinazolin-4-ones enhanced by microwave-assisted decomposition of formamide.Tetrahedron Lett.200748386609661310.1016/j.tetlet.2007.07.114
    [Google Scholar]
  54. van MeerlooJ. KaspersG.J.L. CloosJ. Cell sensitivity assays: The MTT assay.Methods Mol. Biol.201173123724510.1007/978‑1‑61779‑080‑5_20
    [Google Scholar]
  55. KimK.H. SederstromJ.M. Assaying cell cycle status using flow cytometry.Curr. Protoc. Mol. Biol.2015111 28.6.128.6.1110.1002/0471142727.mb2806s111
    [Google Scholar]
  56. BhalgatC.M. Irfan AliM. RameshB. RamuG. Novel pyrimidine and its triazole fused derivatives: Synthesis and investigation of antioxidant and anti-inflammatory activity.Arab. J. Chem.20147698699310.1016/j.arabjc.2010.12.021
    [Google Scholar]
  57. KapurM. SoniK. KohliK. Green synthesis of selenium nanoparticles from broccoli, characterization, application and toxicity.Adv. Techn. Biol. Med.2017512379176410.4172/2379‑1764.1000198
    [Google Scholar]
  58. WadhwaniS. GorainM. BanerjeeP. ShedbalkarU. SinghR. KunduG. ChopadeB.A. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells.Int. J. Nanomedicine2017126841685510.2147/IJN.S139212 28979122
    [Google Scholar]
  59. RanjithaV.R. RavishankarV.R. Extracellular synthesis of selenium nanoparticles from an actinomycetes streptomyces griseoruber and evaluation of its cytotoxicity on HT-29 cell line.Pharm. Nanotechnol.201861616810.2174/2211738505666171113141010 29141577
    [Google Scholar]
  60. KhalilA.M. HassanM.L. WardA.A. Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties.Carbohydr. Polym.201715750351110.1016/j.carbpol.2016.10.008 27987955
    [Google Scholar]
  61. Zahra, Sani-e-; M.S., Iqbal; K., Abbas; Qadir, M.I. Synthesis, characterization and evaluation of biological properties of selenium nanoparticles from solanumlycopersicum.Arab. J. Chem.20221510390110.1016/j.arabjc.2022.103901
    [Google Scholar]
  62. AshrafpourS. Tohidi MoghadamT. Interaction of silver nanoparticles with Lysozyme: Functional and structural investigations.Surf. Interfaces20181021622110.1016/j.surfin.2017.09.010
    [Google Scholar]
  63. ParkJ.H. LiuY. LemmonM.A. RadhakrishnanR. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain.Biochem. J.2012448341742310.1042/BJ20121513 23101586
    [Google Scholar]
  64. TangS. ChenR. LinM. Tang, QingdeLin; Zhu, Yanxiang; Ding, Ji.; Hu, Haifeng.; Ling, Ming.; Wu, Jiansheng. Accelerating autodockvina with GPUs.Molecules2022279304110.3390/molecules27093041 35566391
    [Google Scholar]
  65. NasserA.A. EissaI.H. OunM.R. El-ZahabiM.A. TaghourM.S. BelalA. SalehA.M. MehanyA.B.M. LueschH. MostafaA.E. AfifiW.M. RoccaJ.R. MahdyH.A. Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFR WT and EGFR T790M.Org. Biomol. Chem.202018387608763410.1039/D0OB01557A 32959865
    [Google Scholar]
  66. El AzabE.F. AbdulrahmanM. Saleh; Yousif, Sara Osman; BiZainabMazhari, Bi; Alrub, Heba Abu; Elfaki, Elyasa Mustafa; Hamza, Alneil; Abdulmalek, Shaymaa.; El Azab, E.F.; Abdulrahman, M. New insights into geraniol’santihemolytic, anti-inflammatory, antioxidant, and anticoagulant potentials using a combined biological and in silico screening strategy.Inflammopharmacology20223051811183310.1007/s10787‑022‑01039‑2 35932440
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137276989231205102152
Loading
/content/journals/cnano/10.2174/0115734137276989231205102152
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test