Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Addressing the challenges posed by climate change, surging population, rival demands on land for renewable fuel manufacturing, and adverse soil conditions is crucial for ensuring global food security. Achieving sustainable solutions necessitates the integration of multidisciplinary knowledge, such as materials technology and informatics. The convergence of precision agriculture with nanotechnology and artificial intelligence (AI) offers promising prospects for sustainable food production. Through real-time responsiveness to crop growth using advanced technologies, such as nanotechnology and AI, farmers can optimize resource allocation and make informed decisions. Newer opportunities for sustainable food production arise through the integration of precision agriculture, nanotechnology, and artificial intelligence. This convergence enables farmers to dynamically respond to crop growth variations using advanced techniques. By combining nanotechnology and informatics methods with existing models for nutrient cycling and crop productivity, it becomes possible to enhance critical aspects, such as precision targeting, efficient absorption, effective distribution, optimized nutrient assimilation, and long-term effects on soil microbial communities. This integration offers significant potential for improving agriculture and addressing sustainability challenges in food production. Ultimately, this synergy allows for the development of nanoscale agrochemicals that offer a balance between safety and functionality, ensuring optimal performance in agricultural systems.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137275111231206072049
2024-01-17
2025-01-08
Loading full text...

Full text loading...

References

  1. McBratneyA. WhelanB. AncevT. BoumaJ. Future directions of precision agriculture.Precis. Agric.20056172310.1007/s11119‑005‑0681‑8
    [Google Scholar]
  2. VijayakumarM.D. SurendharG.J. NatrayanL. PatilP.P. RamP.M.B. ParamasivamP. Evolution and recent scenario of nanotechnology in agriculture and food industries.J. Nanomater.2022202211710.1155/2022/1280411
    [Google Scholar]
  3. ZhangP. GuoZ. UllahS. MelagrakiG. AfantitisA. LynchI. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture.Nat. Plants20217786487610.1038/s41477‑021‑00946‑6 34168318
    [Google Scholar]
  4. RajE.F. AppaduraiM. AthiappanK. Precision farming in modern agriculture.InSmart Agriculture Automation Using Advanced Technologies: Data Analytics and Machine Learning, Cloud Architecture, Automation and IoT20226187
    [Google Scholar]
  5. MintertJR WidmarD LangemeierM BoehljeM EricksonB The challenges of precision agriculture.Is big data the answer2016
    [Google Scholar]
  6. AslanM.F. DurduA. SabanciK. RopelewskaE. GültekinS.S. A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses.Appl. Sci. (Basel)2022123104710.3390/app12031047
    [Google Scholar]
  7. SegarraJ. BuchaillotM.L. ArausJ.L. KefauverS.C. Remote sensing for precision agriculture: Sentinel-2 improved features and applications.Agronomy (Basel)202010564110.3390/agronomy10050641
    [Google Scholar]
  8. KutterT. TiemannS. SiebertR. FountasS. The role of communication and co-operation in the adoption of precision farming.Precis. Agric.201112121710.1007/s11119‑009‑9150‑0
    [Google Scholar]
  9. KhoslaR. Precision agriculture: challenges and opportunities in a flat world.In19th World Congress of Soil Science, Soil Solutions for a Changing World2010
    [Google Scholar]
  10. CamporaM. PallaA. GneccoI. BovolentaR. PassalacquaR. The laboratory calibration of a soil moisture capacitance probe in sandy soils.Soil Water Res.2020152758410.17221/227/2018‑SWR
    [Google Scholar]
  11. KwakS.Y. WongM.H. LewT.T.S. BiskerG. LeeM.A. KaplanA. DongJ. LiuA.T. KomanV.B. SinclairR. HamannC. StranoM.S. Nanosensor technology applied to living plant systems.Annu. Rev. Anal. Chem. (Palo Alto, Calif.)201710111314010.1146/annurev‑anchem‑061516‑045310 28605605
    [Google Scholar]
  12. WuH. NißlerR. MorrisV. HerrmannN. HuP. JeonS.J. KrussS. GiraldoJ.P. Monitoring plant health with near-infrared fluorescent H2O2 nanosensors.Nano Lett.20202042432244210.1021/acs.nanolett.9b05159 32097014
    [Google Scholar]
  13. GiraldoJP LandryMP KwakSY JainRM WongMH IversonNM Ben-NaimM StranoMS A ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: Application to in vivo monitoring.small2015113239733984
    [Google Scholar]
  14. ChaiY. ChenC. LuoX. ZhanS. KimJ. LuoJ. WangX. HuZ. YingY. LiuX. Cohabiting plant-wearable sensor in situ monitors water transport in plant.Adv. Sci.2021810200364210.1002/advs.202003642 34026443
    [Google Scholar]
  15. GiraldoJ.P. WuH. NewkirkG.M. KrussS. Nanobiotechnology approaches for engineering smart plant sensors.Nat. Nanotechnol.201914654155310.1038/s41565‑019‑0470‑6 31168083
    [Google Scholar]
  16. KashyapP.L. KumarS. SrivastavaA.K. Nanodiagnostics for plant pathogens.Environ. Chem. Lett.201715171310.1007/s10311‑016‑0580‑4
    [Google Scholar]
  17. LiZ. YuT. PaulR. FanJ. YangY. WeiQ. Agricultural nanodiagnostics for plant diseases: Recent advances and challenges.Nanoscale Adv.2020283083309410.1039/C9NA00724E 36134297
    [Google Scholar]
  18. LiX. GaoY. LiH. MajoralJ.P. ShiX. PichA. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics.Prog. Mater. Sci.202314010117010.1016/j.pmatsci.2023.101170
    [Google Scholar]
  19. LuY. LuoQ. JiaX. TamJ.P. YangH. ShenY. LiX. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology.J. Pharm. Anal.2023133239254 37102112
    [Google Scholar]
  20. LiX. HetjensL. WolterN. LiH. ShiX. PichA. Charge-reversible and biodegradable chitosan-based microgels for lysozyme-triggered release of vancomycin.J. Adv. Res.202343879610.1016/j.jare.2022.02.014 36585117
    [Google Scholar]
  21. JoshiH. ChoudharyP. MundraS.L. Future prospects of nanotechnology in agriculture.Int. J. Chem. Stud.201972957963
    [Google Scholar]
  22. MehrabiZ. McDowellM.J. RicciardiV. LeversC. MartinezJ.D. MehrabiN. WittmanH. RamankuttyN. JarvisA. The global divide in data-driven farming.Nat. Sustain.20204215416010.1038/s41893‑020‑00631‑0
    [Google Scholar]
  23. SteupR. DombrowskiL. SuN.M. Feeding the world with data: visions of data-driven farming.Proceedings of the 2019 on Designing Interactive Systems Conference20191503151510.1145/3322276.3322382
    [Google Scholar]
  24. Ayoub ShaikhT. RasoolT. Rasheed LoneF. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming.Comput. Electron. Agric.202219810711910.1016/j.compag.2022.107119
    [Google Scholar]
  25. ŠarauskisE. KazlauskasM. NaujokienėV. BručienėI. SteponavičiusD. RomaneckasK. JasinskasA. Variable rate seeding in precision agriculture: Recent advances and future perspectives.Agriculture202212230510.3390/agriculture12020305
    [Google Scholar]
  26. ChanzyA. ChadoeufJ. GauduJ.C. MohrathD. RichardG. BrucklerL. Soil moisture monitoring at the field scale using automatic capacitance probes.Eur. J. Soil Sci.199849463764810.1046/j.1365‑2389.1998.4940637.x
    [Google Scholar]
  27. HansonB.R. OrloffS. PetersD. Monitoring soil moisture helps refine irrigation management.Calif. Agric.2000543384210.3733/ca.v054n03p38
    [Google Scholar]
  28. TapiaF.G. PavekM.J. HoldenZ. Modern soil moisture monitoring methods.Oregon Potato Conf.20191624
    [Google Scholar]
  29. MuY. YuanY. JiaX. ZhaT. QinS. YeZ. LiuP. YangR. TianY. Hydrological losses and soil moisture carryover affected the relationship between evapotranspiration and rainfall in a temperate semiarid shrubland.Agric. For. Meteorol.202231510883110.1016/j.agrformet.2022.108831
    [Google Scholar]
  30. BanerjeeC. AdenaeuerL. Up, up and away! The economics of vertical farming.J. Agric. Stud.201421406010.5296/jas.v2i1.4526
    [Google Scholar]
  31. LimpusS. CuttingM. Plant based monitoring for irrigation scheduling in vegetable horticulture: A case study in South Australian onions. Project Report.Department of Employment, Economic Development and Innovation2010
    [Google Scholar]
  32. RoselinA.R. JawaharA. Smart agro system using wireless sensor networks.2017 International Conference on Intelligent Computing and Control Systems (ICICCS)IEEE, year. 201740040310.1109/ICCONS.2017.8250751
    [Google Scholar]
  33. HadachekA.G. MogilH.M. Forecasts for Farmers: Satisfying a hunger for reliable weather information.Weatherwise2016691121910.1080/00431672.2015.1109983
    [Google Scholar]
  34. MishraS. MishraD. SantraG.H. Applications of machine learning techniques in agricultural crop production: a review paper.Indian J. Sci. Technol.20169381410.17485/ijst/2016/v9i47/106449
    [Google Scholar]
  35. PandeyG. Agri-nanotechnology for sustainable agriculture.Ecol. Pract. Appl. Sustain. Agricul202022924910.1007/978‑981‑15‑3372‑3_11
    [Google Scholar]
  36. KimD.Y. KadamA. ShindeS. SarataleR.G. PatraJ. GhodakeG. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities.J. Sci. Food Agric.201898384986410.1002/jsfa.8749 29065236
    [Google Scholar]
  37. ŠarapatkaB. ŠtěrbaO. Optimization of agriculture in relation to the multifunctional role of the landscape.Landsc. Urban Plan.199841214514810.1016/S0169‑2046(97)00069‑8
    [Google Scholar]
  38. BhardwajS. LataS. GargR. Application of nanotechnology for preventing postharvest losses of agriproducts.J. Hortic. Sci. Biotechnol.2023981314410.1080/14620316.2022.2091488
    [Google Scholar]
  39. LutzÉ. CoradiP.C. Applications of new technologies for monitoring and predicting grains quality stored: Sensors, Internet of Things, and Artificial Intelligence.Measurement202218811060910.1016/j.measurement.2021.110609
    [Google Scholar]
  40. JoshiM. SchmilovitchZ. GinzbergI. Pomegranate fruit growth and skin characteristics in hot and dry climate.Front. Plant Sci.20211272547910.3389/fpls.2021.725479 34490023
    [Google Scholar]
  41. DiRamioD. NanoLogix’ Barnhizer accelerates the rapid detection “revolution”.MLO Med. Lab. Obs.201143464 21520733
    [Google Scholar]
  42. MateoM.A. LeungC.K. CHARIOT: a comprehensive data integration and quality assurance model for agro-meteorological data; In Data Quality and High-Dimensional Data Analysis20092141
    [Google Scholar]
  43. NasirahmadiA. HenselO. Toward the next generation of digitalization in agriculture based on digital twin paradigm.Sensors202222249810.3390/s22020498 35062459
    [Google Scholar]
  44. ChikhiS. MilesB. Survey of Internet of Things Applications in Smart Agriculture: A typical architecture.Proc. CARI2018154
    [Google Scholar]
  45. AnuragD. RoyS. BandyopadhyayS. Agro-sense: Precision agriculture using sensor-based wireless mesh networks.In 2008 first itu-t kaleidoscope academic conference-innovations in ngn: Future network and services2008383388
    [Google Scholar]
  46. TagarakisA.C. BenosL. KaterisD. TsotsolasN. BochtisD. Bridging the gaps in traceability systems for fresh produce supply chains: Overview and development of an integrated iot-based system.Appl. Sci. (Basel)20211116759610.3390/app11167596
    [Google Scholar]
  47. JafarzadehS. ForoughM. KouzegaranV.J. ZargarM. GaravandF. Azizi-LalabadiM. AbdollahiM. JafariS.M. Improving the functionality of biodegradable food packaging materials via porous nanomaterials.Compr. Rev. Food Sci. Food Saf.20232242850288610.1111/1541‑4337.13164 37115945
    [Google Scholar]
  48. KraśniewskaK. GalusS. GniewoszM. Biopolymers-based materials containing silver nanoparticles as active packaging for food applications–a review.Int. J. Mol. Sci.202021369810.3390/ijms21030698 31973105
    [Google Scholar]
  49. ChowdhuryS. TeohY.L. OngK.M. Rafflisman ZaidiN.S. MahS.K. Poly(vinyl) alcohol crosslinked composite packaging film containing gold nanoparticles on shelf life extension of banana.Food Packag. Shelf Life20202410046310.1016/j.fpsl.2020.100463
    [Google Scholar]
  50. RhimJ.W. ParkH.M. HaC.S. Bio-nanocomposites for food packaging applications.Prog. Polym. Sci.20133810-111629165210.1016/j.progpolymsci.2013.05.008
    [Google Scholar]
  51. CalebO.J. MahajanP.V. Al-SaidF.A.J. OparaU.L. Modified atmosphere packaging technology of fresh and fresh-cut produce and the microbial consequences—a review.Food Bioprocess Technol.20136230332910.1007/s11947‑012‑0932‑4 32215166
    [Google Scholar]
  52. BogueR. Fruit picking robots: Has their time come.Industr. Robot: Int. J. Robotics Res. Appl.2020472141145
    [Google Scholar]
  53. BiniD. PamelaD. ShamiaD. PrinceS. Intelligent agrobots for crop yield estimation using computer vision.Comput. Assist. Methods Eng. Sci.2022291–2161175
    [Google Scholar]
  54. HuttonJ.J. LipaG. BaustianD. SulikJ. BruceR.W. High accuracy direct georeferencing of the Altum multi-spectral UAV camera and its application to high throughput plant phenotyping.Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci2020XLIIIB1-202045145610.5194/isprs‑archives‑XLIII‑B1‑2020‑451‑2020
    [Google Scholar]
  55. WuS. LiuJ. LeiX. ZhaoS. LuJ. JiangY. XieB. WangM. Research progress on efficient pollination technology of crops.Agronomy20221211287210.3390/agronomy12112872
    [Google Scholar]
  56. MurrayL. Can drones help restore our forests?Eng. Technol.2022171545510.1049/et.2022.0106
    [Google Scholar]
  57. StoneE. Drones spray tree seeds from the sky to fight deforestation.Natl. Geogr. Mag.2017
    [Google Scholar]
  58. SadenovaM.A. BeisekenovN.A. AnuarbekovT.B. KapasovA.K. KulenovaN.A. Study of unmanned aerial vehicle sensors for practical remote application of earth sensing in agriculture.Chem. Eng. Trans.202398243248
    [Google Scholar]
  59. SuJ. YiD. SuB. MiZ. LiuC. HuX. XuX. GuoL. ChenW.H. Aerial visual perception in smart farming: Field study of wheat yellow rust monitoring.IEEE Trans. Industr. Inform.20211732242224910.1109/TII.2020.2979237
    [Google Scholar]
  60. AlreshidiE. Smart sustainable agriculture (SSA) solution underpinned by internet of things (IoT) and artificial intelligence (AI).arXiv:1906.031062019
    [Google Scholar]
  61. FracetoL.F. De CastroV.L. GrilloR. ÁvilaD. OliveiraH.C. LimaR. Nanopesticides.Springer International Publishing202010.1007/978‑3‑030‑44873‑8
    [Google Scholar]
  62. KundG.S. CarsonW.G. TrumbleJ.T. Effect of insecticides on celery insects, 2005.Arthropod Management Tests2007321E910.1093/amt/32.1.E9
    [Google Scholar]
  63. MustafaI.F. HusseinM.Z. Synthesis and technology of nanoemulsion-based pesticide formulation.Nanomaterials2020108160810.3390/nano10081608 32824489
    [Google Scholar]
  64. SinghKK An artificial intelligence and cloud based collaborative platform for plant disease identification, tracking and forecasting for farmers.In2018 IEEE international conference on cloud computing in emerging markets23-24 November 2018 Bangalore, India2018495610.1109/CCEM.2018.00016
    [Google Scholar]
  65. VikramP.R. Agricultural Robot–A pesticide spraying device.International J. Fut. Gener. Commun. Net.2020131150160
    [Google Scholar]
  66. ChenP. OuyangF. WangG. QiH. XuW. YangW. ZhangY. LanY. Droplet distributions in cotton harvest aid applications vary with the interactions among the unmanned aerial vehicle spraying parameters.Ind. Crops Prod.202116311332410.1016/j.indcrop.2021.113324
    [Google Scholar]
  67. FurukawaF. MaruyamaK. SaitoY.K. KanekoM. Corn height estimation using UAV for yield prediction and crop monitoring. Unmanned Aerial Vehicle: Appl.Agricul. Environ2020516910.1007/978‑3‑030‑27157‑2_5
    [Google Scholar]
  68. FertuC. DobrotaL.M. BalasanD.L. StanciuS. Monitoring the vegetation of agricultural crops using drones and remote sensing-comparative presentation.Sci. Pap. Manag. Econ. Eng. Agric. Rural. Dev.202121249254
    [Google Scholar]
  69. LukasV. NovákJ. NeudertL. SvobodovaI. Rodriguez-MorenoF. EdreesM. KrenJ. The combination of UAV survey and landsat imagery for monitoring of crop vigor in precision agriculture.Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci2016XLIB895395710.5194/isprs‑archives‑XLI‑B8‑953‑2016
    [Google Scholar]
  70. MitraM. Robotic farmers in agriculture.Adv. Robotics Mech. Eng.201959193
    [Google Scholar]
  71. SarigY. Robotics of fruit harvesting: A state-of-the-art review.J. Agric. Eng. Res.199354426528010.1006/jaer.1993.1020
    [Google Scholar]
  72. ArifA. ButtK.M. Computer vision based navigation module for sustainable broad-acre agriculture robots.Sci. Int.2014265
    [Google Scholar]
  73. LambertiniA. MandaniciE. TiniM.A. VittuariL. Technical challenges for multi-temporal and multi-sensor image processing surveyed by UAV for mapping and monitoring in precision agriculture.Remote Sens.20221419495410.3390/rs14194954
    [Google Scholar]
  74. BroussardM.A. CoatesM. MartinsenP. Artificial pollination technologies: A review.Agronomy2023135135110.3390/agronomy13051351
    [Google Scholar]
  75. LowmanM. VoirinB. Drones – our eyes on the environment.Front. Ecol. Environ.201614523110.1002/fee.1290
    [Google Scholar]
  76. KohL.P. WichS.A. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation.Trop. Conserv. Sci.20125212113210.1177/194008291200500202
    [Google Scholar]
  77. KavvadiasA. PsomiadisE. ChaniotiM. GalaE. MichasS. Precision agriculture-comparison and evaluation of innovative very high resolution (UAV) and LandSat Data.InHAICTA2015Sep376386
    [Google Scholar]
  78. KhanZ. Rahimi-EichiV. HaefeleS. GarnettT. MiklavcicS.J. Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging.Plant Methods20181412010.1186/s13007‑018‑0287‑6 29563961
    [Google Scholar]
  79. ShafiU. MumtazR. García-NietoJ. HassanS.A. ZaidiS.A.R. IqbalN. Precision agriculture techniques and practices: From considerations to applications.Sensors20191917379610.3390/s19173796 31480709
    [Google Scholar]
  80. NairA. SinghG. MohantyU.C. Prediction of monthly summer monsoon rainfall using global climate models through artificial neural network technique.Pure Appl. Geophys.2018175140341910.1007/s00024‑017‑1652‑5
    [Google Scholar]
  81. Hajji-HedfiL. ChhipaH. Nano-based pesticides: Challenges for pest and disease management. Euro-Medit.J. Environ. Integr.2021636910.1007/s41207‑021‑00279‑y
    [Google Scholar]
  82. KundG.S. CarsonW.G. TrumbleJ.T. Effect of insecticides on celery insects, 2001. Arthropod.Manag. Tests2003281E1610.1093/amt/28.1.E16
    [Google Scholar]
  83. ZhaoX. CuiH. WangY. SunC. CuiB. ZengZ. Development strategies and prospects of nano-based smart pesticide formulation.J. Agric. Food Chem.201866266504651210.1021/acs.jafc.7b02004 28654254
    [Google Scholar]
  84. NancyP. PallathadkaH. NavedM. KaliyaperumalK. ArumugamK. GarcharV. Deep learning and machine learning based efficient framework for image based plant disease classification and detection.2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)IEEE. year. 20221610.1109/ICACTA54488.2022.9753623
    [Google Scholar]
  85. RojasF.A. Exploring machine learning for disease assessment from high-resolution UAV imagery.In: The Netherlands: M. Sc. theisat Wageningen University and Research Centre.2018
    [Google Scholar]
  86. LeeS.H. ParkS. KimB.N. KwonO.S. RhoW.Y. JunB.H. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics.Biosens. Bioelectron.201914111144810.1016/j.bios.2019.111448 31252258
    [Google Scholar]
  87. SurendiranA. SandhiyaS. PradhanS.C. AdithanC. Novel applications of nanotechnology in medicine.Indian J. Med. Res.20091306689701 20090129
    [Google Scholar]
  88. AbbasM. YanK. LiJ. ZafarS. HasnainZ. AslamN. IqbalN. HussainS.S. UsmanM. AbbasM. TahirM. AbbasS. AbbasS.K. QiulanH. ZhaoX. El-SappahA.H. Agri-nanotechnology and tree nanobionics: Augmentation in crop yield, biosafety, and biomass accumulation.Front. Bioeng. Biotechnol.20221085304510.3389/fbioe.2022.853045 35557864
    [Google Scholar]
  89. GargD. PayasiD.K. Nanomaterials in agricultural research: An overview.Environ. Nanotechnol.20203243275
    [Google Scholar]
  90. ChughG. SiddiqueK.H.M. SolaimanZ.M. Nanobiotechnology for agriculture: Smart technology for combating nutrient deficiencies with nanotoxicity challenges.Sustainability2021134178110.3390/su13041781
    [Google Scholar]
  91. KaratzasP. MelagrakiG. EllisL.J.A. LynchI. VarsouD.D. AfantitisA. TsoumanisA. DoganisP. SarimveisH. Development of deep learning models for predicting the effects of exposure to engineered nanomaterials on Daphnia Magna.Small20201636200108010.1002/smll.202001080 32548897
    [Google Scholar]
  92. HalappanavarS. NymarkP. KrugH.F. CliftM.J.D. Rothen-RutishauserB. VogelU. Non-animal strategies for toxicity assessment of nanoscale materials: Role of adverse outcome pathways in the selection of endpoints.Small20211715200762810.1002/smll.202007628 33559363
    [Google Scholar]
  93. AfantitisA. Nanoinformatics: artificial intelligence and nanotechnology in the new decade.Comb. Chem. High Throughput Screen.20202314510.2174/138620732301200316112000 32189589
    [Google Scholar]
  94. EfremovaN. FoleyJ.C. UnagaevA. KarimiR. AI for sustainable agriculture and rangeland monitoring.InThe Ethics of Artificial Intelligence for the Sustainable Development Goals.Cham: Springer International Publishing.202339942210.1007/978‑3‑031‑21147‑8_22
    [Google Scholar]
  95. WeiY. HanC. YuZ. An environment safety monitoring system for agricultural production based on artificial intelligence, cloud computing and big data networks.J. Cloud Comput.202312117
    [Google Scholar]
  96. LvZ. LouR. LiJ. SinghA.K. SongH. Big data analytics for 6G-enabled massive internet of things.IEEE Internet Things J.2021875350535910.1109/JIOT.2021.3056128
    [Google Scholar]
  97. LvZ. ChenD. FengH. WeiW. LvH. Artificial intelligence in underwater digital twins sensor networks.ACM Trans. Sens. Netw.2022183127[TOSN].10.1145/3519301
    [Google Scholar]
  98. NeményiM. MesterháziP.Á. PeczeZ. StépánZ. The role of GIS and GPS in precision farming.Comput. Electron. Agric.2003401-3455510.1016/S0168‑1699(03)00010‑3
    [Google Scholar]
  99. LinseisenH. Development of a precision farming information system.InProceedings of the third European conference on precision agriculture2001689694
    [Google Scholar]
  100. MonteiroA. SantosS. GonçalvesP. Precision agriculture for crop and livestock farming—Brief review.Animals (Basel)2021118234510.3390/ani11082345 34438802
    [Google Scholar]
  101. ZhangQ. Control of Precision Agriculture production.Precision Agric. Technol. Crop Farming201510313210.1201/b19336‑4
    [Google Scholar]
  102. MoysiadisV. SarigiannidisP. VitsasV. KhelifiA. Smart farming in Europe.Comput. Sci. Rev.20213910034510.1016/j.cosrev.2020.100345
    [Google Scholar]
  103. GarcíaR. AguilarJ. ToroM. PintoA. RodríguezP. A systematic literature review on the use of machine learning in precision livestock farming.Comput. Electron. Agric.202017910582610.1016/j.compag.2020.105826
    [Google Scholar]
  104. BanhaziT.M. LehrH. BlackJ.L. CrabtreeH. SchofieldP. TscharkeM. BerckmansD. Precision livestock farming: An international review of scientific and commercial aspects.Int. J. Agric. Biol. Eng.20125319
    [Google Scholar]
  105. di VirgilioA. MoralesJ.M. LambertucciS.A. ShepardE.L.C. WilsonR.P. Multi-dimensional Precision Livestock Farming: A potential toolbox for sustainable rangeland management.PeerJ20186e486710.7717/peerj.4867 29868276
    [Google Scholar]
  106. BanhaziT.M. LehrH. BlackJ.L. CrabtreeH. SchofieldP. TscharkeM. BerckmansD. Precision livestock farming: Scientific concepts and commercial reality. In Proceedings of the XVth International Congress on Animal Hygiene: Animal Hygiene and Sustainable Livestock Production, Vol. 3, pp137143University of Southern Queensland.
    [Google Scholar]
  107. BucciG. BentivoglioD. FincoA. Precision agriculture as a driver for sustainable farming systems: state of art in literature and research.Calitatea.201819S1114121
    [Google Scholar]
  108. Research eu, european comission. Precision farming: Sowing the seeds of a new agricultural revolution.Research eu, European Comission. (2017). Precision Farming: Sowing the Seeds of a New Agricultural Revolution2017
    [Google Scholar]
  109. CammaranoD. ZhaH. WilsonL. LiY. BatchelorW.D. MiaoY. A remote sensing-based approach to management zone delineation in small scale farming systems.Agronomy20201011176710.3390/agronomy10111767
    [Google Scholar]
  110. Ferrández-PastorF. García-ChamizoJ. Nieto-HidalgoM. Mora-MartínezJ. Precision agriculture design method using a distributed computing architecture on internet of things context.Sensors (Basel)2018186173110.3390/s18061731 29843386
    [Google Scholar]
  111. OnyangoC.M. NyagaJ.M. WetterlindJ. SöderströmM. PiikkiK. Precision agriculture for resource use efficiency in smallholder farming systems in sub-saharan africa: A systematic review.Sustainability2021133115810.3390/su13031158
    [Google Scholar]
  112. MizikT. How can precision farming work on a small scale? A systematic literature review.Precis. Agric.202324138440610.1007/s11119‑022‑09934‑y
    [Google Scholar]
  113. MehrabiZ. JimenezD. JarvisA. Democratize access to digital agronomy.Nature2018555769427 32094905
    [Google Scholar]
  114. LiuY. MaX. ShuL. HanckeG.P. Abu-MahfouzA. M. From Industry 4.0 to Agriculture 4.0: Current status, enabling technologies, and research challenges.IEEE Trans. Industr. Inform.20211764322433410.1109/TII.2020.3003910
    [Google Scholar]
  115. OjhaT. MisraS. RaghuwanshiN.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges.Comput. Electron. Agric.2015118668410.1016/j.compag.2015.08.011
    [Google Scholar]
  116. NeethirajanS. The role of sensors, big data and machine learning in modern animal farming.Sens. Biosensing Res.20202910036710.1016/j.sbsr.2020.100367
    [Google Scholar]
  117. CarrerM.J. de Souza FilhoH.M. BatalhaM.O. Factors influencing the adoption of Farm Management Information Systems (FMIS) by Brazilian citrus farmers.Comput. Electron. Agric.2017138111910.1016/j.compag.2017.04.004
    [Google Scholar]
  118. Danso-AbbeamG. DagungaG. EhiakporD.S. Adoption of Zai technology for soil fertility management: Evidence from Upper East region.Ghana. J. Econ. Struct.2019813210.1186/s40008‑019‑0163‑1
    [Google Scholar]
  119. NonvideG.M.A. Adoption of agricultural technologies among rice farmers in Benin.Rev. Dev. Econ.20212542372239010.1111/rode.12802
    [Google Scholar]
  120. YatribiT. Factors affecting precision agriculture adoption: A systematic litterature review.ECONOMICS20208210312110.2478/eoik‑2020‑0013
    [Google Scholar]
  121. BarnesA.P. SotoI. EoryV. BeckB. BalafoutisA. SánchezB. VangeyteJ. FountasS. van der WalT. Gómez-BarberoM. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers.Land Use Policy20198016317410.1016/j.landusepol.2018.10.004
    [Google Scholar]
  122. Patil ShirishS. BhaleraoS.A. Precision farming: the most scientific and modern approach to sustainable agriculture.Int. Res. J. of Sci. & Eng.2013122130
    [Google Scholar]
  123. KeskinM. SekerliY.E. Awareness and adoption of precision agriculture in the Cukurova region of Turkey.Agron. Res.2016144
    [Google Scholar]
  124. LambertD.M. PaudelK.P. LarsonJ.A. Bundled adoption of precision agriculture technologies by cotton producers.J. Agric. Resour. Econ.2015325345
    [Google Scholar]
  125. WelshR. GrimbergS. GillespieG.W. SwindalM. Technoscience, anaerobic digester technology and the dairy industry: Factors influencing North Country New York dairy farmer views on alternative energy technology.Renew. Agric. Food Syst.201025217018010.1017/S174217051000013X
    [Google Scholar]
  126. ZhangT. YangY. NiJ. XieD. Adoption behavior of cleaner production techniques to control agricultural non-point source pollution: A case study in the Three Gorges Reservoir Area.J. Clean. Prod.201922389790610.1016/j.jclepro.2019.03.194
    [Google Scholar]
  127. MandalS. MaityA. Precision farming for small agricultural farm: Indian scenario.Am. J. Exp. Agric.20133120021710.9734/AJEA/2013/2326
    [Google Scholar]
  128. BlaschJ. VuoloF. EsslL. van der KroonB. Drivers and barriers influencing the willingness to adopt technologies for variable rate application of fertiliser in lower Austria.Agronomy (Basel)20211110196510.3390/agronomy11101965
    [Google Scholar]
  129. Barry PeterJ. EllingerP.N. BakerC.B. Hopkin, JA Financial Management in Agriculture.Am. J. Agricul. Econom.200082410521053
    [Google Scholar]
  130. DaberkowS.G. McBrideW.D. Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US.Precis. Agric.20034216317710.1023/A:1024557205871
    [Google Scholar]
  131. AgussabtiA. RahmaddiansyahR. HamidA.H. ZakariaZ. MunawarA.A. Abu BakarB. Farmers’ perspectives on the adoption of smart farming technology to support food farming in Aceh Province, Indonesia.Open Agric.20227185787010.1515/opag‑2022‑0145
    [Google Scholar]
  132. KerneckerM. KnierimA. WurbsA. KrausT. BorgesF. Experience versus expectation: farmers’ perceptions of smart farming technologies for cropping systems across Europe.Precis. Agric.2020211345010.1007/s11119‑019‑09651‑z
    [Google Scholar]
  133. GyataB.A. Comparative assessment of adoption determinants of electronic wallet system by rice farmers in Benue and Taraba States, Nigeria.Food Res.20183211712210.26656/fr.2017.3(2).132
    [Google Scholar]
  134. MillerN.J. GriffinT.W. CiampittiI.A. ShardaA. Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles.Precis. Agric.201920234836110.1007/s11119‑018‑9611‑4
    [Google Scholar]
  135. LongT.B. BlokV. ConinxI. Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: evidence from the Netherlands, France, Switzerland and Italy.J. Clean. Prod.201611292110.1016/j.jclepro.2015.06.044
    [Google Scholar]
  136. AhmadS.F. DarA.H. Precision farming for resource use efficiency.Resources Use Efficiency in Agriculture2020109135
    [Google Scholar]
  137. Aqeel-ur-Rehman AbbasiA.Z. IslamN. ShaikhZ.A. A review of wireless sensors and networks’ applications in agriculture.Comput. Stand. Interfaces201436226327010.1016/j.csi.2011.03.004
    [Google Scholar]
  138. ChenH. YadaR. Nanotechnologies in agriculture: New tools for sustainable development.Trends Food Sci. Technol.2011221158559410.1016/j.tifs.2011.09.004
    [Google Scholar]
  139. WeersinkA. FraserE. PannellD. DuncanE. RotzS. Opportunities and challenges for big data in agricultural and environmental analysis.Annu. Rev. Resour. Econ.2018101193710.1146/annurev‑resource‑100516‑053654
    [Google Scholar]
  140. SrinivasanA. Precision farming in Asia: progress and prospects.InProceedings of the Fourth International Conference on Precision AgricultureAmerican Society of Agronomy, Crop Science Society of America, Soil Science Society of AmericaMadison, WI, USA199962363910.2134/1999.precisionagproc4.c61
    [Google Scholar]
  141. PeiZ. ChenS. DingL. LiuJ. CuiX. LiF. QiuF. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis.J. Control. Release202235221124110.1016/j.jconrel.2022.10.023 36270513
    [Google Scholar]
  142. BowmanD.M. HodgeG.A. ‘Governing’ nanotechnology without government?Sci. Public Policy200835747548710.3152/030234208X329121
    [Google Scholar]
  143. YadavA. YadavK. AhmadR. Abd-ElsalamK.A. Emerging frontiers in nanotechnology for precision agriculture: advancements, hurdles and prospects.Agrochemicals20232222025610.3390/agrochemicals2020016
    [Google Scholar]
  144. SongX. WangJ. HuangW. LiuL. YanG. PuR. The delineation of agricultural management zones with high resolution remotely sensed data.Precis. Agric.200910647148710.1007/s11119‑009‑9108‑2
    [Google Scholar]
  145. ZhangC. WaltersD. KovacsJ.M. Applications of low altitude remote sensing in agriculture upon farmers’ requests--a case study in northeastern Ontario, Canada.PLoS One2014911e11289410.1371/journal.pone.0112894 25386696
    [Google Scholar]
  146. Van HertemT. RooijakkersL. BerckmansD. Peña FernándezA. NortonT. BerckmansD. VrankenE. Appropriate data visualisation is key to Precision Livestock Farming acceptance.Comput. Electron. Agric.201713811010.1016/j.compag.2017.04.003
    [Google Scholar]
  147. LimaE. HopkinsT. GurneyE. ShortallO. LovattF. DaviesP. WilliamsonG. KalerJ. Drivers for precision livestock technology adoption: A study of factors associated with adoption of electronic identification technology by commercial sheep farmers in England and Wales.PLoS One2018131e019048910.1371/journal.pone.0190489 29293617
    [Google Scholar]
  148. GriffinT.W. TraywickL. The role of variable rate technology in fertilizer usage.J. Appl. Farm Econom.2020326
    [Google Scholar]
  149. Kling-EveillardF. AllainC. BoivinX. CourboulayV. CréachP. PhilibertA. RamonetY. HostiouN. Farmers’ representations of the effects of precision livestock farming on human-animal relationships.Livest. Sci.202023810405710.1016/j.livsci.2020.104057
    [Google Scholar]
  150. KrampeC. SerratosaJ. NiemiJ.K. IngenbleekP.T.M. Consumer perceptions of precision livestock farming—a qualitative study in three european countries.Animals2021115122110.3390/ani11051221 33922691
    [Google Scholar]
  151. de LimaI.P. JorgeR.G. de LimaJ.L.M.P. Remote sensing monitoring of rice fields: Towards assessing water saving irrigation management practices.Front. Remote Sensing2021276209310.3389/frsen.2021.762093
    [Google Scholar]
  152. JacobsA.J. van TolJ.J. du PreezC.C. Farmers perceptions of precision agriculture and the role of agricultural extension: a case study of crop farming in the Schweizer-Reneke region, South Africa.South African J. Agricul. Ext. (SAJAE)201846210711810.17159/2413‑3221/2018/v46n2a484
    [Google Scholar]
  153. AquilaniC. ConfessoreA. BozziR. SirtoriF. PuglieseC. Review: Precision Livestock Farming technologies in pasture-based livestock systems.Animal202216110042910.1016/j.animal.2021.100429 34953277
    [Google Scholar]
  154. BianchiM.C. BavaL. SandrucciA. TangorraF.M. TamburiniA. GislonG. ZucaliM. Diffusion of precision livestock farming technologies in dairy cattle farms.Animal20221611100650
    [Google Scholar]
  155. SongX. EvansK.J. BramleyR.G.V. KumarS. Factors influencing intention to apply spatial approaches to on-farm experimentation: Insights from the Australian winegrape sector.Agron. Sustain. Dev.20224259610.1007/s13593‑022‑00829‑w 36124062
    [Google Scholar]
  156. TaheriF. D’HaeseM. FiemsD. AzadiH. Facts and fears that limit digital transformation in farming: Exploring barriers to the outreach of wireless sensor networks in Southwest Iran.PLoS One20221712e027900910.1371/journal.pone.0279009 36525439
    [Google Scholar]
  157. MasiM. Di PasqualeJ. VecchioY. CapitanioF. Precision Farming: Barriers of variable rate technology adoption in italy.Land2023125108410.3390/land12051084
    [Google Scholar]
  158. HendrenC.O. LowryG.V. UnrineJ.M. WiesnerM.R. A functional assay-based strategy for nanomaterial risk forecasting.Sci. Total Environ.20155361029103710.1016/j.scitotenv.2015.06.100 26188653
    [Google Scholar]
  159. TurnerA.A. RogersN.M.K. GeitnerN.K. WiesnerM.R. Nanoparticle affinity for natural soils: A functional assay for determining particle attachment efficiency in complex systems.Environ. Sci. Nano2020761719172910.1039/D0EN00019A
    [Google Scholar]
  160. WangQ. MaX. ZhangW. PeiH. ChenY. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety.Metallomics20124101105111210.1039/c2mt20149f 22986766
    [Google Scholar]
  161. TanW. DuW. Darrouzet-NardiA.J. Hernandez-ViezcasJ.A. YeY. Peralta-VideaJ.R. Gardea-TorresdeyJ.L. Effects of the exposure of TiO2 nanoparticles on basil (Ocimum basilicum) for two generations.Sci. Total Environ.201863624024810.1016/j.scitotenv.2018.04.263 29705436
    [Google Scholar]
  162. De La Torre-RocheR. HawthorneJ. DengY. XingB. CaiW. NewmanL.A. WangQ. MaX. HamdiH. WhiteJ.C. Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants.Environ. Sci. Technol.20134721125391254710.1021/es4034809 24079803
    [Google Scholar]
  163. HouW.C. ChowdhuryI. GoodwinD.G.Jr HendersonW.M. FairbrotherD.H. BouchardD. ZeppR.G. Photochemical transformation of graphene oxide in sunlight.Environ. Sci. Technol.20154963435344310.1021/es5047155 25671674
    [Google Scholar]
  164. XinX. JudyJ.D. SumerlinB.B. HeZ. Nano-enabled agriculture: From nanoparticles to smart nanodelivery systems.Environ. Chem.202017641342510.1071/EN19254
    [Google Scholar]
  165. PrasadR. JainV.K. VarmaA. Role of nanomaterials in symbiotic fungus growth enhancement.Curr. Sci.201099911891191
    [Google Scholar]
  166. PallathadkaH. MustafaM. SanchezD.T. Sekhar SajjaG. GourS. NavedM. Impact of machine learning on management, healthcare and agriculture.Mater. Today Proc.2023802803280610.1016/j.matpr.2021.07.042
    [Google Scholar]
  167. ManjunathaSB BiradarDP AladakattiYR Nanotechnology and its applications in agriculture.A review. J farm Sci.201629113
    [Google Scholar]
  168. GuptaR. A survey on machine learning approaches and its techniques.Conference on Electrical, Electronics and Computer Science (SCEECS)IEEE year202016
    [Google Scholar]
  169. ArumugamK. SwathiY. SanchezD.T. MustafaM. PhoemchalardC. PhasinamK. OkoronkwoE. Towards applicability of machine learning techniques in agriculture and energy sector.Mater. Today Proc.2022512260226310.1016/j.matpr.2021.11.394
    [Google Scholar]
  170. SinghP. SinghS.P. SinghD.S. An introduction and review on machine learning applications in medicine and healthcare.In2019 IEEE conference on information and communication technology2019Dec 6 (pp. 1-6). IEEE10.1109/CICT48419.2019.9066250
    [Google Scholar]
  171. SchönfeldM.V. HeilR. BittnerL. Big data on a farm—Smart farming.Big Data Context2018109120
    [Google Scholar]
  172. VargheseR. SharmaS. Affordable smart farming using IoT and machine learning.2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS)IEEE. year201864565010.1109/ICCONS.2018.8663044
    [Google Scholar]
  173. RuchitaT ShreyaB PrasannaD AnaghaC Crop yield prediction using big data analytics.IJCMS2017611
    [Google Scholar]
  174. PriyaR RameshD KhoslaE Crop prediction on the region belts of India: A Naïve Bayes MapReduce precision agricultural model.In2018 international conference on advances in computing, communications and informatics2018Sep 19 (pp. 99-104). IEEE.10.1109/ICACCI.2018.8554948
    [Google Scholar]
  175. SuryanarayanaV. SathishB.S. RanganayakuluA. GanesanP. Novel weather data analysis using Hadoop and MapReduce–a case study.In2019 5th International Conference on Advanced Computing & Communication Systems2019Mar 15 (pp. 204-207). IEEE.10.1109/ICACCS.2019.8728444
    [Google Scholar]
  176. KahM. TufenkjiN. WhiteJ.C. Nano-enabled strategies to enhance crop nutrition and protection.Nat. Nanotechnol.201914653254010.1038/s41565‑019‑0439‑5 31168071
    [Google Scholar]
  177. LowryG.V. AvellanA. GilbertsonL.M. Opportunities and challenges for nanotechnology in the agri-tech revolution.Nat. Nanotechnol.201914651752210.1038/s41565‑019‑0461‑7 31168073
    [Google Scholar]
  178. LombiE. DonnerE. DusinskaM. WicksonF. A One Health approach to managing the applications and implications of nanotechnologies in agriculture.Nat. Nanotechnol.201914652353110.1038/s41565‑019‑0460‑8 31168074
    [Google Scholar]
  179. ChlingaryanA. SukkariehS. WhelanB. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review.Comput. Electron. Agric.2018151616910.1016/j.compag.2018.05.012
    [Google Scholar]
  180. WinklerD.A. Role of artificial intelligence and machine learning in nanosafety.Small20201636200188310.1002/smll.202001883 32537842
    [Google Scholar]
  181. BurelloE. WorthA.P. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles.Nanotoxicology20115222823510.3109/17435390.2010.502980 21609138
    [Google Scholar]
  182. TalaviyaT. ShahD. PatelN. YagnikH. ShahM. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides.Artific. Intellig. Agricul.20204587310.1016/j.aiia.2020.04.002
    [Google Scholar]
  183. ShakoorM.T. RahmanK. RaytaS.N. ChakrabartyA. Agricultural production output prediction using supervised machine learning techniques.In 2017 1st international conference on next generation computing applications2017Jul 19 (pp. 182-187). IEEE.10.1109/NEXTCOMP.2017.8016196
    [Google Scholar]
  184. FakherldinM.A. AdamK. BakarN.A. MajidM.A. Weather data analysis using Hadoop: applications and challenges.InIOP Conference Series : Materials Science and EngineeringIOP Publishing;2019551012044
    [Google Scholar]
  185. FracetoL.F. GrilloR. de MedeirosG.A. ScognamiglioV. ReaG. BartolucciC. Nanotechnology in agriculture: which innovation potential does it have?Front. Environ. Sci.201642010.3389/fenvs.2016.00020
    [Google Scholar]
  186. RamP. VivekK. KumarS.P. Nanotechnology in sustainable agriculture: Present concerns and future aspects.Afr. J. Biotechnol.201413670571310.5897/AJBX2013.13554
    [Google Scholar]
  187. PramanikP. KrishnanP. MaityA. MridhaN. MukherjeeA. RaiV. Application of nanotechnology in agriculture.Environ. Nanotechnol.20204317348
    [Google Scholar]
  188. BramleyR.G.V. Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application.Crop Pasture Sci.200960319721710.1071/CP08304
    [Google Scholar]
  189. AshrafS.A. SiddiquiA.J. ElkhalifaA.E.O. KhanM.I. PatelM. AlreshidiM. MoinA. SinghR. SnoussiM. AdnanM. Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment.Sci. Total Environ.202176814499010.1016/j.scitotenv.2021.144990 33736303
    [Google Scholar]
  190. NongbetA. MishraA.K. MohantaY.K. MahantaS. RayM.K. KhanM. BaekK.H. ChakrabarttyI. Nanofertilizers: A smart and sustainable attribute to modern agriculture.Plants20221119258710.3390/plants11192587 36235454
    [Google Scholar]
  191. GhidanA.Y. Al-AntaryT.M. AwwadA.M. Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach Aphid.Environ. Nanotechnol. Monit. Manag.20166959810.1016/j.enmm.2016.08.002
    [Google Scholar]
  192. SahooliM. SabbaghiS. SabooriR. Synthesis and characterization of mono sized CuO nanoparticles.Mater. Lett.20128116917210.1016/j.matlet.2012.04.148
    [Google Scholar]
  193. ZhangP. GuoZ. ZhangZ. FuH. WhiteJ.C. LynchI. Nanomaterial transformation in the soil–plant system: Implications for food safety and application in agriculture.Small20201621200070510.1002/smll.202000705 32462786
    [Google Scholar]
  194. KaphleA. NavyaP.N. UmapathiA. DaimaH.K. Nanomaterials for agriculture, food and environment: Applications, toxicity and regulation.Environ. Chem. Lett.2018161435810.1007/s10311‑017‑0662‑y
    [Google Scholar]
  195. DwivediS. SaquibQ. Al-KhedhairyA.A. MusarratJ. Understanding the role of nanomaterials in agricultureIn: Microbial Inoculants in Sustainable Agricultural Productivity201610.1007/978‑81‑322‑2644‑4_17
    [Google Scholar]
  196. Rani SarkarM. RashidM.H. RahmanA. KafiM.A. HosenM.I. RahmanM.S. KhanM.N. Recent advances in nanomaterials based sustainable agriculture: An overview.Environ. Nanotechnol. Monit. Manag.20221810068710.1016/j.enmm.2022.100687
    [Google Scholar]
  197. KaphleA Nanomaterial impact, toxicity and regulation in agriculture, food and environment.Nanosci. Food Agricul.2017205242
    [Google Scholar]
  198. IavicoliI. LesoV. BeezholdD.H. ShvedovaA.A. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks.Toxicol. Appl. Pharmacol.20173299611110.1016/j.taap.2017.05.025 28554660
    [Google Scholar]
  199. ChhipaH. Applications of nanotechnology in agriculture.In Methods Microbiol.20194611514210.1016/bs.mim.2019.01.002
    [Google Scholar]
  200. SpirescuV.A. ChircovC. GrumezescuA.M. VasileB.Ș. AndronescuE. Inorganic nanoparticles and composite films for antimicrobial therapies.Int. J. Mol. Sci.2021229459510.3390/ijms22094595 33925617
    [Google Scholar]
  201. YoungM. DebbieW. UchidaM. DouglasT. Plant viruses as biotemplates for materials and their use in nanotechnology.Annu. Rev. Phytopathol.200846136138410.1146/annurev.phyto.032508.131939 18473700
    [Google Scholar]
  202. JacksonP. JacobsenN.R. BaunA. BirkedalR. KühnelD. JensenK.A. VogelU. WallinH. Bioaccumulation and ecotoxicity of carbon nanotubes.Chem. Cent. J.20137115410.1186/1752‑153X‑7‑154 24034413
    [Google Scholar]
  203. SunT.Y. GottschalkF. HungerbühlerK. NowackB. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials.Environ. Pollut.2014185697610.1016/j.envpol.2013.10.004 24220022
    [Google Scholar]
  204. BelloD. WardleB.L. YamamotoN. Guzman deVilloriaR. GarciaE.J. HartA.J. AhnK. EllenbeckerM.J. HallockM. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes.J. Nanopart. Res.200911123124910.1007/s11051‑008‑9499‑4
    [Google Scholar]
  205. OguraI. KotakeM. HashimotoN. GotohK. KishimotoA. Release characteristics of single-wall carbon nanotubes during manufacturing and handling.In J. Phys. Conference Series2013429101205710.1088/1742‑6596/429/1/012057
    [Google Scholar]
  206. KlaineS.J. AlvarezP.J.J. BatleyG.E. FernandesT.F. HandyR.D. LyonD.Y. MahendraS. McLaughlinM.J. LeadJ.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects.Environ. Toxicol. Chem.20082791825185110.1897/08‑090.1 19086204
    [Google Scholar]
  207. WakefieldG. LipscombS. HollandE. KnowlandJ. The effects of manganese doping on UVA absorption and free radical generation of micronised titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components.Photochem. Photobiol. Sci.20043764865210.1039/b403697b 15238999
    [Google Scholar]
  208. MoronesJ.R. ElechiguerraJ.L. CamachoA. HoltK. KouriJ.B. RamírezJ.T. YacamanM.J. The bactericidal effect of silver nanoparticles.Nanotechnology200516102346235310.1088/0957‑4484/16/10/059 20818017
    [Google Scholar]
  209. HwangET LeeJH ChaeYJ KimYS KimBC SangBI GuMB Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria.small200846746750
    [Google Scholar]
  210. CornfieldA.H. Effects of addition of 12 metals on carbon dioxide release during incubation of an acid sandy soil.Geoderma197719319920310.1016/0016‑7061(77)90027‑1
    [Google Scholar]
  211. JohanssonC.S. StenströmM. HildebrandC. Target influence on aging of myelinated sensory nerve fibres.Neurobiol. Aging1996171616610.1016/0197‑4580(95)02021‑7 8786804
    [Google Scholar]
  212. StenbergB. JohanssonM. PellM. Sjödahl-SvenssonK. StenströmJ. TorstenssonL. Microbial biomass and activities in soil as affected by frozen and cold storage.Soil Biol. Biochem.199830339340210.1016/S0038‑0717(97)00125‑9
    [Google Scholar]
  213. SamadiN. YahyaabadiS. RezayatmandZ. Effect of TiO2 and TiO2 nanoparticle on germination, root and shoot length and photosynthetic pigments of Mentha piperita.Int. J. Plant Soil Sci.20143440841810.9734/IJPSS/2014/7641
    [Google Scholar]
  214. LinD. XingB. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth.Environ. Pollut.2007150224325010.1016/j.envpol.2007.01.016 17374428
    [Google Scholar]
  215. HongF. YangF. LiuC. GaoQ. WanZ. GuF. WuC. MaZ. ZhouJ. YangP. Influences of nano-TiO2 on the chloroplast aging of spinach under light.Biol. Trace Elem. Res.2005104324926010.1385/BTER:104:3:249 15930594
    [Google Scholar]
  216. WangZ. NieY. OuH. ChenD. CenY. LiuJ. WuD. HongG. LiB. XingG. ZhangW. Electronic and Optoelectronic Monolayer WSe2 Devices via Transfer-Free Fabrication Method.Nanomaterials (Basel)2023138136810.3390/nano13081368 37110953
    [Google Scholar]
  217. RăcuciuM. CreangăD.E. SuliţanuN. BădescuV. Dimensional analysis of aqueous magnetic fluids.Appl. Phys., A Mater. Sci. Process.200789256556910.1007/s00339‑007‑4139‑x
    [Google Scholar]
  218. PatlollaA.K. ShindeA.K. TchounwouP.B. A comparison of poly-ethylene-glycol-coated and uncoated gold nanoparticle-mediated hepatotoxicity and oxidative stress in Sprague Dawley rats.Int. J. Nanomedicine20191463964710.2147/IJN.S185574 30697047
    [Google Scholar]
  219. PandaK.K. AcharyV.M.M. KrishnaveniR. PadhiB.K. SarangiS.N. SahuS.N. PandaB.B. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants.Toxicol. In Vitro20112551097110510.1016/j.tiv.2011.03.008 21419840
    [Google Scholar]
  220. GhoshM. BandyopadhyayM. MukherjeeA. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes.Chemosphere201081101253126210.1016/j.chemosphere.2010.09.022 20884039
    [Google Scholar]
  221. GiraldoJ.P. LandryM.P. FaltermeierS.M. McNicholasT.P. IversonN.M. BoghossianA.A. ReuelN.F. HilmerA.J. SenF. BrewJ.A. StranoM.S. Plant nanobionics approach to augment photosynthesis and biochemical sensing.Nat. Mater.201413440040810.1038/nmat3890 24633343
    [Google Scholar]
  222. AthaD.H. WangH. PetersenE.J. ClevelandD. HolbrookR.D. JarugaP. DizdarogluM. XingB. NelsonB.C. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models.Environ. Sci. Technol.20124631819182710.1021/es202660k 22201446
    [Google Scholar]
  223. PrasadR. BhattacharyyaA. NguyenQ.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives.Front. Microbiol.20178101410.3389/fmicb.2017.01014 28676790
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137275111231206072049
Loading
/content/journals/cnano/10.2174/0115734137275111231206072049
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): agriculture; AI; Nanotechnology; plant health; précised crop production; sustainability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test