Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

A modern genre of solar technology is Perovskite solar cells (PSCs), which are growing rapidly because they work well. The composition of links within the hole transport materials, electron transport materials and the footprint on PSCs is perovskite.

Methods

The traditional genre of lead halide perovskite can be swapped with a new perovskite compound called CsTiBr. CsTiBr has better properties when it comes to light, electricity, and solar energy. When comparing the performance of various electron transport films (ETFs) for the effective operation of perovskite, TiO is recognized as an ETF as it has higher thermal stability, low-cost, and appropriate energy level.

Results

The most productive hole transport film (HTF) for these perovskite solar cells, compared to other HTFs, has been demonstrated as VO.

Conclusion

The various solar cell characteristics of the proposed device, the “Au/VO/ CsTiBr/TiO/ TCO” perovskite solar cell, are investigated in this examination by tuning the parameters such as temperature, series resistance, defect density, .

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137286096240320075126
2025-01-01
2024-11-26
Loading full text...

Full text loading...

References

  1. ChuangT.H. ChenY.H. SakalleyS. ChengW.C. ChanC.K. ChenC.P. ChenS.C. Highly stable and enhanced performance of p–i–n perovskite solar cells via cuprous oxide hole-transport layers.Nanomaterials2023138136310.3390/nano13081363 37110948
    [Google Scholar]
  2. AjayanJ. NirmalD. MohankumarP. SaravananM. JagadeshM. ArivazhaganL. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies.Superlattices Microstruct.202014310654910.1016/j.spmi.2020.106549
    [Google Scholar]
  3. MillsteinD. WiserR. BolingerM. BarboseG. The climate and air-quality benefits of wind and solar power in the United States.Nat. Energy2017291713410.1038/nenergy.2017.134
    [Google Scholar]
  4. MartíA. LuqueA. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion.Nat. Commun.201561690210.1038/ncomms7902 25902374
    [Google Scholar]
  5. EndresB. CiorgaM. SchmidM. UtzM. BougeardD. WeissD. BayreutherG. BackC.H. Demonstration of the spin solar cell and spin photodiode effect.Nat. Commun.201341206810.1038/ncomms3068 23820766
    [Google Scholar]
  6. GuoF. LiN. FecherF.W. GaspariniN. QuirozC.O.R. BronnbauerC. HouY. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells.Nat. Commun.201567730
    [Google Scholar]
  7. VaracheR. AguilaO.N. VallaA. NguyenN. MunozD. Role of the front electron collector in rear emitter silicon heterojunction solar cells.IEEE J. Photovolt.20155371171710.1109/JPHOTOV.2015.2400226
    [Google Scholar]
  8. IonescuC. BaracuT. VladG.E. NeculaH. BadeaA. The historical evolution of the energy efficient buildings.Renew. Sustain. Energy Rev.20154924325310.1016/j.rser.2015.04.062
    [Google Scholar]
  9. ShuklaR. SumathyK. EricksonP. GongJ. Recent advances in the solar water heating systems: A review.Renew. Sustain. Energy Rev.20131917319010.1016/j.rser.2012.10.048
    [Google Scholar]
  10. KumarS.N. NaiduC.B.K. A review on perovskite solar cells (PSCs), materials and applications.J Materiomics.20217594095610.1016/j.jmat.2021.04.002
    [Google Scholar]
  11. MiyamotoY. KusumotoS. YokoyamaT. NishitaniY. MatsuiT. KouzakiT. NishikuboR. SaekiA. KanekoY. High current density sn-based perovskite solar cells via enhanced electron extraction in nanoporous electron transport layers.ACS Appl. Nano Mater.2020311116501165710.1021/acsanm.0c02890
    [Google Scholar]
  12. RoyP. GhoshA. BarclayF. KhareA. CuceE. Perovskite solar cells: A review of the recent advances.Coatings2022128108910.3390/coatings12081089
    [Google Scholar]
  13. MullerJ. HinkenD. BlankemeyerS. KohlenbergH. SonntagU. BotheK. DullweberT. KontgesM. BrendelR. Resistive power loss analysis of PV modules made from halved 15.6 and 15.6 cm2 silicon PERC solar cells with efficiencies up to 20.0%.IEEE J. Photovolt.20155118919410.1109/JPHOTOV.2014.2367868
    [Google Scholar]
  14. KieferF. UlzhöferC. BrendemühlT. HarderN.P. BrendelR. MertensV. BordihnS. PetersC. MüllerJ.W. High efficiency n-type emitter-wrap-through silicon solar cells.IEEE J. Photovolt.201111495310.1109/JPHOTOV.2011.2164953
    [Google Scholar]
  15. TaguchiM. YanoA. TohodaS. MatsuyamaK. NakamuraY. NishiwakiT. FujitaK. MaruyamaE. 24.7% record efficiency HIT solar cell on thin silicon wafer.IEEE J. Photovolt.201441969910.1109/JPHOTOV.2013.2282737
    [Google Scholar]
  16. MercyP.A.M. WilsonK.S.J. Design of an innovative high-performance lead-free and eco-friendly perovskite solar cell.Appl. Nanosci.20231353289330010.1007/s13204‑022‑02745‑7
    [Google Scholar]
  17. RahmanSMd. Simulation based investigation of inverted planar perovskite solar cell with all metal oxide inorganic transport layers.2019 International Conference on Electrical, Computer and Communication Engineering (ECCE)07-09 February 2019Cox'sBazar, Bangladesh, 201979
    [Google Scholar]
  18. MercyP.A.M. WilsonK.S.J. Development of environmental friendly high performance Cs2TiBr6 based perovskite solar cell using numerical simulation.Appl. Surf. Sci. Adv.20231510039410.1016/j.apsadv.2023.100394
    [Google Scholar]
  19. PapageorgiouN. New Record Efficiency Achieved by Dye-Sensitized Solar Cells.Ecole Polytechnique Fédérale de Lausanne SciTech Daily2022
    [Google Scholar]
  20. ColeJ.M. PepeG. Al BahriO.K. CooperC.B. Cosensitization in dye-sensitized solar cells.Chem. Rev.2019119127279732710.1021/acs.chemrev.8b00632 31013076
    [Google Scholar]
  21. RenY. ZhangD. SuoJ. CaoY. EickemeyerF.T. VlachopoulosN. ZakeeruddinS.M. HagfeldtA. GrätzelM. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells.Nature20236137942606510.1038/s41586‑022‑05460‑z 36288749
    [Google Scholar]
  22. WehmeierN. LimB. MerkleA. TempezA. LegendreS. WagnerH. NowackA. DullweberT. AltermattP.P. PECVD BSG diffusion sources for simplified high-efficiency n-PERT BJ and BJBC solar cells.IEEE J. Photovolt.20166111912510.1109/JPHOTOV.2015.2493364
    [Google Scholar]
  23. CastS.P. BenickJ. KaniaD. WeissL. HofmannM. RentschJ. PreuR. GlunzS.W. High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide.IEEE Electron Device Lett.201031769569710.1109/LED.2010.2049190
    [Google Scholar]
  24. EbongA. CooperI.B. RounsavilleB.C. RohatgiA. DovratM. KritchmanE. BrusilovskyD. BenichouA. Capitalizing on the glass-etching effect of silver plating chemistry to contact Si solar cells with homogeneous 100–110$\Omega/\hbox {sq} $ emitters.IEEE Electron Device Lett.201132677978110.1109/LED.2011.2131115
    [Google Scholar]
  25. FeifelM. RachowT. BenickJ. OhlmannJ. JanzS. HermleM. DimrothF. LacknerD. Gallium phosphide window layer for silicon solar cells.IEEE J. Photovolt.20166138439010.1109/JPHOTOV.2015.2478062
    [Google Scholar]
  26. EbongA. CooperI.B. RounsavilleB. RohatgiA. DovratM. KritchmanE. BrusilovskyD. BenichouA. On the ink jetting of full front Ag gridlines for costeffective metallization of Si solar cells.IEEE Electron Device Lett.201233563763910.1109/LED.2012.2186553
    [Google Scholar]
  27. WuW.Q. ChenD. CarusoR.A. ChengY.B. Recent progress in hybrid perovskite solar cells based on n-type materials.J. Mater. Chem. A Mater. Energy Sustain.2017521100921010910.1039/C7TA02376F
    [Google Scholar]
  28. EfazE.T. RhamanM.M. Al ImamS. BasharK.L. KabirF. A review of primary technologies of thin-film solar cells.Eng. Res. Express20213032001
    [Google Scholar]
  29. ResalatiS. OkoroaforT. MaaloufA. SaucedoE. PlacidiM. Life cycle assessment of different chalcogenide thin-film solar cells.Appl. Energy202231311888810.1016/j.apenergy.2022.118888
    [Google Scholar]
  30. SivarajS. RathanasamyR. KaliyannanG.V. PanchalH. JawadA.A. JaberM.M. SaidZ. MemonS. A comprehensive review on current performance, challenges and progress in thin-film solar cells.Energies20221522868810.3390/en15228688
    [Google Scholar]
  31. LiuF.W. Recycling and recovery of perovskite solar cells.Mater. Today.202143185197
    [Google Scholar]
  32. TianX. Life cycle assessment of recycling strategies for perovskite photovoltaic modules.Nat. Sustainab.202149821829
    [Google Scholar]
  33. YangF. WangS. Progress in recycling organic–inorganic perovskite solar cells for eco-friendly fabrication.J. Mater. Chem.20219526122627
    [Google Scholar]
  34. YangQ.H. WeiH.Q. LiG.H. HuangJ.B. LiuX. CaiG.M. Recent developments of lead-free halide-perovskite Cs3Cu2X5 (X = Cl, Br, I): Synthesis, modifications, and applications.Mater. Today Phys.20233610114310.1016/j.mtphys.2023.101143
    [Google Scholar]
  35. EmshadiK. Metal halide perovskite nanomaterials for solar energy. Advanced electronic materials for clean energy applications.Elsevier2023149168
    [Google Scholar]
  36. YunS. ZhouX. EvenJ. HagfeldtA. Recent progress of first principles calculations in ch3nh3pbi3 perovskite solar cells.Angew. Chem. Int. Ed.201756501580615817
    [Google Scholar]
  37. MehmoodU. Al-AhmedA. AfzaalM. Al-SulaimanF.A. DaudM. Recent progress and remaining challenges in organometallic halides based perovskite solar cells.Renew. Sustain. Energy Rev.20177811410.1016/j.rser.2017.04.105
    [Google Scholar]
  38. ZhangQ. TingH. WeiS. HuangD. WuC. SunW. QuB. WangS. ChenZ. XiaoL. Recent progress in lead-free perovskite (-like) solar cells.Mater. Today Energy2018815716510.1016/j.mtener.2018.03.001
    [Google Scholar]
  39. BeckerM. WarkM. Recent progress in the solution-based sequential deposition of planar perovskite solar cells.Cryst. Growth Des.20181884790480610.1021/acs.cgd.8b00686
    [Google Scholar]
  40. SaidA.A. XieJ. ZhangQ. Recent progress in organic electron transport materials in inverted perovskite solar cells.Small20191527190085410.1002/smll.201900854 31069952
    [Google Scholar]
  41. ZhaoY. YeQ. ChuZ. GaoF. ZhangX. YouJ. Recent progress in high-efficiency planar-structure perovskite solar cells.Energy Environ. Mater.2019229310610.1002/eem2.12042
    [Google Scholar]
  42. GilB. YunA.J. LeeY. KimJ. LeeB. ParkB. Recent progress in inorganic hole transport materials for efficient and stable perovskite solar cells.Electron. Mater. Lett.201915550552410.1007/s13391‑019‑00163‑6
    [Google Scholar]
  43. LeijtensT. BushK.A. PrasannaR. McGeheeM.D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors.Nat. Energy201831082883810.1038/s41560‑018‑0190‑4
    [Google Scholar]
  44. LiG. ChangW.H. YangY. Low-bandgap conjugated polymers enabling solution-processable tandem solar cells.Nat. Rev. Mater.2017281704310.1038/natrevmats.2017.43
    [Google Scholar]
  45. ParkJ.S. KimS. XieZ. WalshA. Point defect engineering in thin-film solar cells.Nat. Rev. Mater.20183719421010.1038/s41578‑018‑0026‑7
    [Google Scholar]
  46. YanC. HuangJ. SunK. JohnstonS. ZhangY. SunH. PuA. HeM. LiuF. EderK. YangL. CairneyJ.M. Ekins-DaukesN.J. HameiriZ. StrideJ.A. ChenS. GreenM.A. HaoX. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment.Nat. Energy20183976477210.1038/s41560‑018‑0206‑0
    [Google Scholar]
  47. KranzL. GretenerC. PerrenoudJ. SchmittR. PianezziF. La MattinaF. BloschP. Doping of polycrystalline CdTe for highefficiency solar cells on flexible metal foil.Nat. Commun.201342306
    [Google Scholar]
  48. TianX. StranksS.D. YouF. Recycling next-generation solar panels fosters green planet.Available from: https://news.cornell.edu/stories/2021/06/recycling-next-generation-solar-panels-fosters-green-planet 2021
  49. WernerJ. BarraudL. WalterA. BräuningerM. SahliF. SacchettoD. TétreaultN. SalomonP.B. MoonS.J. AllebéC. DespeisseM. NicolayS. De WolfS. NiesenB. BallifC. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells.ACS Energy Lett.20161247448010.1021/acsenergylett.6b00254
    [Google Scholar]
  50. GiustinoF. SnaithH.J. Toward lead-free perovskite solar cells.ACS Energ. Lett.2016612331240
    [Google Scholar]
  51. GhoshP. SundaramS. Influence of nanostructures in perovskite solar cells.Encycloped. Smart Mater.20212646660
    [Google Scholar]
  52. MooreK. WeiW. Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion.Nano Mater Sci.202133276290
    [Google Scholar]
  53. McDonaldC. NiC. MaguireP. ConnorP. IrvineJ.T.S. MariottiD. SvrcekV. Review- nanostructured perovskite solar cells.Nanomaterials201991481
    [Google Scholar]
  54. MadanJ. ShivaniR.P. PandeyR. SharmaR. Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell.Sol. Energy202019721222110.1016/j.solener.2020.01.006
    [Google Scholar]
  55. YasodharanR. SenthilkumarA.P. MohankumaP. AjayanJ. SivabalakrishnanR. Investigation and influence of layer composition of tandem perovskite solar cells for application in future renewable and sustainable energy.Optik2020212164723
    [Google Scholar]
  56. EuvrardJ. WangX. LiT. YanY. MitziD.B. Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications.J. Mater. Chem. A2020840494054
    [Google Scholar]
  57. JuM. ChenM. ZhouY. HectorF. Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications.ACS Energy Lett.201832297304
    [Google Scholar]
  58. AbdelazizS. ZekryA. ShakerA. AbouelattaM. Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation.Opt. Mater.202010110973810.1016/j.optmat.2020.109738
    [Google Scholar]
  59. FatimaQ. HaidryA.A. HussainR. ZhangH. Device simulation of a thin-layer CsSnI3-based solar cell with enhanced 31.09% efficiency.Energy Fuels202337107411742310.1021/acs.energyfuels.3c00645
    [Google Scholar]
  60. WangK. OlthofS. SubhaniW.S. JiangX. CaoY. DuanL. WangH. DuM. LiuS. Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective.Nano Energ.202068104289
    [Google Scholar]
  61. VerschraegenJ. BurgelmanM. Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS.Thin Solid Films2007515156276627910.1016/j.tsf.2006.12.049
    [Google Scholar]
  62. MuhammedaO.A. DanladibE. Modeling and simulation of lead-free perovskite solar cell using scaps-1d.East Eur. J. Phys.202120212146154
    [Google Scholar]
  63. PecuniaV. OcchipintiL.G. ChakrabortyA. PanY. PengY. Lead-free halide perovskite photovoltaics: Challenges, open questions, and opportunities.APL Mater.202081010090110.1063/5.0022271
    [Google Scholar]
  64. GrandhiG. MatuhinaA. LiuM. AnnurakshitaS. LöyttyA.H. BautistaG. VivoP. Lead-free cesium titanium bromide double perovskite nanocrystals.Nanomaterials2021116145810.3390/nano11061458 34072822
    [Google Scholar]
  65. ChenK. HuQ. LiuT. ZhaoL. LuoD. WuJ. ZhangY. ZhangW. LiuF. ThomasP. Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells.Adv. Mater.201628481071810724
    [Google Scholar]
  66. Deepthi JayanK. SebastianV. Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts.Sol. Energy2021217404810.1016/j.solener.2021.01.058
    [Google Scholar]
  67. PitchaiyaS. NatarajaM. SanthanamA. AsokanV. YuvapragasamA. RamakrishnanV. M. A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application.Arab. J. Chem.202013125262557
    [Google Scholar]
  68. GuP.Y. WangN. WuA. WangZ. TianM. FuZ. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells.Chemist. Asian J.201611152135
    [Google Scholar]
  69. GiordanoF. AbateA. Correa BaenaJ.P. SalibaM. MatsuiT. ImS.H. ZakeeruddinS.M. NazeeruddinM.K. HagfeldtA. GraetzelM. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells.Nat. Commun.2016711037910.1038/ncomms10379 26758549
    [Google Scholar]
  70. NajafiM. GiacomoD.F. ZhangD. ShanmugamS. SenesA. VerheesW. HadipourA. GalaganY. AernoutsT. VeenstraS. AndriessenR. Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers.Small20181412e170277510.1002/smll.201702775
    [Google Scholar]
  71. AhmmedS. Performance analysis of lead-free CsBi3I10-based perovskite solar cell through the numerical calculation.Solar. Energ.20212265463
    [Google Scholar]
  72. OtoufiM.K. RanjbarM. Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers.Solar. Energy2020208697707
    [Google Scholar]
  73. LiS. CaoY.L. LiW.H. BoZ.S. A brief review of hole transporting materials commonly used in perovskite solar cell.Rare Metal.202140102712272910.1007/s12598‑020‑01691‑z
    [Google Scholar]
  74. BurgelmanM. NolletP. DegraveS. Modelling polycrystalline semiconductor solar cells.Thin Solid Film.2000361–362652753210.1016/S0040‑6090(99)00825‑1
    [Google Scholar]
  75. KumarA. SinghS. Numerical modeling of lead-free perovskite solar cell using inorganic charge transport materials.Material. Today: Proceed.202026225742581
    [Google Scholar]
  76. RaiN. RaiS. SinghP.K. LohiaP. DwivediD.K. Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation.J. Mater. Sci. Mater. Electron.202031162691628010.1007/s10854‑020‑04175‑z
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137286096240320075126
Loading
/content/journals/cnano/10.2174/0115734137286096240320075126
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Cs2TiBr6; Green perovskite solar cell; numerical modeling; TCO; TiO2; V2O5
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test