Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

This research delves into utilizing the Direct Laser Lithography System to produce micro/nanopattern arrays with grating-based periodic structures. Initially, refining the variation in periodic structures within these arrays becomes a pivotal pursuit. This demands a deep comprehension of how structural variation aligns with specific applications, particularly in photonics and material science.

Methods

Advancements in hardware, software, or process optimization techniques hold potential for reaching this objective. Using an optical beam, this system enables the engraving of moderate periodic and quasi-periodic structures, enhancing pattern formation in a three-dimensional environment. Through cost-effective direct-beam interferometry systems utilizing 405 nm GaN and 290 to 780 nm AlInGaN semiconductor laser diodes, patterns ranging from in period were created, employing 300 nm gratings.

Results

The system's cost-efficiency and ability to achieve high-resolution permit the creation of both regular and irregular grating designs. By employing an optical head assembly from a blu-ray disc recorder, housing a semiconductor laser diode and an objective lens with an NA of 0.85, this system displays promising potential in progressing the fabrication of micro/nanopattern arrays.

Conclusion

Assessing their optical, mechanical, and electrical properties and exploring potential applications across varied fields like optoelectronics, photovoltaics, sensors, and biomedical devices represent critical strides for further exploration and advancement.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137283785240118095556
2025-01-01
2025-07-15
Loading full text...

Full text loading...

References

  1. AsenbaumP. OverstreetC. KovachyT. BrownD.D. HoganJ.M. KasevichM.A. Phase shift in an atom interferometer due to spacetime curvature across its wave function.Phys. Rev. Lett.20171181818360210.1103/PhysRevLett.118.183602 28524681
    [Google Scholar]
  2. BaekY. LeeK. YoonJ. KimK. ParkY. White-light quantitative phase imaging unit.Opt. Express20162499308931510.1364/OE.24.009308 27137546
    [Google Scholar]
  3. ChauvinA. StephantN. DuK. DingJ. WathuthanthriI. ChoiC.H. TessierP-Y. El MelA-A. Large-scale fabrication of porous gold nanowires via laser interference lithography and dealloying of gold-silver nano-alloys.Micromachines20178616810.3390/mi8060168
    [Google Scholar]
  4. ChenP.Y. JyweW.Y. WangM.S. WuC.H. Application of blue laser direct-writing equipment for manufacturing of periodic and aperiodic nanostructure patterns.Precis. Eng.20164626326910.1016/j.precisioneng.2016.05.006
    [Google Scholar]
  5. D’AmicoG. RosiG. ZhanS. CacciapuotiL. FattoriM. TinoG.M. Canceling the gravity gradient phase shift in atom interferometry.Phys. Rev. Lett.20171192525320110.1103/PhysRevLett.119.253201 29303327
    [Google Scholar]
  6. DengX. HuZ. XiuG. SongZ. WengZ. XuJ. Five-beam interference pattern model for laser interference lithography.The 2010 IEEE International Conference on Information and AutomationHarbin, China, 20101208121310.1109/ICINFA.2010.5512128
    [Google Scholar]
  7. DiJ. LiY. XieM. ZhangJ. MaC. XiT. LiE. ZhaoJ. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry.Appl. Opt.201655267287729310.1364/AO.55.007287 27661364
    [Google Scholar]
  8. GuoL. JiangH.B. ShaoR.Q. ZhangY.L. XieS.Y. WangJ.N. LiX-B. JiangF. ChenQ-D. ZhangT. SunH-B. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device.Carbon20125041667167310.1016/j.carbon.2011.12.011
    [Google Scholar]
  9. GuoT. LiF. ChenJ. FuX. HuX. Multi-wavelength phase-shifting interferometry for micro-structures measurement based on color image processing in white light interference.Opt. Lasers Eng.201682414710.1016/j.optlaseng.2016.02.003
    [Google Scholar]
  10. HassanS. SaleO. LowellD. HurleyN. LinY. Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell.Photonics2018543410.3390/photonics5040034
    [Google Scholar]
  11. HayasakiY. NishitaniM. TakahashiH. YamamotoH. TakitaA. SuzukiD. HasegawaS. Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing.Appl. Phys., A Mater. Sci. Process.2012107235736210.1007/s00339‑012‑6801‑1
    [Google Scholar]
  12. KangM.J. KimM. HwangE.S. NohJ. ShinS.T. CheongB.H. Crystallization of amorphous-Si using nanosecond laser interference method.J. Soc. Inf. Disp.2019271344010.1002/jsid.745
    [Google Scholar]
  13. KimJ. JeongI.G. LeeS.H. KangK.T. LeeS.H. Fabrication of large-area periodic nanostructures using two-mirror laser interference lithography.Electron. Mater. Lett.20139687988210.1007/s13391‑013‑6035‑1
    [Google Scholar]
  14. LasagniA. BiedaM. RochT. LangheinrichD. Direct fabrica- tion of periodic structures on surfaces: Laser interference patterning as new scalable industrial tool.Laser Tech. J.201181454810.1002/latj.201090109
    [Google Scholar]
  15. LehmannP. TereschenkoS. XieW. Fundamental aspects of resolution and precision in vertical scanning white-light interferometry.Surf. Topogr.20164202400410.1088/2051‑672X/4/2/024004
    [Google Scholar]
  16. LiL. HongM. SchmidtM. ZhongM. MalsheA. Laser nano-manufacturing - State of the art and challenges. CIRP Ann. -.Manuf. Technol.201160273575510.1016/j.cirp.2011.05.005
    [Google Scholar]
  17. LorensM. ZabilaY. KrupińskiM. PerzanowskiM. SuchanekK. MarszałekK. MarszałekM. Micropatterning of silicon surface by direct laser inter- ference lithography.Acta Phys. Pol. A2012121254354510.12693/APhysPolA.121.543
    [Google Scholar]
  18. PoleshchukA.G. SametovR.A. SedukhinA.G. Multibeam laser writing of diffractive optical elements.Optoelectron. Instrum. Data Process.201248432733310.3103/S8756699012040012
    [Google Scholar]
  19. RothenbachC.A. KravchenkoI.I. GuptaM.C. Optical diffraction properties of multimicrogratings.Appl. Opt.2015547180810.1364/AO.54.001808
    [Google Scholar]
  20. SeoJ.H. ParkJ.H. KimS.I. ParkB.J. MaZ. ChoiJ. JuB.K. Nanopatterning by laser interference lithography: Applications to optical devices.J. Nanosci. Nanotechnol.20141421521153210.1166/jnn.2014.9199 24749439
    [Google Scholar]
  21. SidharthanR. MurukeshanV.M. Nano-scale patterning using pyramidal prism based wavefront interference lithography.Phys. Procedia20111941642110.1016/j.phpro.2011.06.185
    [Google Scholar]
  22. SuslikL. PudisD. SkriniarovaJ. MartincekI. KubicovaI. KovacJ. 2D photonic structures for optoelectronic devices prepared by interference lithography.Phys. Procedia20123280781310.1016/j.phpro.2012.03.640
    [Google Scholar]
  23. TaharaT. KannoT. AraiY. OzawaT. Single-shot phase-shifting incoherent digital holography.J. Opt.201719606570510.1088/2040‑8986/aa6e82
    [Google Scholar]
  24. TianC. LiuS. Two-frame phase-shifting interferometry for testing optical surfaces.Opt. Express20162416186951870810.1364/OE.24.018695 27505832
    [Google Scholar]
  25. ValaM. HomolaJ. Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays.Opt. Express20142215187781878910.1364/OE.22.018778 25089495
    [Google Scholar]
  26. KochF. LehrD. SchönbrodtO. GlaserT. FechnerR. FrostF. Manufacturing of highly-dispersive, high-efficiency transmission gratings by laser interference lithography and dry etching.Microelectron. Eng.2018191606510.1016/j.mee.2018.01.031
    [Google Scholar]
  27. LasagniA.F. Menéndez-OrmazaB.S. Two‐ and three‐dimensional micro‐ and sub‐micrometer periodic structures using two‐beam laser interference lithography.Adv. Eng. Mater.2010121-2546010.1002/adem.200900221
    [Google Scholar]
  28. WangZ. ZhangJ. JiZ. PackianatherM. PengC.S. TanC. VerevkinY.K. OlaizolaS.M. BerthouT. TisserandS. Laser interference nanolithography.Proceedings of the 3rd International Conference on Manufacturing Engineering (ICMEN)1-3 October 2008 Chalkidiki, Greece 2008
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137283785240118095556
Loading
/content/journals/cnano/10.2174/0115734137283785240118095556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test