Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

The use of targeted therapy has been increasing for cancer treatment. The aim of this study is to investigate chitosan-based ricin-Herceptin (rh) immunotoxin on breast cancer cell lines.

Methods

The gene construct encoding immunotoxin was designed, cloned, and expressed in BL21 (DE3). The expressed proteins were isolated by the nickel-nitrilotriacetic acid column and were analyzed by the Western-blotting. The cytotoxicity of immunotoxin was assayed on breast cell line MCF-7 and using MTT assay at 24 and 48 h treatment.

Results

The immunotoxins extrication rate, size, loading percentage, and electric charge of nanoparticles were reported appropriately as 78%, 151.5 nm, 83.53%, and +11.1 mV, respectively. The encapsulated immunotoxins led to the death of 70% and 78% of MCF-7 cells at 24 and 48 h treatment, respectively. The noncapsulated counterparts at equal doses killed 53% and 62% of cancer cells at the same time points.

Conclusion

The chitosan-immunotoxins impose potential cytotoxic effects on cancer cells.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137278545240102055626
2025-01-01
2024-11-26
Loading full text...

Full text loading...

References

  1. SunY.S. ZhaoZ. YangZ.N. XuF. LuH.J. ZhuZ.Y. ShiW. JiangJ. YaoP.P. ZhuH.P. Risk factors and preventions of breast cancer.Int. J. Biol. Sci.201713111387139710.7150/ijbs.21635 29209143
    [Google Scholar]
  2. Sabour TakanluJ. Aghaie FardA. MohammdiS. Hosseini RadS.M.A. AbrounS. NikbakhtM. Indirect tumor inhibitory effects of microRNA-124 through targeting EZH2 in the multiple myeloma cell line.Cell J.20202212329 31606963
    [Google Scholar]
  3. WaksA.G. WinerE.P. Breast cancer treatment: A review.JAMA2019321328830010.1001/jama.2018.19323 30667505
    [Google Scholar]
  4. VetaM. PluimJ.P.W. van DiestP.J. ViergeverM.A. Breast cancer histopathology image analysis: A review.IEEE Trans. Biomed. Eng.20146151400141110.1109/TBME.2014.2303852 24759275
    [Google Scholar]
  5. RanjbarR. KarimianA. AghaieF.A. TouraniM. MajidiniaM. Jadidi-NiaraghF. YousefiB. The importance of miRNAs and epigenetics in acute lymphoblastic leukemia prognosis.J. Cell. Physiol.201923443216323010.1002/jcp.26510 29384211
    [Google Scholar]
  6. AndersonK.N. SchwabR.B. MartinezM.E. Reproductive risk factors and breast cancer subtypes: A review of the literature.Breast Cancer Res. Treat.2014144111010.1007/s10549‑014‑2852‑7 24477977
    [Google Scholar]
  7. SannaV. PalaN. SechiM. Targeted therapy using nanotechnology: Focus on cancer.Int. J. Nanomedicine20149467483 24531078
    [Google Scholar]
  8. NikkhoiS.K. RahbarizadehF. RanjbarS. KhaleghiS. FarasatA. Liposomal nanoparticle armed with bivalent bispecific single-domain antibodies, novel weapon in HER2 positive cancerous cell lines targeting.Mol. Immunol.2018969810910.1016/j.molimm.2018.01.010 29549861
    [Google Scholar]
  9. LeeY.T. TanY.J. OonC.E. Molecular targeted therapy: Treating cancer with specificity.Eur. J. Pharmacol.201883418819610.1016/j.ejphar.2018.07.034 30031797
    [Google Scholar]
  10. Khoshtinat NikkhoiS. HeydarzadehH. RanjbarS. SalimiF. AghaeifardM. AlavianS.M. ReshadmaneshA. The evaluation and comparison of transcriptionally targeted noxa and puma killer genes to initiate apoptosis under cancer-specific promoter cxcr1 in hepatocarcinoma gene therapy.Hepat. Mon.20161610e3882810.5812/hepatmon.38828 27882064
    [Google Scholar]
  11. AllahyariH. HeidariS. GhamgoshaM. SaffarianP. AmaniJ. Immunotoxin: A new tool for cancer therapy.Tumour Biol.201739210.1177/1010428317692226 28218037
    [Google Scholar]
  12. AkbariB. FarajniaS. Ahdi KhosroshahiS. SafariF. YousefiM. DariushnejadH. RahbarniaL. Immunotoxins in cancer therapy: Review and update.Int. Rev. Immunol.201736420721910.1080/08830185.2017.1284211 28282218
    [Google Scholar]
  13. PincusS. BhaskaranM. BreyR.III DidierP. Doyle-MeyersL. RoyC. Clinical and pathological findings associated with aerosol exposure of macaques to ricin toxin.Toxins2015762121213310.3390/toxins7062121 26067369
    [Google Scholar]
  14. PitaR. RomeroA. Toxins as weapons: A historical review.Forensic Sci. Rev.20142628596 26227025
    [Google Scholar]
  15. WilsonF.R. CoombesM.E. Brezden-MasleyC. YurchenkoM. WylieQ. DoumaR. VaruA. HuttonB. SkidmoreB. CameronC. Herceptin® (trastuzumab) in HER2-positive early breast cancer: A systematic review and cumulative network meta-analysis.Syst. Rev.20187119110.1186/s13643‑018‑0854‑y 30428932
    [Google Scholar]
  16. DavisN.M. SokoloskyM. StadelmanK. AbramsS.L. LibraM. CandidoS. NicolettiF. PoleselJ. MaestroR. D’AssoroA. DrobotL. RakusD. GizakA. LaidlerP. Dulińska-LitewkaJ. BaseckeJ. MijatovicS. Maksimovic-IvanicD. MontaltoG. CervelloM. FitzgeraldT.L. DemidenkoZ.N. MartelliA.M. CoccoL. SteelmanL.S. McCubreyJ.A. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: Possibilities for therapeutic intervention.Oncotarget20145134603465010.18632/oncotarget.2209 25051360
    [Google Scholar]
  17. KimC. LeeC.K. ChonH.J. KimJ.H. ParkH.S. HeoS.J. KimH.J. KimT.S. KwonW.S. ChungH.C. RhaS.Y. PTEN loss and level of HER2 amplification is associated with trastuzumab resistance and prognosis in HER2-positive gastric cancer.Oncotarget201786911349411350110.18632/oncotarget.23054 29371924
    [Google Scholar]
  18. DillonL. MillerT. Therapeutic targeting of cancers with loss of PTEN function.Curr. Drug Targets2014151657910.2174/1389450114666140106100909 24387334
    [Google Scholar]
  19. EtoK. IwatsukiM. WatanabeM. IdaS. IshimotoT. IwagamiS. BabaY. SakamotoY. MiyamotoY. YoshidaN. BabaH. The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab.Ann. Surg. Oncol.201421134335010.1245/s10434‑013‑3325‑7 24154840
    [Google Scholar]
  20. SarisozenC. TorchilinV.P. Intracellular delivery of proteins and peptides. Drug Delivery: Principles and Applications.Wiley201610.1002/9781118833322.ch23
    [Google Scholar]
  21. PelletierJ.P.R. MukhtarF. Passive monoclonal and polyclonal antibody therapies. Immunologic Concepts in Transfusion Medicine.Elsevier202025134810.1016/B978‑0‑323‑67509‑3.00016‑0
    [Google Scholar]
  22. Oraki KohshourM. MirzaieS. ZeinaliM. AminM. Said HakhamaneshiM. JaliliA. MosaveriN. JamalanM. Ablation of breast cancer cells using trastuzumab-functionalized multi-walled carbon nanotubes and trastuzumab-diphtheria toxin conjugate.Chem. Biol. Drug Des.201483325926510.1111/cbdd.12244 24118702
    [Google Scholar]
  23. ChenJ.M. BaiJ.Y. YangK.X. Effect of resveratrol on doxorubicin resistance in breast neoplasm cells by modulating PI3K/Akt signaling pathway.IUBMB Life201870649150010.1002/iub.1749 29637742
    [Google Scholar]
  24. RebegeaL. FirescuD. DumitruM. AnghelR. The incidence and risk factors for occurrence of arm lymphedema after treatment of breast cancer.Chirurgia201511013337 25800313
    [Google Scholar]
  25. WolffA.C. BlackfordA.L. VisvanathanK. RugoH.S. MoyB. GoldsteinL.J. Stockerl-GoldsteinK. NeumayerL. LangbaumT.S. TheriaultR.L. HughesM.E. WeeksJ.C. KarpJ.E. Risk of marrow neoplasms after adjuvant breast cancer therapy: the national comprehensive cancer network experience.J. Clin. Oncol.201533434034810.1200/JCO.2013.54.6119 25534386
    [Google Scholar]
  26. FangJ. XiaoL. JooK.I. LiuY. ZhangC. LiuS. ContiP.S. LiZ. WangP. A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice.Int. J. Cancer201613841013102310.1002/ijc.29831 26334777
    [Google Scholar]
  27. MunirI. NaseerR. SaleemM. MahmoodA. SultanaA. Immunotoxins, an advance tool for cancer treatment: Review and update.Acta Pol. Pharm.20187561267127710.32383/appdr/91919
    [Google Scholar]
  28. MazorR. KingE.M. PastanI. Strategies to reduce the immunogenicity of recombinant immunotoxins.Am. J. Pathol.201818881736174310.1016/j.ajpath.2018.04.016 29870741
    [Google Scholar]
  29. RustA. PartridgeL. DavletovB. HautbergueG. The use of plant-derived ribosome inactivating proteins in immunotoxin development: Past, present and future generations.Toxins201791134410.3390/toxins9110344 29076988
    [Google Scholar]
  30. BallingerM.J. PerlmanS.J. Generality of toxins in defensive symbiosis: Ribosome-inactivating proteins and defense against parasitic wasps in Drosophila.PLoS Pathog.2017137e100643110.1371/journal.ppat.1006431 28683136
    [Google Scholar]
  31. LiC.H. LiR.S. LiC.M. HuangC.Z. ZhenS.J. Precise ricin A-chain delivery by Golgi-targeting carbon dots.Chem. Commun.201955456437644010.1039/C9CC01599J 31095140
    [Google Scholar]
  32. ValabregaG. MontemurroF. AgliettaM. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer.Ann. Oncol.200718697798410.1093/annonc/mdl475 17229773
    [Google Scholar]
  33. FiszmanG.L. JasnisM.A. Molecular mechanisms of trastuzumab resistance in HER2 overexpressing breast cancer.Int. J. Breast Cancer2011201135218210.4061/2011/352182
    [Google Scholar]
  34. NahtaR. EstevaF.J. Herceptin: mechanisms of action and resistance.Cancer Lett.2006232212313810.1016/j.canlet.2005.01.041 16458110
    [Google Scholar]
  35. DíazR. PallarèsV. Cano-GarridoO. SernaN. Sánchez-GarcíaL. FalgàsA. PesarrodonaM. UnzuetaU. Sánchez-ChardiA. SánchezJ.M. CasanovaI. VázquezE. ManguesR. VillaverdeA. Selective CXCR4+ cancer cell targeting and potent antineoplastic effect by a nanostructured version of recombinant ricin.Small20181426180066510.1002/smll.201800665 29845742
    [Google Scholar]
  36. TrungN.N. ThoN.T. Thuy DungB.T. My NhungH.T. ThangN.D. Effects of ricin extracted from seeds of the castor bean (ricinuscommunis) on cytotoxicity and tumorigenesis of melanoma cells.Biomed. Res. Ther.2016352310.7603/s40730‑016‑0023‑7
    [Google Scholar]
  37. Bich LoanN.T. TrungN.N. Le NaN.T. ThangN.D. Anticancer activities of ricin-liposome complexes on SKMEL-28 cells.Asian Pac. J. Cancer Prev.20192072117212310.31557/APJCP.2019.20.7.2117 31350974
    [Google Scholar]
  38. HajighasemlouS. AlebouyehM. RastegarH. ManzariM.T. MirmoghtadaeiM. MoayediB. AhmadzadehM. ParvizpourF. JohariB. NaeiniM.M. FarajollahiM.M. Preparation of immunotoxin herceptin-botulinum and killing effects on two breast cancer cell lines.Asian Pac. J. Cancer Prev.201516145977598110.7314/APJCP.2015.16.14.5977 26320483
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137278545240102055626
Loading
/content/journals/cnano/10.2174/0115734137278545240102055626
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): breast cancer; HER2; Herceptin; nanoparticles; ricin; targeted therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test